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1. A clinical trial with treatment selection

Consider a trial of cancer treatments comparing

Experimental Treatment 1: Intensive dosing

Experimental Treatment 2: Slower dosing

Control treatment

The primary endpoint is Overall Survival (OS).

Information on OS, Progression Free Survival (PFS) and safety will be used at an

interim analysis to choose between the two experimental treatments.

Note that PFS is useful here as it is more rapidly observed.

After the interim analysis, patients will only be recruited to the selected treatment

and the control.
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Overall plan of the trial
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analysis
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At the final analysis, we test the null hypothesis that OS on the selected treatment is

no better than OS on the control.
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2. Protecting the type I error rate

We shall assume a proportional hazards model with

λ1 = Hazard ratio, Control vs Exp. Treatment 1

λ2 = Hazard ratio, Control vs Exp. Treatment 2

θ1 = log(λ1), θ2 = log(λ2).

We test null hypotheses

H0,1: θ1 ≤ 0 vs θ1 > 0 (Exp. Treatment 1 superior to control),

H0,2: θ2 ≤ 0 vs θ2 > 0 (Exp. Treatment 2 superior to control).

In order to control the “familywise error rate”, we require

Pr{Reject any true null hypothesis} ≤ α.
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A closed testing procedure

Define level α tests of

H0,1: θ1 ≤ 0,

H0,2: θ2 ≤ 0

and of the intersection hypothesis

H0,12 = H0,1 ∩H0,2: θ1 ≤ 0 and θ2 ≤ 0.

Then:

RejectH0,1 overall if the above tests reject H0,1 and H0,12,

RejectH0,2 overall if the above tests reject H0,2 and H0,12.

The requirement to reject H0,12 compensates for testing multiple hypotheses and

the “selection bias” in choosing the treatment to focus on in Stage 2.
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Combining data across stages

Consider testing a generic null hypothesisH0: θ ≤ 0 against θ > 0.

Data are gathered in two stages:

Stage 1 data produce the standardised statistic Z1,

After possible adaptations, Stage 2 data produce Z2.

In the particular case θ = 0:

Then, Z1 has the usualN(0, 1) distribution.

And Z2 ∼ N(0, 1) conditionally on Stage 1 data and the resulting Stage 2 design.

Since the conditional distribution of Z2 is the same for all Stage 1 data, Z2 is

independent of the Stage 1 data (including Z1).

Thus, when θ = 0, Z1 and Z2 are independentN(0, 1) variables.
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Combining data across stages

We have stage-wise statistics Z1 and Z2 ∼ N(0, 1) independently under θ = 0.

If θ < 0, suppose we can show that Z1 and Z2 have distributions which are

stochastically smaller than N(0, 1): then the Type I error probability under θ = 0

will be higher than at any θ < 0.

Weighted inverse normal combination test

With pre-specified weights w1 and w2 satisfying w2

1
+ w2

2
= 1,

Z = w1 Z1 + w2 Z2 ∼ N(0, 1) (or stochastically smaller) underH0.

So, for a level α test, we reject H0 if Z > Φ−1(1 − α).

Or, the test can be defined in terms of P1 = 1 − Φ(Z1) and P2 = 1 − Φ(Z2).

We shall apply such combination rules in testing our three null hypotheses,H0,1,

H0,2 and H0,12.
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3. Properties of log-rank tests

For now, consider Experimental Treatment 1 vs Control.

-
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• Death observed

◦ Censored observation.
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Properties of log-rank tests

Comparing Experimental Treatment 1 vs Control, define

S1 = Unstandardised log-rank statistic an interim analysis,

I1 = Information for θ1 at interim analysis ≈ (Number of deaths)/4

S2 = Unstandardised log-rank statistic an final analysis,

I2 = Information for θ1 at final analysis ≈ (Number of deaths)/4

Here, “Number of deaths” refers to Experimental Treatment 1 and Control arms only.

Then, approximately,

S1 ∼ N(I1 θ1, I1),

S2 − S1 ∼ N({I2 − I1} θ1, {I2 − I1})

and S1 and (S2−S1) are independent — the “independent increments” property

(Tsiatis, Biometrika, 1981). NB This result holds for staggered entry.
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4. A combination test for survival data

We can create Z statistics

Based on data at the interim analysis:

Z1 =
S1√
I1

,

Based on data accrued between the interim and final analyses:

Z2 =
S2 − S1√
I2 − I1

.

