SAMBA ITT6

Drug link

John Chew & Jannis Wenk

Department of Chemical Engineering

Water Innovation & Research Centre

Monday, 5 June, 2017

Growth and Break-up of Microbubbles

argeted tissue

Gas-Liquid Drug encapsulat

Size of Bubbles

Applications

Modern wastewater treatment plant of a medium sized city (Example Bensheim / Germany population 100.000)

Cost breakdown for wastewater treatment

Source: "Energy Conservation in Wastewater Treatment Facilities" – Manual of Practice – No. 32, Water Environment Federation – Copyright 2009

Why aeration is needed for wastewater treatment?

Wastewater aeration

Wastewater contains carbohydrates, lignin, fats, soaps, synthetic detergents, proteins and their decomposition products.

In the activated sludge process and other biological treatment processes beneficial microorganisms degrade this organic matter.

Stoichiometric equations for oxygen demand of wastewater

$$\mathrm{C}_n\mathrm{H}_a\mathrm{O}_b\mathrm{N}_c + \left(n+rac{a}{4}-rac{b}{2}-rac{3}{4}c
ight)\mathrm{O}_2
ightarrow n\mathrm{CO}_2 + \left(rac{a}{2}-rac{3}{2}c
ight)\mathrm{H}_2\mathrm{O} + c\mathrm{NH}_3$$

 $\rm NH_3+2O_2\rightarrow NO_3^-+H_3O^+$

'Natural' aeration is not efficient enough.

Activated sludge microbial community

Traditional aeration equipment and fine bubble behaviour

breakup due to turbulent eddy collision breakup due to instability of large bubbles coalescence due to turbulent eddy coalescence due to bubble wake coalescence due to different rise velocities

Transport Mechanisms

6

Hypothesis

- Small scale bubbles will significantly improve the mass transfer of oxygen from gas to liquid phase
- The technology can be retrofitted to existing wastewater treatment plants
- The potential energy savings from using small scale bubbles in large scale waste water treatment is significant
- Smoother process control can be achieved due to improved mixing conditions

Microbubble Generation

MB Particle Size Distribution

Computational Modelling

Computational vs. Experimental

Limitations

Key Questions to Answer

- Inaccuracy of drag model affects the rise velocity and bubble coalescence
- Buoyancy effect is less significant for MBs

Mass conservation:

 $\frac{\partial(\rho_i\alpha_i)}{\partial t} + \nabla(\rho_i\alpha_i\vec{u}_i) = 0$

Momentum conservation:

 $\frac{\partial(\rho_i \alpha_i \vec{u}_i)}{\partial t} + \nabla(\rho_i \alpha_i \vec{u}_i \vec{u}_i) = -\alpha_i \nabla p + \nabla \left[\alpha_i \mu_i \left(\nabla \vec{u}_i + (\vec{u}_i)^T\right)\right] + F_{lg} + \alpha_i \rho_i \vec{g}$

Multiple discrete bubble size groups:

$$\frac{\partial n_i}{\partial t} + \nabla \left(\vec{u}_g n_i \right) = \left(\sum_j R_j \right)_i$$
$$\left(\sum_j R_j \right)_i = \left(P_c + P_B - D_c - D_B \right)$$

Break-up rate:

 $\boldsymbol{P}_{\boldsymbol{B}} = \sum_{j=1}^{N} \boldsymbol{\Omega} (\boldsymbol{v}_{j} : \boldsymbol{v}_{i}) \boldsymbol{v}_{j}$

$$D_B = \Omega_i n_i$$
 with $D_B = \sum_{k=1}^N \Omega_{ik}$

Coalescence rate:

 $\boldsymbol{P}_{\boldsymbol{C}} = \frac{1}{2} \sum_{k=1}^{1} \sum_{l=1}^{1} \eta_{jki} \chi_{ij} \boldsymbol{n}_{i} \boldsymbol{n}_{j} \qquad \boldsymbol{D}_{\boldsymbol{C}} = \sum_{j=1}^{N} \chi_{ij} \boldsymbol{n}_{i} \boldsymbol{n}_{j}$