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Abstract: We provide an overview and comparison of predictive capabilities of 
several methods for ranking association football teams. The main benchmark 
used is the official FIFA ranking for national teams. The ranking points of 
teams are turned into predictions that are next evaluated based on their 
accuracy. This enables us to determine which ranking method is more accurate. 
 The best performing algorithm is a version of the famous Elo rating system 
that originates from chess player ratings, but several other methods (and 
method versions) provide better predictive performance than the official 
ranking method. Being able to predict match outcomes better than the official 
method might have implications for, e.g., a team’s strategy to schedule friendly 
games. 
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1 Introduction 

Rankings in sports have a number of important applications. One of the roles of ranking 
tables is to provide an objective indication of the strength of individual competitors, 
based on their previous performance. In this way, rankings provide information about the 
actual level and current progress for competing parties, and encourage competition. 
Accurate rankings can be used in scheduling match-ups by pairing teams or players of 
similar strength. This is strongly connected to perhaps the most important application of 
rankings in scheduling competitions: when tournaments are preceded by a draw, teams or 
players are seeded according to official rankings. It is common to pair higher and lower 
ranked rivals to prevent the strongest opponents (those ranked highest) to meet in an early 
stage of the competition. Therefore, rankings have a crucial impact on the competition. 

Another use of rankings, in association football, is that the UK Government uses 
national teams’ rankings for granting work permits for players outside the European 
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Union. According to the rules, a player is eligible to play in England when his country 
has a ranking position higher than the 70th rank, averaged over a period of two years 
(Internationalworkpermits.com, 2012). Hence, the official rankings influence player 
careers as well. 

In this paper, we focus on international football, and rankings of national teams, 
whose corresponding official ranking is maintained by Fédération Internationale de 
Football Association (FIFA) the international governing body of football. We provide an 
overview of existing ranking methods in sports, including that by FIFA, and compare 
them using two evaluation measures described later in this paper. The goal is to assess the 
predictive capabilities of these ranking systems. 

The remainder of the paper is structured as follows. After presenting related work, we 
describe and briefly discuss several ranking methods used in our experiments. 
Afterwards, we present our experiments comparing these ranking methods. Finally, we 
discuss the results and conclude with future work. 

2 Related work 

The FIFA ranking method is often subject to criticism. A constructive judgment of the 
ranking was done by McHale and Davies (2007). By building and analysing several 
statistical models for predicting match results, the authors conclude that the ranking does 
not use the information on past results efficiently and it does not react quickly enough to 
recent changes in team performance. A suggestion is made to look for another ranking 
system or improving the current one. 

Several authors studied the efficacy of predictions in terms of agreement between the 
ranking and results of major football competitions. Suzuki and Ohmori (2008) evaluate 
the accuracy of predictions based on the official ranking with respect to the results of  
four World Cup tournaments between 1994 and 2006. The authors conclude that  
ranking-based predictions are reasonably accurate. Luckner et al. (2008) compare 
predictions based on the FIFA ranking against forecasts derived from a market for 
football teams specifically created for this purpose. The predictions are evaluated against 
the final standings of the World Cup tournament in 2006 and the market forecasts turn 
out to be more accurate than those based on the FIFA ranking. Leitner et al. (2010) 
compare the accuracy of the FIFA ranking and bookmakers’ predictions of the results of 
the 2008 European Championships. They measure accuracy using Spearman’s rank 
correlation between the final tournament standings and ranking tables. They show that 
bookmakers are more accurate than the FIFA ranking in their predictions. 

In the related work described above, evaluation of the FIFA ranking is based solely 
on the position of a team in the table. Predictions are made by indicating that the higher 
ranked team will win the game. In our work, we examine the accuracy of predictions 
based on the rating points rather than only the ranking position. We treat the official 
rating method as a benchmark and discuss several methods for measuring team strength. 
Based on a day’s rating points, we make predictions for games played the next day. 

It is worth mentioning the work spent on rating of the chess players, which has a long 
history (Glickman, 1995). These rating systems receive much attention and serve as basis 
for rating methods in other sports. They are also constantly improved. For example, in 
recent years the website Kaggle.com (2010, 2011) hosted two competitions where the 
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goal was to improve accuracy of current chess player ratings methods. We also used 
chess-based ranking methods in the work described in this paper. 