If θ1 = 0, then Z1 ∼ N(0, 1) and Z2 ∼ N(0, 1) are independent.

If θ1 < 0, Z1 and Z2 are stochastically smaller than this.

So we can use Z = w1 Z1 + w2 Z2 in a combination test of H0,1: θ1 ≤ 0.
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A combination test for survival data

In the above, it is crucial that

Z2 =
S2 − S1√
I2 − I1

∼ N(0, 1) under θ1 = 0,

regardless of decisions taken at the interim analysis.

For this to be true, the conduct of the second part of the trial should not depend on

the prognosis of Stage 1 patients at the interim analysis.

Bauer & Posch (Statistics in Medicine, 2004) note that this condition may fail to hold

Suppose, for example,

• PFS at the interim analysis is better for patients on Exp. Treatment 1 than

Control, implying better prospects for OS on the Exp. Treatment 1 arm.

• Stage 2 cohort size is reduced and Stage 1 patients are followed up longer.

The change to Stage 2 cohort size increases the contribution of Stage 1 patients

to Z2, biasing it upwards — we shall need to avoid such potential biases.
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5. Analysing an adaptive survival trial

Recall, we wish to apply a Closed Testing Procedure based on level α tests of

H0,1: θ1 ≤ 0,

H0,2: θ2 ≤ 0,

H0,12: θ1 ≤ 0 and θ2 ≤ 0.

Combination tests for these hypotheses are formed from:

Stage 1 data Stage 2 data

H0,1 Z1,1 Z2,1

H0,2 Z1,2 Z2,2

H0,12 Z1,12 Z2,12

The question is how we should define Z1,1, Z2,1, etc.
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Analysing an adaptive survival trial: Method 1

A natural choice is to:

Base Z1,1, Z1,2 and Z1,12 on data available at the interim analysis,

Base Z2,1, Z2,2 and Z2,12 on the additional information accruing

between interim and final analyses.

We shall take Z1,1 and Z1,2 to be standardised log-rank statistics, and Z2,1 and

Z2,2 to be standardised increments in the log-rank statistics between analyses.

For Z1,12 we could compare the pooled Exp Tr 1 and Exp Tr 2 patients with the

Control group. However, for “consonance”, it is probably better to combine Z1,1 and

Z1,2 through, say, Simes’ test or Dunnett’s test (which we shall define later).

If we select Experimental Treatment 1 at the interim analysis, we no longer wish to

test H0,2 — we do not need Z2,2 and we can set Z2,12 = Z2,1.

Similarly, if we select Experimental Treatment 2, we no longer need Z2,1 and we

can set Z2,12 = Z2,2.
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Method 1, recap

Stage 1 statistics are calculated at the interim analysis:

Z1,1 from log-rank test of Exp Tr 1 vs Control

Z1,2 from log-rank test of Exp Tr 2 vs Control

Z1,12 from pooled log-rank test, or a Simes or Dunnett test.

If Exp. Treatment 1 is selected at the interim analysis, Stage 2 statistics are

Z2,1 from increment in log-rank statistic testing Exp Tr 1 vs Control,

combining Stage 1 and Stage 2 cohorts

Z2,12 = Z2,1.

If Exp. Treatment 2 is selected, Stage 2 statistics are

Z2,2 from increment in log-rank statistic testing Exp Tr 2 vs Control,

combining Stage 1 and Stage 2 cohorts

Z2,12 = Z2,2.
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Method 1: What can go wrong?

The first stage statistics are fine.

Suppose Experimental Treatment 1 is selected at the interim analysis.

Then, Z2,1 is the increment in the log-rank statistic testing Exp Tr 1 vs Control,

combining Stage 1 and Stage 2 cohorts.

Z2,1 The issues raised earlier should be considered — might Stage 2

be modified in the light of interim data in a way that biases Z2,1?

Regulators are likely to worry about such possibilities !

Z2,12 Setting Z2,12 = Z2,1 will cause bias.

Exp Tr 1 is selected when subjects on this arm have good PFS,

so the Exp Tr 1 patients who continue to be followed for OS in

Stage 2 are liable to have good prognoses.

