

Interesting Small holes – big problems

Matthew Lennox M.J.Lennox@bath.ac.uk Tina Düren t.duren@bath.ac.uk

What is adsorption?

Adsorption is the adhesion of atoms, ions, or molecules from a gas, liquid, or dissolved solid to a surface.

Adsorption Surface process Absorption Bulk process

http://teaching.ust.hk/~ceng510/notes/CENG511/Lecture5.pdf

Adsorption isotherms & selectivities

Length scales : from adsorption columns to individual molecules in the solid

6031 20KU X2,000 10Pm HD16

m

mm

μm

CO₂ & SO₂ in CuBTC

Metal-organic frameworks – Building blocks allow tailoring for practical applications

What is it like inside IRMOF-1?

Characterisation, screening, finding applications

Computational screening of 137,953 hypothetical MOFs for methane storage

- Screening allows finding promising
 - Structures (NOTT-107 better than PCN-14)
 - Functional groups (methyl, ethyl, propyl)
- But contain no information about how (if) structures can be synthesised.

Work from Northwestern University : C.E. Willmer et al Nature Chemistry 4, 83–89 (2012)

NOTT-107

PCN-14

Geometry: size is not enough

 Pores often described by largest sphere diameter:

• Same 'size' but very different performance!

Can we quantify/characterise by shape – even for complex pore geometries?

Shape: important for (some) separations

Chromatographic separation of chiral molecules

Is there a clever way of finding "similarity"?

A new MOF – what can we do with it?

Challenge: Integrating complex geometry into screening

Simple sphere and channel representation

Simple shapes don't help with many MOFs

Useful things to look at

- <u>http://www.chemtube3d.com/solidstate/MOF-home.html</u> Images to play around with on the web
- <u>http://helios.princeton.edu/mofomics/</u> Numbers & images (java)
- <u>http://www.maciejharanczyk.info/Zeopp/</u> Numbers & images (Linux, Windows, Mac)
- <u>http://www.homepages.ed.ac.uk/lsarkiso/Research.html</u> Numbers (Linux, Windows)

Multiscale modelling: connecting atomistic and continuum models

Mixed Matrix Membranes

MOF membrane

Polymer membrane

The best of both worlds: mixed matrix membranes

Mixed Matrix Membranes

- Detailed atomistic description for the MOF
- Bulk models for polymers
- But no good way of connecting the two
- Interfaces? Defects?

T. Rodenas et al, Nature Materials, 2014

R. Lin et al ACS Appl. Mater. Interfaces, 2014

Back-up slides

Molecular simulation

Input

e.g. model for fluids and solids force fields to describe interactions

Simulation methods based on statistical mechanics

e.g. Monte Carlo Molecular Dynamics

Output

e.g. adsorption isotherms diffusion coefficients detailed picture on molecular level

snapshot

Guest molecules behave not unlike people in a bar

