M^5

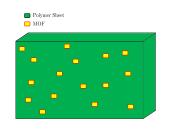
Mixed Matrix Membrane Multiscale Modelling

Team David HasselMOF: Beth Boulton, Chris Budd, Chris Guiver, Cameron Smith

Friday 9th June 2017

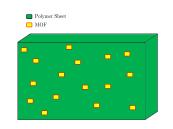
ITT6

What is a mixed matrix membrane?



Schematic for a MMM

What is a mixed matrix membrane?



Schematic for a MMM

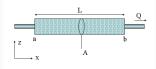
Different scales:Question: HPolymer sheet depth $\sim cm$ flow throughMOF size $\sim 100 \mu m$ flow throughPolymer sheet pores $nm \sim mm$ Question: GMOF pores $\sim nm$ flow through

Question: How to characterise the flow through the MMM?

Question: Global adsorption?

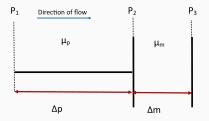
Approach 1: Darcy's law

- Looked at one and two dimensions
- MOF permeability μ_m and polymer sheet permeability μ_p
- Control the density of MOFs
- Continuum method in the polymer sheet: Darcy's law



Darcy flow experiment

Approach 1: Darcy's law



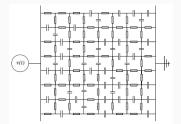
One-dimensional section with MOF

Permeabilities related according to weighted harmonic mean¹:

$$\frac{1}{\mu^*} = \frac{\Delta_p}{\mu_p} + \frac{\Delta_m}{\mu_m} \Leftrightarrow \mu^* = \frac{\mu_p \mu_m}{\Delta_p \mu_m + \Delta_m \mu_p}$$

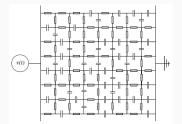
¹Zimmerman et al., Journal of Membrane Science 1997

Approach 1: Towards a solution



Resistor-capacitor circuit. Taken from Almond et al., Physica A (2012).

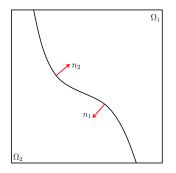
Approach 1: Towards a solution



Resistor-capacitor circuit. Taken from Almond et al., Physica A (2012).

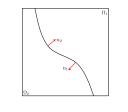
- Kirchoff's laws give equations for current (and voltage)
- We may "view" currents as fluid flow, conductances as permeabilities, voltages as pressures
- We would model MMM using randomly distributed components
- Emergent behaviour of large networks is known in literature
- Used to find global permeability of large MMM

Approach 1a: PDE modelling

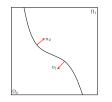


Two materials with different permeabilities

Approach 1a: PDE modelling



Approach 1a: PDE modelling



PDE for permeability:

$$abla \cdot (\mu(x) \nabla P) = 0$$

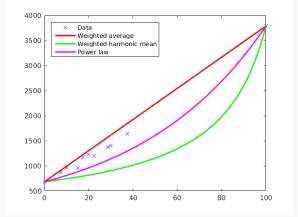
Solving over the entire domain (in one dimension) with

τ

$$\mu(x) = egin{cases} \mu_1 & x \in \Omega_1 \ \mu_2 & x \in \Omega_2 \end{cases}$$

and over individual domains gives the same harmonic mean result.

Approach 2: Hybrid modelling



Effective surface area of a mixture of two polymers

x-axis: Percentage of one of the polymers y-axis: Effective surface area

Observations:

Unknown interface between two polymers affects the effective surface area

Conjecture:

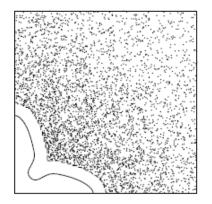
Model interface as third "material": $ESA = \mu_1^{f_1(\Delta_1)} \mu_2^{f_2(\Delta_2)} \mu_i^{f_i(\Delta_i)}$

Approach 2: Hybrid modelling

How do we model the interface? Hybrid modelling

Approach 2: Hybrid modelling

How do we model the interface? Hybrid modelling



Possible hybrid method. Taken from Plapp *et al., Physical Review Letters* (2000)

Thank you

Thank you for your attention. HasselMOF asks if you have any questions?

