Numerical Solution of Large-Scale Inverse Problems

Silvia Gazzola

Department of Mathematical Sciences

SAMBa SLS December 7, 2016

When solving a

DIRECT PROBLEM

we are interested in a system's behavior, given the internal structure of the system.

When solving a

DIRECT PROBLEM

we are interested in a system's behavior, given the internal structure of the system.

When solving an

INVERSE PROBLEM

we are interested in determining the internal structure of a system, given the system's observed behavior.

When solving a

DIRECT PROBLEM

we are interested in a system's behavior, given the internal structure of the system.

When solving an

INVERSE PROBLEM

we are interested in determining the internal structure of a system, given the system's observed behavior.

- **Direct problems**: from the cause of a observed phenomenon, to its effect.
- Inverse problems: from the effect of an observed phenomenon, to its cause.

Some examples

Some examples

model input output

image deblurring (astronomical imaging)

PSF, convolution

computerised tomography (industrial, medical)

X-rays, line integrals

matrix completion

Inverse problems are ill-posed

According to Hadamard (1923), a problem is **ill-posed** if

(the) solution is not unique

or

(the) solution does not depend continuously on the given data

Inverse problems are ill-posed

According to Hadamard (1923), a problem is ill-posed if

(the) solution is not unique

or

(the) solution does not depend continuously on the given data

Indeed, this is what happens:

5 / 18

Consider the SVD of $A \in \mathbb{R}^{N \times N}$, for these examples N = 65536:

$$A = U\Sigma V^T$$

When there is noise, $b = b^{ex} + e$ (for this example $||e||_2/||b||_2 = 10^{-2}$):

Consider the SVD of $A \in \mathbb{R}^{N \times N}$, for these examples N = 65536:

$$A = U\Sigma V^T \implies x = \sum_{i=1}^N \frac{u_i^T b}{\sigma_i} v_i$$

When there is noise, $b = b^{ex} + e$ (for this example $||e||_2/||b||_2 = 10^{-2}$):

Consider the SVD of $A \in \mathbb{R}^{N \times N}$, for these examples N = 65536:

$$A = U\Sigma V^{T} \implies x = \sum_{i=1}^{N} \frac{u_{i}^{T} b}{\sigma_{i}} v_{i} = \sum_{i=1}^{N} \frac{u_{i}^{T} b^{\text{ex}}}{\sigma_{i}} v_{i} + \sum_{i=1}^{N} \frac{u_{i}^{T} e}{\sigma_{i}} v_{i}.$$

When there is noise, $b = b^{ex} + e$ (for this example $||e||_2/||b||_2 = 10^{-2}$):

Truncated SVD (TSVD):

$$x_k = \sum_{i=1}^k \frac{u_i^T b}{\sigma_i} v_i, \quad k \ll N.$$

Truncated SVD (TSVD):

$$x_k = \sum_{i=1}^k \frac{u_i^T b}{\sigma_i} v_i, \quad k \ll N.$$

For this example: k = 3653.

Tikhonov regularization:

$$x_{\lambda} = \arg\min_{x \in \mathbb{R}^{N}} \left\|Ax - b
ight\|_{2}^{2} + \lambda \left\|Lx
ight\|_{2}^{2} \;, \quad \lambda > 0$$

Tikhonov regularization:

$$x_{\lambda} = \arg\min_{x \in \mathbb{R}^{N}} \left\| Ax - b \right\|_{2}^{2} + \lambda \left\| Lx \right\|_{2}^{2} \,, \quad \lambda > 0$$

For this example: $\lambda = 1.76 \cdot 10^{-4}$, L = I.

■ Gradient Descent Methods

$$x_{m+1} = x_m + \alpha_m A^T (b - Ax_m)$$

Gradient Descent Methods

$$x_{m+1} = x_m + \alpha_m A^T (b - Ax_m)$$

Gradient Descent Methods

$$x_{m+1} = x_m + \alpha_m A^T (b - Ax_m)$$

Gradient Descent Methods

$$x_{m+1} = x_m + \alpha_m A^T (b - Ax_m)$$

Gradient Descent Methods

$$x_{m+1} = x_m + \alpha_m A^T (b - Ax_m)$$

Gradient Descent Methods

$$x_{m+1} = x_m + \alpha_m A^T (b - Ax_m)$$

Gradient Descent approach VS. Krylov Subspaces approach

Enforcing sparsity

By penalisation:

$$x_{\lambda} = \arg\min_{x \in \mathbb{R}^{N}} \|Ax - b\|_{2}^{2} + \lambda \|x\|_{1}$$

$$x_{\lambda} = \arg\min_{x \in \mathbb{R}^{N}} \|Ax - b\|_{2}^{2} + \lambda \|\Psi x\|_{1}$$

Enforcing sparsity

By penalisation:

$$x_{\lambda} = \arg\min_{x \in \mathbb{R}^{N}} \|Ax - b\|_{2}^{2} + \lambda \|x\|_{1}$$

$$x_{\lambda} = \arg\min_{x \in \mathbb{R}^{N}} \|Ax - b\|_{2}^{2} + \lambda \|\Psi x\|_{1}$$

By imposing constraints:

$$\begin{array}{lcl} x_B & = & \arg\min_{x \in B} \left\|Ax - b\right\|_2 \;, & \text{e.g., } B = \{x \text{ s.t. } \|\Psi x\|_1 \leq \zeta\} \\ x_C & = & \arg\min_{x \in C} \left\|\Psi x\right\|_1 \;, & \text{e.g., } C = \{x \text{ s.t. } \|Ax - b\|_2 \leq \varepsilon\} \end{array}$$