3 Overview of ranking systems 

In this section, we describe several rating systems whose performance we will later 
compare. Though the list of methods described here is not exhaustive, we believe our 
sample contains the main ranking methods used in sports, and it is sufficiently diverse to 
provide a meaningful comparison of ranking method types. Throughout the text, when we 
refer to a ranking system, we are in fact interested in the rating points provided by the 
described ranking methods, which are then used to determine actual rankings by each of 
these methods. 

We begin with discussing ‘earned rating’ methods, where teams accumulate points 
after each game. Two examples here are the official FIFA ranking and the Elo rating 
system. Then we present two methods that estimate strengths from the global look at 
match result data rather than by an iterative updating of ratings after each game. The 
methods of this kind are the Elo++ rating system – the winner of the first Kaggle 
competition on rating chess players – and the least squares ratings. Finally, we discuss 
graph-based ranking methods. 

3.1 The official FIFA ranking 

The current FIFA World Ranking methodology was introduced after the World Cup in 
Germany in 2006. Its original description is available via the official FIFA website 
(FIFA.com, 2012b). 

To calculate ranking points for teams, four years of play are considered. During that 
period of time a weighted average of points is computed that results in a team’s rating 
points. 

For a chosen team the formula for the calculation of points P awarded after a single 
game is as follows 

,P M I T C= × × ×  (1) 

where the letters stand for: 

• the outcome of the game (M points) 

• the importance of the game (I) 

• the strength of the opposing team (T) 

• the average of confederation strengths (C) of participating teams. 

For the outcome of the game a standard convention is applied. For a win three points are 
awarded, one for a draw, and zero for a loss. The matches that ended after a penalty 
shoot-out are treated differently – a winning team receives two points while a losing team 
gets one point. The multiplier for the importance of a game, I, assumes values between 
one and four. The World Cup games are considered the most important, while friendly 
games the least important, with I set to four and one, respectively. The confederation 
strength is a number between [0.85, 1]. Currently, European (UEFA) and South 
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American (CONMEBOL) football confederations are assigned the maximal value of 
confederation strength. The lowest rated confederation is the Oceania Football 
Confederation (OFC). When two teams play, C is computed as the average of the 
confederation strengths to which they belong. Finally, the strength of opposition is 
computed as 200 minus the position of the opponent in the current ranking release. As an 
exception to the formula, the team at the top is assigned the maximum strength of 200 
and teams ranked at position 150 or lower get the minimal strength of 50. 

Once we calculate the points that a team earned over a period of four years, we 
compute a weighted average of points in the following manner. In the consecutive years 
the mean of the accumulated points is computed. In case a team played less than five 
games in a chosen year, instead of calculating the average, we divide its total number of 
points by five. Then the four yearly averages are summed up with weights 0.2, 0.3, 0.5, 
and 1, where more recent results are assigned a higher number. 

The FIFA ranking is released on an approximately monthly basis. To get better 
insight into the capabilities of the official rating system we implement the algorithm to 
obtain team ratings on a daily basis. 

3.2 The Elo rating system 

The Elo rating system was created by the Hungarian physicist and chess master Arpad 
Emrick Elo. It is one of the most prominent systems for rating skills in two-player games. 
Due to its general merits, it is the first system we introduce after the official FIFA 
ranking. It has several generalisations including Glicko (Glickman, 1999) or TrueSkill 
(Herbrich et al., 2007) rating systems. Primarily, it was used for rating chess players. For 
a more detailed discussion of the Elo rating system we refer to the work by Glickman 
(1995). 

Similar to the official FIFA ranking, the Elo model is an earned rating system. The 
ranking points are updated iteratively after every match. The main idea is that the update 
rule can be seen as a correction to the teams’ rating points subject to actual results and 
what we expected from the ratings prior to the match. 

The update formula for rating points for a team A against an opponent B is as follows: 

( ) ,A A A Ar r K s p′ = + −  (2) 

where 

• rA and Ar′  are the old and updated mean rating (performance) values for team A 
respectively 

• sA is the actual result of the match from the perspective of team A against its 
opponent B 

• pA is the expected score of team A against B, derived from the values rA, rB prior to 
the mutual game between A and B 

• K, called a K-factor, is a positive constant. 

