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Part 1: Nuclear Magnetic Resonance in Porous Media,  
and what we do with it 



NMR can be done at many field strengths
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2 MHz – “industry 
standard” for NMR in 
petrophysics

23 - 12 MHz – rock 
core imager

400 MHz – a chemical 
spectroscopy system

85 MHz – a 30cm 
bore imager

spectroscopy

petrophysics & well logging 

≤ 2 MHz –
Well logging

∼ 2 kHz
– Earth’s Field NMR 

MRI Core-NMR
Benchtop MRI
other nuclei

2 T9 T 0.3 T 50 mT 50 µT
no magnet  !permanent magnetssuperconducting magnets

Resonance Frequency



Early wave MRI of rocks (1991-92)
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2 Tesla / 85 MHz



(attempts at) Quantitative saturation profiles (1993)
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span of tE in profiles

2 Tesla / 85 MHz



Data; well logs; and core analysis labs
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In combination with 1D MRI – profiles of T1-distributions
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Berea 200

Ketton – v high 
permeability

mud mud + cake

apparatus

Imaging: FT of echo data delivers profile

Relaxation: analysed for T1 – distribution
pixel-by-pixel



2D relaxation time distributions – in the same EOR experiment
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T1-T2 Interpretation in shales
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10 µs

… after Marc Fleury (IFP)

• Measure T1 AND T2 relaxation times
• Sensitive to molecular motion
• Frequency (magnet strength) dependent

T 1
, T

2

ω0τc

liquid solid

NMR frequency

molecular mobility

200 µs limit of current generation logging tools



actual examples from organic shales
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T1 – T2

T1/T2 – T2

Interpretations of fluids

another case:

T1 – T2



2D Diffusion – T2 distributions

Well logging tools:
fixed field gradient (FFG)
FFG-2SE sequence.

Benchtop magnet:
pulsed field gradient (PFG)
PFG-2SE sequence.
Match gradient areas:
gPFG = gFFG

Mitchell and Fordham, J. Magn. Reson (2011) doi: 10.1016/j.jmr.2011.07.020
US Patent Application 12/731,005
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That EOR experiment again:   D – T2 this time
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There’s more …
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23Na NMR in saline in a ChalkT1

T2

QCC

ω0τca new kernel
same data



More dimensions …
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What’s wrong with it all ?
 Poor resolution 
 typically only integrals or moments are used
 Rock properties and fluid types the goal

 No error bars !!!! –
 or any other uncertainty estimates
 Point values on T2 almost meaningless

 No easy way to include prior information
 Bulk relaxation rates impose ceiling on T1,2
 T1 ≥ T2 from physics 

 Time/memory may become prohibitive in 
dimensions > 2
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Part 2: The mathematical problem



Problem archetype and approaches
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The archetype problem is the solution, for an unknown distribution P(T2 ,T1)≥0 , of a 
First Kind Fredholm integral equation with exponential kernel :

𝑀𝑀 𝜏𝜏1
𝑖𝑖 , 𝜏𝜏2

𝑗𝑗 = �
0

∞
𝑃𝑃 𝑇𝑇2 ,𝑇𝑇1 exp − �𝜏𝜏2

(𝑗𝑗) 𝑇𝑇2 1 − exp − �𝜏𝜏1
(𝑖𝑖) 𝑇𝑇1 𝑑𝑑𝑇𝑇2𝑑𝑑𝑇𝑇1 + 𝑒𝑒 𝜏𝜏1

(𝑖𝑖), 𝜏𝜏2
(𝑗𝑗)

𝑀𝑀 𝜏𝜏1
𝑖𝑖 , 𝜏𝜏2

𝑗𝑗 experimental magnetization values at discrete sampling times 𝜏𝜏1
𝑖𝑖 , 𝜏𝜏2

𝑗𝑗 for 𝑖𝑖 = 1, …𝑁𝑁; 𝑗𝑗 = 1, …𝑀𝑀

𝑒𝑒 𝜏𝜏1
(𝑖𝑖), 𝜏𝜏2

(𝑗𝑗) experimental noise (Gaussian, white). Signal to Noise Ratio may be poor ( 0 dB in first experimental prototypes )

Different measurements involve different kernels – may or may not be separable K(τ1,τ2;T1,T2) =k1(τ1;T1)k2(τ2;T2)
Positivity condition P(T2, T1)≥0 may need to be relaxed (in some 2D contexts).

• Current routine practice:           one of many (and evolving) ad hoc variants of Tikhonov regularisation [3,4,5,6,7]
• Attempts at uncertainty estimates:
(i) confidence intervals on the overall data misfit (with explicit rejection of Bayesian priors) [8]
(ii) direct estimation of petrophysically important moments, via the use of Mellin transforms [9, 10]
(iii) Markov Chain Monte-Carlo (MC2) exploration of posterior probability spaces, but without close attention to the priors [11]

• Not attempted (so far !):  Systematic treatment as a problem in Bayesian inference.



Apparatus for exploration of the problem:
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• Potential apparatus: 
Constraints on priors from independence of discretization [12]:

Random samples from a wide class of uncorrelated measures, appropriate as priors, are known to be “atomic” 
(i.e. encodable as a finite set of discrete masses) [12,13,14].  