Enforcing sparsity

By penalisation:

$$x_{\lambda} = \arg\min_{x \in \mathbb{R}^{N}} \|Ax - b\|_{2}^{2} + \lambda \|x\|_{1}$$

$$x_{\lambda} = \arg\min_{x \in \mathbb{R}^{N}} \|Ax - b\|_{2}^{2} + \lambda \|\Psi x\|_{1}$$

By imposing constraints:

$$\begin{array}{lll} x_{B} & = & \arg\min_{x \in B} \|Ax - b\|_{2} \;, & \text{e.g., } B = \{x \text{ s.t. } \|\Psi x\|_{1} \leq \zeta\} \\ x_{C} & = & \arg\min_{x \in C} \|\Psi x\|_{1} \;, & \text{e.g., } C = \{x \text{ s.t. } \|Ax - b\|_{2} \leq \varepsilon\} \\ x_{+} & = & \arg\min_{x \geq 0} \|Ax - b\|_{2} \end{array}$$

$$\min \|z\|_1$$
 s.t. $Az = y$, with $A \in \mathbb{R}^{1 \times 2}$, $\|z\|_1 = |z_1| + |z_2|$

$$\min \|z\|_1$$
 s.t. $Az = y$, with $A \in \mathbb{R}^{1 \times 2}$, $\|z\|_1 = |z_1| + |z_2|$

[Image courtesy: Fornasier and Rauhut. Compressive Sensing, 2011]

$$\min \|z\|_1$$
 s.t. $Az = y$, with $A \in \mathbb{R}^{1 \times 2}$, $\|z\|_1 = |z_1| + |z_2|$

[Image courtesy: Fornasier and Rauhut. Compressive Sensing, 2011]

$$\min \|z\|_1$$
 s.t. $Az = y$, with $A \in \mathbb{R}^{1 \times 2}$, $\|z\|_1 = |z_1| + |z_2|$

[Image courtesy: Fornasier and Rauhut. Compressive Sensing, 2011]

the sparsest solution is recovered!

$\|\cdot\|_1$ vs. $\|\cdot\|_2$ minimisation

[Image courtesy: Baraniuk et al. An Introduction to Compressive Sensing, 2013]

etting the stage Sparse reconstruction Matrix Completion

original

original

2D dct

dct coefficients

original

2D wavelets

wavelet coefficients

original

gradient

gradient coefficients

Incomplete information & compressive sensing theory

Assume we wish recover $x \in \mathbb{R}^N$ from

$$Ax + n = b$$
, $A \in \mathbb{R}^{M \times N}$, $M \ll N$.

Incomplete information & compressive sensing theory

Assume we wish recover $x \in \mathbb{R}^N$ from

$$Ax + n = b$$
, $A \in \mathbb{R}^{M \times N}$, $M \ll N$.

Then, provided that we have

- **sparsity** (Ψx is k-sparse)
- **randomness** (the rows of *A* are chosen uniformly at random)
- "incoherence" $((A, \Psi))$ with "coherence" $\mu \ll \sqrt{N}$

and

$$M \geq C \cdot \mu^2 \cdot (k \cdot \log(N)),$$

Incomplete information & compressive sensing theory

Assume we wish recover $x \in \mathbb{R}^N$ from

$$Ax + n = b$$
, $A \in \mathbb{R}^{M \times N}$, $M \ll N$.

Then, provided that we have

- **sparsity** (Ψx is k-sparse)
- **randomness** (the rows of *A* are chosen uniformly at random)
- "incoherence" $((A, \Psi))$ with "coherence" $\mu \ll \sqrt{N}$

and

$$M \geq C \cdot \mu^2 \cdot (k \cdot \log(N)),$$

then the **compressive sensing** theory guarantees that we can recover $x \in \mathbb{R}^N$ with overwhelming probability by solving

$$\min_{x \in \mathbb{R}^N} \|\Psi x\|_1$$
 s.t. $\|Ax - b\|_2 \le \varepsilon$.

Making sense of "(in)coherence"

Let a^i , $i=1,\ldots,N$, ψ^j , $j=1,\ldots,N$ be two basis of \mathbb{R}^N . Then, the **coherence** μ between a^i and ψ^j is defined as

$$\mu = \sqrt{N} \max_{1 \leq i, j \leq N} \frac{\left| \left\langle \mathbf{a}^i, \psi^j \right\rangle \right|}{\|\mathbf{a}^i\|_2 \|\psi^j\|_2} \,.$$

Making sense of "(in)coherence"

Let a^i , $i=1,\ldots,N$, ψ^j , $j=1,\ldots,N$ be two basis of \mathbb{R}^N . Then, the **coherence** μ between a^i and ψ^j is defined as

$$\mu \,=\, \sqrt{N} \max_{1 \leq i,j \leq N} \frac{\left|\left\langle \mathbf{a}^i, \psi^j \right\rangle\right|}{\|\mathbf{a}^i\|_2 \|\psi^j\|_2} \,.$$

Note that

$$1 \le \mu \le \sqrt{N}$$
.

Making sense of "(in)coherence"

Let a^i , $i=1,\ldots,N$, ψ^j , $j=1,\ldots,N$ be two basis of \mathbb{R}^N . Then, the **coherence** μ between a^i and ψ^j is defined as

$$\mu = \sqrt{N} \max_{1 \le i, j \le N} \frac{\left| \left\langle \mathbf{a}^i, \psi^j \right\rangle \right|}{\|\mathbf{a}^i\|_2 \|\psi^j\|_2}.$$

Note that

$$1 \le \mu \le \sqrt{N}$$
.

[time for a movie...]

On the whiteboard...

J. F. Cai, E. J. Candes, and Z. Shen

A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION

SIAM J. Optim., Vol 20, No 4, pp. 1956–1982

http://epubs.siam.org/doi/ref/10.1137/080738970