If we follow the convention from chess player ratings, the actual result of the match sA is 
mapped to the value of 0, 0.5, or 1 in case team A loses, draws or wins the game, 
respectively (accordingly for team B). The K-factor governs the magnitude to the changes 
in ratings after a single game. It can be modelled according to discipline characteristics. 
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The original Elo model assumes a normal distribution for player A’s performance in a 
match around the mean value of rA. A simplifying assumption is that the variance is 
homogeneous among all players, σA = σ for every player A. When two players, A and B, 
meet in an encounter we are comparing two performance distributions PA and PB with  
PA ~ N(rA, σ2) and PB ~ N(rB, σ2). The probability that player A wins the game is equal to 
the probability of the event that it draws a higher value from its performance distribution. 
From the properties of the normal distribution we have that PA – PB ~ N(rA – rB, 2σ2) 
under assumption of independence. In this manner we compute the expected result of the 
game from the perspective of player A: 

( ) Φ ,
2

A B
A A B

r rp P P
σ
−⎛ ⎞= > = ⎜ ⎟

⎝ ⎠
P  (3) 

where Φ denotes the cumulative distribution function for a standard normal variable  
N(0, 1). The draws are disregarded. If the computed value of pA is around 0.5  
then we would expect a draw. Possible extensions to the prediction model (3) to  
express the probability of a draw are discussed by Rao and Kupper (1967) or Davidson 
(1969). 

In applications, it is common to use a logistic distribution for the players’ 
performance distribution difference and compute pA as 

( )
1 ,

1 A B
A a r r

p
e− −

=
+

 (4) 

where a is an appropriate scaling factor. Formula (4) derived from the logistic 
distribution seems to be more tractable. 

The main idea behind the model is that if a team performed better than expected 
against its opponent B, i.e., sA > pA we shall increase its rating accordingly and decrease 
the rating of the opponent. The rating points in Elo model are self-correcting. Based on 
current ratings we perform prediction of the future game. The bigger discrepancy 
between the observed result and our expectations the bigger magnitude of changes to the 
performance rating estimates for both teams. 

An important part of the Elo model is the choice of prior ratings, i.e., initial values for 
the rA in the rating period. To reduce the influence of the prior in accurately determining 
the teams’ strength estimates it is necessary to have many games played by every team in 
the dataset. Otherwise, we cannot see the rating as a reliable estimate of a team’s 
strength. 

There are several choices for prior ratings. One possibility is to set ratings for every 
team to a fixed number, e.g., 1,500. With such choice the ratings would approximately 
distribute between 1,000 and 2,000 points. However, what is important from the ranking 
point of view is only the difference in teams’ ratings. Another option is to pose a 
question: what if FIFA would have changed its rating system to that applied in FIFA 
Women’s World Rankings? To answer this, we set prior ratings for the teams to the FIFA 
ranking points from the 12 July 2006 release. We expect that this prior is better-informed 
than initialising ratings equally. We compare the predictive powers of these ranking 
system in our experiments, along with other methods described in this section. 
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3.2.1 FIFA women’s world rankings 

FIFA uses a different algorithm to rate and rank women’s national teams. In fact, we can 
recognise an Elo version of the model behind this rating method. The description of the 
algorithm can be found on the official FIFA website (FIFA.com, 2012a). 

In the official FIFA women’s ranking after each game the ratings are updated 
according to the formula (for chosen team A) 

( ).A A A Ar r K I s p′ = + × × −  (5) 

Next to the basic K-factor, which is set to the constant value of 15, we have an additional 
multiplier associated with the importance of the game. Analogously to the FIFA men’s 
ranking, its values are tabularised. Table 1 presents possible values that the multiplier I 
can assume, extracted from the analogous table for women’s competition. 
Table 1 Match importance multipliers 

Competition Multiplier 

Friendly match (including small competitions) 1 
Confederation-level qualifier 2 
FIFA Confederations Cup 3 
FIFA World Cup qualifier 3 
Confederation-level final competition 3 
FIFA World Cup final competition 4 