This method is almost certain to inflate the overall type I error rate !!
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Method 2: Jenkins, Stone & Jennison (2011)

In constructing a combination test, Method 1 separates data into the parts accrued

before and after the interim analysis:

Z1 Z2

Stage 1 Overall survival Overall survival
cohort (during Stage 1) (during Stage 2)

Stage 2 Overall survival
cohort (during Stage 2)

Instead, we divide the data into the parts arising from the two cohorts:

Stage 1 Overall survival Overall survival
Z1cohort (during Stage 1) (during Stage 2)

Stage 2 Overall survival
Z2cohort (during Stage 2)
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Method 2

All patients in the Stage 1 cohort are followed for overall survival up to a fixed time,

shortly before the final analysis.

The “Stage 1” statistics are based on the final OS data for the Stage 1 cohort

Z1,1 from log-rank test of Exp Tr 1 vs Control

Z1,2 from log-rank test of Exp Tr 2 vs Control

Z1,12 from pooled log-rank test, or a Simes or Dunnett test.

The “Stage 2” statistics are based on OS data for the Stage 2 cohort

If Exp. Treatment 1 is selected:

Z2,1 from log-rank test of Exp Tr 1 vs Control, Z2,12 = Z2,1

If Exp. Treatment 2 is selected:

Z2,2 from log-rank test of Exp Tr 2 vs Control, Z2,12 = Z2,2.
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Method 2

Notes

Jenkins, Stone & Jennison (2011) introduced “Method 2” in a design where a choice

is made between testing for an effect in the full population or a sub-population.

If the length of follow up of the Stage 1 cohort for OS can be influenced by interim

information about the likely survival of continuing patients, error rate inflation could

result (as noted by Bauer & Posch, 2004).

Hence, we stipulate the amount of follow up and require that this is not changed.

Some adaptive designs allow an early decision based on summaries of “Stage 1”

data at an interim analysis.

Our statistics Z1,1, Z1,2 and Z1,12 are not known at the time of the interim

analysis, so we cannot apply formal stopping rules defined in terms of these —

but with a lack of OS data at the interim analysis, that is not a serious limitation.
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6. Assessing the benefits of an adaptive design

We shall make comparisons with a non-adaptive trial design in which patients are

randomised to both experimental treatments and control throughout recruitment.

Final

analysis

All

patients

-
�

�3

Q
Qs

Exp. Treatment 1

Exp. Treatment 2

Control

- Follow up

of OS

Here, a closed testing procedure will be used to control the familywise error rate.

When the total numbers of patients and lengths of follow-up are the same in

adaptive and non-adaptive designs,

Does the adaptive design provide higher power?

Are there other advantages?
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Assessing the adaptive design: Model assumptions

Overall Survival

Log hazard ratio

Exp. Treatment 1 vs control θ1

Exp. Treatment 2 vs control θ2

Logrank statistics are correlated because of the common control arm.

Progression Free Survival (for treatment selection)

Log hazard ratio

Exp. Treatment 1 vs control ψ1

Exp. Treatment 2 vs control ψ2

We suppose correlation between logrank statistics for OS and PFS = ρ.

Proportional hazards models for both endpoints are not essential (or reasonable?)

— the implications for the joint distribution of logrank statistics are what matter.
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Assessing the adaptive design: Model assumptions

Log hazard ratios for OS: θ1, θ2.

Log hazard ratios for PFS: ψ1, ψ2.

We suppose

ψ1 = γ × θ1 and ψ2 = γ × θ2

Final number of OS events for Stage 1 cohort = 300 (over 3 treatment arms)

Number of OS events for Stage 2 cohort = 300 (over 2 or 3 treatment arms)

Number of PFS events at interim analysis = λ× 300.

From large sample theory, the standardised logrank statistic based on d observed

events is, approximately,

N(θ
√

d/4, 1)

when the log hazard ratio is θ.
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Testing the intersection hypothesis

We have null hypotheses

H0,1: θ1 ≤ 0 and H0,2: θ2 ≤ 0.

In the closed testing procedure we must also test the intersection hypothesis

H0,12 = H0,1 ∩H0,2: θ1 ≤ 0 and θ2 ≤ 0.

We can test H0,12 by pooling the Exp. Treatment 1 and Exp. Treatment 2 patients

and carrying out a logrank test vs the Control group.

