Bubbles and bubbly flows

Paul Milewski

Young-Laplace equation

- Jump in pressure across interface. H is the mean curvature.

$$
\begin{gathered}
{[P]=2 \gamma H ; \quad H=\frac{1}{2}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)} \\
\gamma=\text { force } / \text { length }
\end{gathered}
$$

- Dimensionless numbers

$$
B o=\frac{\Delta \rho g R^{2}}{\gamma}, \quad C a=\frac{\mu U}{\gamma}, \quad W e=\frac{\rho U^{2} R}{\gamma}
$$

Bursting Bubble

Energy per unit volume

$$
\rho U^{2} \sim \gamma / D, \quad U \sim(\gamma / \rho D)^{1 / 2}
$$

bursting soap bubble

Single bubbles surrounded by fluids

- The Rayleigh - Plesset equation describes the evolving radius of a spherical bubble surrounded by a viscous incompressible fluid.

$$
\frac{1}{\rho_{L}}\left(P_{b}(t)-P_{\infty}(t)\right)=R \frac{d^{2} R}{d t^{2}}+\frac{3}{2}\left(\frac{d R}{d t}\right)^{2}+4 \nu_{L} \frac{1}{R} \frac{d R}{d t}+\frac{2 \gamma}{\rho_{L} R}
$$

- From it one can derive the natural frequency of oscillation of a bubble. (Thermodynamic part is called Minnaert frequency.)

$$
\omega=\frac{1}{R_{0} \rho_{L}^{1 / 2}}\left(3 k P_{0}-\frac{2 \gamma}{R_{0}}\right)^{1 / 2}, \quad P / \rho^{k}=\text { const } .
$$

- A more complicated differential equation describes the bubble in a compressible fluid - needed for consistent studies of the emission of sound by bubbles [Keller \& Miksis JASA 1980]

Collapsing bubbles and the pistol shrimp

ON THE SOUND
OF
SNAPPING SHRIMP

Sonoluminescence!

Entry \#: V 75

Shocking Bubbles

Outi Supponen ${ }^{1}$, Danail Obreschkow ${ }^{2}$, Mohamed Farhat ${ }^{1}$
${ }^{1}$ Ecole Polytechnique Fédérale de Lausanne
${ }^{2}$ International Centre for Radio Astronomy Research, University of Western
Australia

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
International
Centre for
Radio
Astronomy
Research

Rising bubbles - the champagne problem

- Even a seemingly simple problem can require some careful modelling.
- For low $\operatorname{Re}(<0.1)$ the drag on a bubble is $2 / 3$ that of on a solid sphere. Unfortunately the rise has $\operatorname{Re}=\mathrm{O}(1-20)$ - Guinness to Moet \& Chandon.

$$
F=\frac{1}{2} \rho U^{2} A_{C} C_{D}, \quad C_{D}=\frac{16}{R e}, \quad \text { Stokes' Law }
$$

- Bubble volume growth is due to change in hydrostatic pressure (easy to model), dynamic pressure (harder to model unless Re small) and mass growth rate in the droplet.
- The liquid is usually supersaturated with the gas and therefore, at a gas-liquid interface, one has a flux of mass. To obtain it one calculates an advection-diffusion process in the bulk for the concentration of dissolved gas with boundary condition at the interface. [For a Physics approach see Zhang \& Xu 2008]

Drag and rising bubble - mass conserved

[^0]
Other problems - Taylor bubbles.

Figure 5. Photographs of Taylor bubbles rising through 76.2 mm inside-diameter pipe filled with different viscosity liquids: (a) water; (b) Purolub 150 oil (480 mPas); (c) silicone oil (1300 mPa s); (d) silicone oil (3900 mPa s).

Bubbly flows - two phase models

- The modelling here is as a gas phase and a liquid phase. There is no transfer between the two (ie no dissolved gas) and a low concentration of bubbles is assumed (ie no bubble-bubble interactions). From Biesheuvel \& van Wijngaarden 1984:

$$
\begin{align*}
& \text { (2.4) } \frac{\partial}{\partial t} \rho_{\mathrm{g}} \alpha+\frac{\partial}{\partial x}\left(\rho_{\mathrm{g}} \alpha U_{\mathrm{g}}\right)=0 \tag{8.1}\\
& \text { (2.5) } \frac{\partial}{\partial t}(1-\alpha)+\frac{\partial}{\partial x} U_{\ell}(1-\alpha)=0, \tag{8.2}\\
& \text { (6.1) } \rho_{\ell}(1-\alpha)\left\{\frac{\partial U_{\ell}}{\partial t}+U_{\ell} \frac{\partial U_{\ell}}{\partial x}\right\} \\
& =-\frac{\partial}{\partial x}\langle p\rangle-\frac{\partial}{\partial x} \alpha \rho_{\ell}\left[\left(\frac{\mathrm{d} R}{\mathrm{~d} t}\right)^{2}+\frac{1}{2}\left(U_{\mathrm{g}}-U_{\mathrm{o}}\right)^{2}\right]-\rho_{\ell}(1-\alpha) g, \tag{8.3}\\
& \text { (7.4) } \frac{1}{2} \frac{\partial}{\partial t} \rho_{\ell} \tau\left(U_{\mathrm{g}}-U_{0}\right)=\rho_{\ell} \tau \frac{\partial U_{0}}{\partial t}-12 \pi R \mu\left(U_{\mathrm{g}}-U_{0}\right)+\rho_{\ell} \tau g, \tag{8.4}\\
& \text { (5.4) }(1-\alpha) U_{\ell}+\alpha U_{\mathrm{g}}=U_{0}, \tag{8.5}\\
& \text { (7.1) } \rho_{g} R^{3}=\text { constant, } \frac{p_{\mathrm{g}}}{\rho_{\mathrm{g}}}=\text { constant, } \tag{8.6}\\
& \text { (4.6) }\langle p\rangle=(1-\alpha)\langle p\rangle_{\ell}+\alpha\langle p\rangle_{\mathrm{g}}-\frac{2 \gamma}{R} \alpha, \tag{8.7}\\
& \text { (4.7) }\langle p\rangle_{\mathrm{g}}=p_{\mathrm{g}}=\langle p\rangle+\frac{2 \gamma}{R}+\rho_{\ell}\left[\frac{3}{2}\left(\frac{\mathrm{~d} R}{\mathrm{~d} t}\right)^{2}+R \frac{\mathrm{~d}^{2} R}{\mathrm{~d} t^{2}}-\frac{1}{4}\left(U_{\mathrm{g}}-U_{0}\right)^{2}\right] . \tag{8.8}
\end{align*}
$$

Properties

- Taking P to be the same in gas and liquid phase (the nondispersive limit) , we end up with a system of 4 hyperbolic PDEs with characteristic speeds:

$$
\begin{aligned}
0, \quad U_{g}, & \frac{1}{2}\left(U_{g}+U_{l}\right)+\alpha\left(U_{g}-U_{l}\right) \pm c_{0} \\
& c_{0}^{2}=\frac{p}{\rho_{l} \alpha(1-3 \alpha)}
\end{aligned}
$$

- Bubble dynamics, "concentration wave", 2 sound waves.

Thank you!

[^0]: Tripathi, M. K. et al. Dynamics of an initially spherical bubble rising in quiescent liquid. Nat. Commun. 6:6268 doi: 10.1038/
 ncomms7268 (2015).