“Atomic” property is arguably reasonable in the context: 

T2 is a routine proxy for pore “size” – but derives from “isolated” pore assumptions – clearly non-physical !
Dominant diffusion eigenmodes of fully inter-connected pore network a better model – and a finite discrete set may describe them 

Practical implementations [15] use various “engines” for MC2 exploration of posterior probability spaces. 
Concomitant estimates of the Bayesian “evidence” (“prior predictive”) are also available.

LGPL codes “BayeSys” and “MassInf” available with documentation 
(John Skilling, 2004, Maximum Entropy Data Consultants Ltd)



Solution by Tikhonov Regularization
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Measured magnetization data Mi & unknown distribution f(x)

Kernel functions exponential decays (or similar variants)

ki(x) … kN(x) are “almost linearly dependent” such that matrix

… is ill-conditioned.

Formal statement of (ill-conditioned) problem:

Regularized problem:

Seek f(x) minimising mean square misfit with regularising term, 
for some α selected by one of many ad hoc criteria 



Key papers and reviews
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The “Schlumberger algorithm” for separable kernels in 2D:

or in discretised matrix form:

Separability applies to most 2D relaxation 
experiments but not all diffusion ones



Innocent questions that don’t go away

 We all know the inversion is highly ill-conditioned. 
What do these distributions really mean ?

 How reliable / accurate are they ?

 How do you choose the value of the “tuning knob” α ?

 How do you choose the regularising functional ? 
(square norm, curvature, entropy, UPEN … )

 How much information do they contain ?

 How many measurements can you extract ?
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 The problem is very ill-conditioned.
 We distort it to make it less so.
 The form of the regularising functional is a 

matter of taste.
 We fiddle the value of the regularising 

parameter α according to criteria which are 
also a matter of taste.

 The results “look” reasonable.
 They agree well enough with known 

distributions for synthetic data.

The story: Innocent questions:



inference
likelihood prior

evidence

Bayesian interpretation of Regularisation
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Regularization problem:

Noise known to be white Gaussian, so Likelihood is: 

in which:

Hence identify:  

log-likelihood
log-priorSimilarly identify:

i.e. prior on distribution f :

maximises posterior “inference”   

“Best” distribution  maximises Q for 

Then by Bayes’ Theorem:

So minimising the argument 
or maximising  

Regularised distribution is “most probable” (maximum 
a posteriori probability or MAPP) – assigning αS as log-prior



So how should we assign the prior ?

 Highly structured f highly informative (low P without data)
 Featureless f uninformative (high P without data)
 Shannon entropy should be a candidate
 Entropy the only form without spurious correlations
 Over-riding consideration should be consistency
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Entropic Prior

where

Hence: “Quantified Maximum Entropy” or QME

Problems emerge:

 Not independent of pixelation / discretisation of domain

 Consistency requires independence of pixelation …
For any disjoint sub-domains

Additivity: Positivity:

Surprising consequences !



“Atomic” priors
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application

samples from an
“atomic” prior



More on atomic priors 
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Proc. 15th Workshop on Maximum Entropy and 
Bayesian Methods (1996) pp 261-270 Kluwer 

Small probabilities of O(1) “flux” in a small cell
Not O(1) probability of small flux



The “Massive Inference” method

 Satisfies requirement of “infinite divisibility”

 Delta-function at F = 0 forces posterior mode to be null !   Counter-example to MAPP: mode is not useful

 Mean values instead used for display / “best” distribution

 Two hyper-parameters: 
 α is Poisson Expectation number of “atoms” over domain range on which F is estimated
 q is a dimensional flux unit  (expected scale)
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The “Massive Inference” prior for measure F: 

Properties: 



27

The “Massive Inference” method: sketch derivation

δx
domain x

cell/ pixel size - discretization

How many atoms r in cell δx ? 

Choose Poisson prior of expectation / mean  µ = α δx

How large ( ζi = F i /q )  are each of the  r atoms ? 

Total flux in cell width δx  is

How is total flux ζ distributed ? (given r atoms)

How is total flux ζ distributed ? ( any r atoms in cell δx )

Hence previous page  ( F = dimensionless flux × flux quantum )

Number of atoms r 
in cell summed 

away analytically



Computational engines

 Markov Chain Monte Carlo algorithms

 exploring Hilbert (space-filling) curves
 Implemented in Public Domain (LGPL) codes BayeSys and MassInf

 © John Skilling 2004

 Further development since 2004 – bibliography incomplete !

 May be more advanced codes available commercially

(Maximum Entropy Data Consultants Ltd)
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How Far Can We Go?



“Massive Inference” on exponential decays
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Test problem:
is normally distributed noise

zero mean unit variance

R2 = 1/T2     note linear axis !!

individual samples from posterior

T2 = 20 s  log T2 = 1.301 T2 = 33.3 s log T2 = 1.523



Side note: application to NMR spectroscopy
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a poorly-resolved NMR spectrum
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evidence ratio

model selection
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