Alternatively we could use a Simes test or a Dunnett test.

Suppose P1 and P2 are the P-values for logrank tests of Exp. Treatment 1 vs

control and Exp. Treatment 2 vs Control.

The corresponding normal deviates are

Z1 = Φ−1(1 − P1) and Z2 = Φ−1(1 − P2).
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Testing the intersection hypothesis

Simes’ test

Given observed values p1 and p2 of P1 and P2, Simes’ test of H0,12 yields the

P-value

min ( 2 min(p1, p2), max(p1, p2) ).

Simes’ test can be viewed as an extension of the Bonferroni test. It protects type I

error conservatively when P1 and P2 are independent or positively associated.

Dunnett’s test for comparisons with a common control

If z1 and z2 are the observed values of Z1 and Z2, the Dunnett test of H0,12

yields the P-value

P (max(Z1, Z2) ≥ max(z1, z2))

where (Z1, Z2) is bivariate normal with Z1 ∼ N(0, 1), Z2 ∼ N(0, 1) and

Corr(Z1, Z2) = 0.5.
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Comparing tests of the intersection hypothesis

Setting ψ1 = θ1, ψ2 = θ2 (so PFS ∼ OS) and ρ = 0.6, we simulated logrank

statistics from their large sample distributions under the adaptive design.

We noted

P (1) = P (Select Treatment 1 and Reject H0,1 overall)

P (2) = P (Select Treatment 2 and Reject H0,2 overall)

E(Gain) = θ1 × P (1) + θ2 × P (2).

Here “Gain” represents a possible utility, in which the value of a positive outcome is

proportional to the effect size of the recommended treatment.

In the adaptive trial design, we have compared use of

the test based on pooled data, Simes’ test, and Dunnett’s test

for determining the Stage 1 P-value P1,12 and, hence, Z1,12 = Φ−1(1 − P1,12).
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Comparing tests of the intersection hypothesis

We compare intersection tests to produce Z1,12 in an adaptive trial design with

ψ1 = θ1, ψ2 = θ2, λ = 1, ρ = 0.6, α = 0.025.

P (1) E(Gain)

θ1 θ2 Pooled Simes Dunnett Pooled Simes Dunnett

0.3 0.0 0.77 0.85 0.86 0.232 0.254 0.259

0.3 0.1 0.78 0.81 0.82 0.238 0.245 0.247

0.3 0.2 0.68 0.68 0.69 0.238 0.237 0.238

0.3 0.25 0.58 0.58 0.58 0.250 0.249 0.249

0.3 0.295 0.48 0.47 0.47 0.275 0.274 0.274

All simulation results are based on 1,000,000 replicates.

The Dunnett test is most effective — it has good power and, unlike the pooled test,

is well aligned (consonant) with individual tests of H0,1 and H0,2.
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Comparing adaptive and non-adaptive trial designs

We shall compare designs using a Dunnett test for the intersection hypothesis.

For the non-adaptive design

The intersection hypothesis is tested at the final analysis as part of the closed

testing procedure.

As for the adaptive design, we found the Dunnett test to give the best power.

If both H0,1 and H0,2 are rejected, we suppose the treatment with the higher

observed effect size will be “chosen” for registration and marketing.

Accordingly, we define

P (1) = P (θ̂1 > θ̂2 and H0,1 is rejected overall)

P (2) = P (θ̂2 > θ̂1 and H0,2 is rejected overall)

E(Gain) = θ1 × P (1) + θ2 × P (2).
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Comparing adaptive and non-adaptive trial designs

We compare designs using a Dunnett test for the intersection hypothesis, with

ψ1 = θ1, ψ2 = θ2, λ = 1 (# PFS events ∼ # OS events),

ρ = 0.6, α = 0.025.

Non-adaptive Adaptive

θ1 θ2 P (1) P (2) E(Gain) P (1) P (2) E(Gain)

0.3 0.0 0.78 0.00 0.235 0.86 0.00 0.259

0.3 0.1 0.78 0.01 0.234 0.82 0.02 0.247

0.3 0.2 0.70 0.11 0.234 0.69 0.16 0.238

0.3 0.25 0.60 0.26 0.244 0.58 0.30 0.249

0.3 0.295 0.47 0.43 0.267 0.47 0.44 0.274

The adaptive design has higher P (1) when θ1 is substantially greater than θ2.

