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Introducing Inverse Problems

When solving a

DIRECT PROBLEM

we are interested in a system's behavior, given the internal structure of the system.

When solving an

INVERSE PROBLEM

we are interested in determining the internal structure of a system, given the system’s
observed behavior.

m Direct problems: from the cause of a observed phenomenon, to its effect.

m Inverse problems: from the effect of an observed phenomenon, to its cause.
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Setting the stage Sparse reconstruction

Some examples

model input output

Matrix Completion

image deblurring (astronomical imaging)

PSF,
convolution

computerised tomography (industrial, medical)

L i |

X-rays, (S "
line integrals

| -]

matrix completion
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Inverse problems are ill-posed

According to Hadamard (1923), a problem is ill-posed if

m (the) solution is not unique
or

m (the) solution does not depend continuously on the given data
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Setting the stage Sparse reconstruction Matrix Completion

Inverse problems are ill-posed

According to Hadamard (1923), a problem is ill-posed if

m (the) solution is not unique
or

m (the) solution does not depend continuously on the given data

Indeed, this is what happens:

deblurring CT
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Understanding what goes wrong
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Understanding what goes wrong
Consider the SVD of A € RV*N | for these examples N = 65536:
A=UZVT

When there is noise, b = b® + e (for this example ||e||2/||b|l2 = 1072):
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Understanding what goes wrong

Consider the SVD of A € RVXN  for these examples N = 65536:

N T N T ex
u! b b u e
A = UZVT — X = E I_V,' — E Vi Vi
i i i—1 i

I

When there is noise, b = b® + e (for this example ||e|2/||b]2 = 1072):

x 10

Large-Scale Inverse Problems Dec 7, 2016 5/18



Applying direct regularisation
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Applying direct regularisation

Truncated SVD (TSVD):

T
u'b
Xk: ’—V,', k<<N

g
i=1 !
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Setting the stage Sparse reconstruction Matrix Completion
Applying direct regularisation

Truncated SVD (TSVD):

k
ul'b
X = E vi, k<N.
i
i=1
For this example: k = 3653.
10°
B \u“b\
o G
10°
10°
1010
10 0 1 2 3 4 5 6
x10*
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Applying direct regularisation

Tikhonov regularization:

= in [|Ax — b||2 + A||Lx][2, A>0
xx = arg min [[Ax = bll; + Al Lx]l;
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Setting the stage Sparse reconstruction Matrix Completion
Applying direct regularisation
Tikhonov regularization:

X\ = argxnewliRnN |Ax — b3+ AILx]3, A>0

For this example: A =1.76-107%, L = /.

x 10°
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Iterative Regularization Methods (no SVD!)
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Iterative Regularization Methods (no SVD!)

m Gradient Descent Methods

Xmi1 = Xm + amA" (b — Axpm)
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Setting the stage Sparse reconstruction Matrix Completion

lterative Regularization Methods (no SVD!)

m Gradient Descent Methods
Xmi1 = Xm + amA" (b — Axm)

m Krylov methods: CGLS (LSQR), GMRES, ...

relative errors

relative residuals
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Setting the stage Sparse reconstruction

lterative Regularization Methods (no SVD!)

m Gradient Descent Methods
Xmi1 = Xm + amA" (b — Axm)

Krylov methods: CGLS (LSQR), GMRES, ...

relative errors

relative residuals
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Gradient Descent approach VS. Krylov Subspaces approach

relative error history
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Enforcing sparsity

m By penalisation:
xn = arg min [|Ax — b3 + A lx]|;
xeRN

x = arg min [|Ax = bJ} + A[[Uxl,
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Enforcing sparsity

m By penalisation:
xn = arg min [|Ax — b3 + A lx]|;
xeRN

Xy = arg min [ Ax = b3+ A [¥x,

m By imposing constraints:
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Enforcing sparsity

m By penalisation:
xn = arg min [|Ax — b3 + A lx]|;
xeRN

Xy = arg min [ Ax = b3+ A [¥x,

m By imposing constraints:

Xg = arg mig |Ax — bl , eg., B={xst [|[Vx]1<(}
S

Xc = arg mi(r} |Ux|;, eg, C={xst [[Ax—b|2<e}
X€

x¢ = argmin|Ax — bl
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Why || - || is successful in enforcing sparsity?
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Why || - || is successful in enforcing sparsity?

min||z|1 st Az=y, with A€ R>*?

z[[1 = |z1| + |z
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Why || - || is successful in enforcing sparsity?

min||z|1 st Az=y, with A€ R>*?

z[[1 = |z1| + |z

£,ball

[Image courtesy: Fornasier and Rauhut. Compressive Sensing, 2011]

Large-Scale Inverse Problems Dec 7, 2016 11 /18



Why || - || is successful in enforcing sparsity?

min||z|1 st Az=y, with A€ R>*?

z[[1 = |z1| + |z

£,ball

[Image courtesy: Fornasier and Rauhut. Compressive Sensing, 2011]

Large-Scale Inverse Problems Dec 7, 2016 11 /18



Why || - || is successful in enforcing sparsity?

min||z|1 st Az=y, with A€ R>*?

z[[1 = |z1| + |z

£,-ball

[Image courtesy: Fornasier and Rauhut. Compressive Sensing, 2011]

the sparsest solution is recovered!
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|- |l1 vs. || - ||2 minimisation

[Image courtesy: Baraniuk et al. An Introduction to Compressive Sensing, 2013]
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Examples of sparsity transforms W
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Examples of sparsity transforms W

original
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Setting the stage

Sparse reconstruction

Examples of sparsity transforms W

original

S. Gazzola (UoB)

2D dct

Large-Scale Inverse Problems

Matrix Completion

dct coefficients

10°
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Setting the stage Sparse reconstruction Matrix Completion

Examples of sparsity transforms W

original 2D wavelets wavelet coefficients
10°
102
10
10°
105 2 4 6

x10*
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Setting the stage Sparse reconstruction

Examples of sparsity transforms W

original gradient gradient coefficients
10°
10°
10—10
1079 2 4 6
x10*
Dec 7, 2016
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Incomplete information & compressive sensing theory
Assume we wish recover x € RN from

Ax+n=b, AcR™N M<N.
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Setting the stage Sparse reconstruction

Incomplete information & compressive sensing theory

Assume we wish recover x € RV from

Ax+n=b, AcRMN M<N.

Then, provided that we have
m sparsity (Wx is k-sparse)
m randomness (the rows of A are chosen uniformly at random)

= “incoherence” ((A, V) with “coherence” 11 < v/N)
and

M > C-pu?-(k-log(N)),
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Setting the stage Sparse reconstruction Matrix Completion

Incomplete information & compressive sensing theory
Assume we wish recover x € RN from
Ax +n=b, AcR"™N M<N.

Then, provided that we have
m sparsity (Wx is k-sparse)
m randomness (the rows of A are chosen uniformly at random)
= “incoherence” ((A, V) with “coherence” 11 < v/N)

and
M > C-u?-(k-log(N)),

then the compressive sensing theory guarantees that we can recover
x € RN with overwhelming probability by solving

min ||Wx|1 st [[Ax—b|2<ce.
x€RN
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Making sense of “(in)coherence”

Leta, i=1,...,N, ¢/, j=1,...,N be two basis of RN. Then, the
coherence [, between a’ and v¥ is defined as

o VT e O

1<i 7SN a2 |42 |
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Making sense of “(in)coherence”

Let a’, i=1,...,N, ¢/, j=1,..., N be two basis of RV. Then, the
coherence [, between a’ and v¥ is defined as

o VT e O

1<i 7SN a2 |42 |

Note that

1§,u§\/ﬁ.

[ time for a movie... |
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On the whiteboard...

J. F. Cai, E. J. Candes, and Z. Shen

A SINGULAR VALUE THRESHOLDING ALGORITHM
FOR MATRIX COMPLETION

SIAM J. Optim., Vol 20, No 4, pp. 1956-1982
http://epubs.siam.org/doi/ref/10.1137/080738970
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