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Idea

How do we characterise pore geometry at different length scales?

	

Compute barcodes using persistent homology!

Hypothesis: MOFs with similar barcodes will have similar
behaviour.
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What is persistent homology?

Consider the atoms in the MOF as points

For each r > 0, build a simplicial complex
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Figure 3. A sequence of Rips complexes for a point cloud data
set representing an annulus. Upon increasing ϵ, holes appear and
disappear. Which holes are real and which are noise?

high-dimensional data, algebraic topology works like a telescope, revealing objects
and features not visible to the naked eye. In what follows, we concentrate on
homology for its balance between ease of computation and topological resolution.
We assume a rudimentary knowledge of homology, as is to be found in, say, Chapter
2 of [15].

Despite being both computable and insightful, the homology of a complex asso-
ciated to a point cloud at a particular ϵ is insufficient: it is a mistake to ask which
value of ϵ is optimal. Nor does it suffice to know a simple ‘count’ of the number and
types of holes appearing at each parameter value ϵ. Betti numbers are not enough.
One requires a means of declaring which holes are essential and which can be safely
ignored. The standard topological constructs of homology and homotopy offer no
such slack in their strident rigidity: a hole is a hole no matter how fragile or fine.

2.1. Persistence. Persistence, as introduced by Edelsbrunner, Letscher, and Zomo-
rodian [12] and refined by Carlsson and Zomorodian [22], is a rigorous response to
this problem. Given a parameterized family of spaces, those topological features
which persist over a significant parameter range are to be considered as signal with
short-lived features as noise. For a concrete example, assume that R = (Ri)

N
1 is

a sequence of Rips complexes associated to a fixed point cloud for an increasing
sequence of parameter values (ϵi)

N
1 . There are natural inclusion maps

(2.1) R1
ι

↪→ R2
ι

↪→ · · · ι
↪→ RN−1

ι
↪→ RN
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What is persistent homology?
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Theorem 2.3 ([22]). For a finite persistence module C with field F coefficients,

(2.3) H∗(C; F ) ∼=
⊕

i

xti · F [x] ⊕

⎛
⎝⊕

j

xrj · (F [x]/(xsj · F [x]))

⎞
⎠ .

This classification theorem has a natural interpretation. The free portions of
Equation (2.3) are in bijective correspondence with those homology generators
which come into existence at parameter ti and which persist for all future parame-
ter values. The torsional elements correspond to those homology generators which
appear at parameter rj and disappear at parameter rj + sj . At the chain level,
the Structure Theorem provides a birth-death pairing of generators of C (excepting
those that persist to infinity).

2.3. Barcodes. The parameter intervals arising from the basis for H∗(C; F ) in
Equation (2.3) inspire a visual snapshot of Hk(C; F ) in the form of a barcode. A
barcode is a graphical representation of Hk(C; F ) as a collection of horizontal line
segments in a plane whose horizontal axis corresponds to the parameter and whose
vertical axis represents an (arbitrary) ordering of homology generators. Figure 4
gives an example of barcode representations of the homology of the sampling of
points in an annulus from Figure 3 (illustrated in the case of a large number of
parameter values ϵi).

H0

H1

H2

ϵ

ϵ

ϵ

Figure 4. [bottom] An example of the barcodes for H∗(R) in the
example of Figure 3. [top] The rank of Hk(Rϵi) equals the number
of intervals in the barcode for Hk(R) intersecting the (dashed) line
ϵ = ϵi.

Barcode encodes information on

the number of holes through which molecules can pass
at what length scale they exist
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What do we plan to do?
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Emiko	Dupont,	Melina	Freitag,	James	Hook	&	Malena	Sabaté	

Malena Sabate, Emiko Dupont, James Hook, Melina Freitag University of Bath

Using persistent homology to characterise MOFs



What do we plan to do?

Refine approach: use varying atom sizes

Explore other options for measuring similarities and check for
robustness with respect to noise

Use barcodes for classification

Take into account different applications (not just methane storage)

Create a MOF-molecule performance matrix based

Compressed matrix based on classification
Use optimised sampling based on correlation structure of MOFs
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