When θ1 and θ2 are closer, the adaptive design still has the higherE(Gain).
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Comparing adaptive and non-adaptive trial designs

The adaptive design can only be effective if there is appropriate information to

select the correct treatment at the interim analysis.

This requires that

Treatment effects on PFS are reliable indicators of treatment effects on OS,

Sufficient information on PFS is available at the time of the interim analysis.

For the case θ1 = 0.3, θ2 = 0.1, we have investigated varying the parameters γ

and λ where

ψ1 = γ × θ1 and ψ2 = γ × θ2

Final number of OS events for Stage 1 cohort = 300 (over 3 treatment arms)

Number of OS events for Stage 2 cohort = 300 (over 2 or 3 treatment arms)

Number of PFS events at interim analysis = λ× 300.

NB It is quite plausible that γ should be greater than 1.
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Comparing adaptive and non-adaptive trial designs

We compare designs with θ1 = 0.3, θ2 = 0.1, ρ = 0.6, α = 0.025,

PFS log hazard ratios: ψ1 = γ θ1, ψ2 = γ θ2,

Number of PFS events at interim analysis = λ× 300.

Non-adaptive Adaptive

γ λ P (1) P (2) E(Gain) P (1) P (2) E(Gain)

1.5 1.2 0.88 0.00 0.264

1.2 1.0 0.85 0.01 0.256

1.0 1.0 0.78 0.01 0.234 0.82 0.02 0.247

0.9 0.9 for all γ and λ 0.78 0.03 0.238

0.8 0.8 (PFS is not used) 0.74 0.04 0.225

0.7 0.7 0.68 0.05 0.208

Adaptation works well if there is enough PFS information for treatment selection.
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Conclusions about the benefits of an adaptive design

1. The adaptive design offers the chance to select the better treatment and focus

on this treatment in the second stage of the trial.

2. Overall, the adaptation is beneficial as long as there is sufficient information to

make a reliable treatment selection decision.

3. Other evidence may be used in reaching this decision:

Safety data

Pharmacokinetic data

Overall survival

4. In addition to reaching a final decision, the adaptive trial compares the two

forms of treatment: the conclusions from this comparison may be useful in other

settings.
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7. Related work

1. Irle & Schäfer (JASA, 2012) propose similar adaptive designs for survival data.

Changes to the design and critical values for test statistics are made, preserving the

conditional probability of rejecting a null hypothesis.

As the “Conditional Probability of Rejection” principle is related to combination tests,

the method has much in common with that of Jenkins, Stone & Jennison (2011).

Irle & Schäfer’s method imposes the same requirement of a fixed length of follow-up

for “Cohort 1” patients.

Even with this condition in place, determining the conditional probability of a future

event is problematic, since the final information level (in a log-rank statistic, say)

is not known at the time this probability is calculated.

We recommend our combination test approach as simpler to explain and easier to

implement.
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Related work

2. Friede et al. (Statistics in Medicine, 2011) consider a seamless phase II/III trial

design with treatment selection based on short-term and long-term responses.

In a study of treatments for multiple sclerosis, several experimental treatments are

compared to a control. When the treatment selection decision is made, only a

short-term response is available for some subjects but these will go on to provide a

long-term response later.

Although the primary endpoint is not a time-to-event response, similar issues arise.

When patients on the selected treatment are followed up, results are likely to be

biased towards showing a positive treatment effect, given the short-term response

data on which the treatment selection decision was based.

These authors follow a similar approach to Jenkins, Stone & Jennison (2011) and

apply a combination test to the long-term response data from the cohorts of

patients admitted before and after the interim decision point.
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8. Conclusions

1. Adaptive designs for trials with survival endpoints can enable interim treatment

selection or decisions about the population in which a treatment effect is to be

sought.

2. A Closed Testing Procedure can be employed and Combination Tests used to

carry out each level α hypothesis test with data from two (or more) stages.

3. The “independent increments” property of the log-rank statistic can fail, and

other biases can arise, if design changes at an interim analysis are based on

data that are also informative about the later survival of continuing patients.

4. The proposed design avoids this problem. Defining the elements of a

combination test in terms of the complete survival data for separate cohorts of

patients leads to a valid, and potentially efficient, testing procedure.
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