Yet another modification to the original formulation is included in mapping of the actual 
result to the number sA. It is assumed that a team losing, for example 1-0, receives the 
actual score equal to 0.15 rather than 0. The winner is awarded the remainder of the 
points. The idea is that a team after scoring many goals and losing with a small margin is 
awarded a small positive value for its actual performance. A complementary argument 
applies to the winning team. The values of the actual results are presented in Table 2. 
Table 2 Actual result of the game in FIFA WOMEN WORLD ranking methodology from the 

losing team perspective 

Goal difference 
Goals scored 

0 1 2 3 4 5 6+ 
0 0.5 0.15 0.08 0.04 0.03 0.02 0.01 
1 0.5 0.16 0.089 0.048 0.037 0.026 0.015 
2 0.5 0.17 0.098 0.056 0.044 0.032 0.02 
3 0.5 0.18 0.107 0.064 0.051 0.038 0.025 
4 0.5 0.19 0.116 0.072 0.058 0.044 0.03 
5+ 0.5 0.20 0.125 0.080 0.065 0.05 0.035 

Finally, the expected result of the game is computed with the use of the logistic 
distribution function. Moreover, a correction is made to incorporate the advantage of the 
home team. Namely, the probability that team A wins the game is calculated as 



   

 

   

   
 

   

   

 

   

   34 J. Lasek et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

( )100

1 ,
1 10 A B

A r r
p

− + −
=

+
  (6) 

where 100 additional points are credited for the host of the game (here by default set to 
team A). 

3.2.2 EloRatings.net 

In this subsection we describe another version of the Elo model maintained on the 
website EloRatings.net (2012). The update formula in the EloRatings.net model is as 
follows: 

( ).A A A Ar r K G s p′ = + × × −  (7) 

In this model, sA is mapped to one of the three possibilities from the set {0, 0.5, 1} and 
the prediction function is the same as above (6). The K-factor is again determined by the 
relative importance of the game. One may read possible values it may assume from  
Table 3. The magnitude of K is modified by the goal difference G. In case the absolute 
value of the difference of goals scored by both teams is equal to N, K is multiplied by an 
additional factor G set to 

• 1 if N ≤ 1 

• 1.5 if N = 2 

• 11
8
+N  if N ≥ 3. 

For the EloRatings.net method we managed to obtain historical tables on the website 
Football-rankings.info (2012) from 9 July 2010. Thus, in addition to the choice of the 
priors discussed above (uniform and the FIFA ranking release) we can initialise the 
ratings with retrieved ones. 
Table 3 Match importance in the EloRatings.net model. 

Competition Multiplier 

Friendly match 20 
All minor tournaments 30 
World Cup and continental qualifiers and major tournaments 40 
Continental championship finals and major intercontinental tournaments 50 
FIFA World Cup finals 60 

The next method we discuss is the winning solution of the first Kaggle competition on 
chess ratings (Kaggle.com, 2010). 

3.3 Elo++ model 

Kaggle’s competition on chess player ratings was an exciting event with over 250 active 
participants. In this section, we briefly introduce the winning model, which was proposed 
by Sismanis (2011). 
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Before going further we note how the competition’s solutions were assessed. For each 
game in the test set the participants were supposed to provide a single number that 
expressed the probability of the event that the first player from an ordered pair wins the 
game. As in the Elo model, draws were disregarded from the analysis. The accuracy of 
predictions was measured by a monthly aggregated mean squared error. This measure 
differs from the standard mean squared error only by a minor modification that a player’s 
actual and predicted results are summed in each month. The mean squared error is then 
calculated on aggregated results and predictions rather than on individual matches. If in 
every month each player takes part in at most one game, this error measure is exactly 
equal to the mean squared error. 

Next in this subsection, we describe the model, automatically adapting appropriate 
terminology to football. 

3.3.1 Outcome prediction function 

From the dataset of the results, we want to estimate rating ri for every team i. For two 
teams i and j, that are rated with ri and rj, respectively, the probability of team i winning 
the match is calculated with the logistic cumulative distribution function 

( )
1 ,

1 i j
ij r h r

p
e− + −

=
+

 (8) 

where h is a parameter for modelling the advantage of the home team. If the game is 
played on neutral ground we set h = 0. The probability of the opposite team’s win is 
calculated as pji = 1 – pij: 

3.3.2 Time scaling 

Each match in the database is assigned a weight that depends on how long ago it was 
played. Let tmin and tmax denote the minimal and the maximal month number in the data. 
Then a game between two teams i and j taking place in the tth month is associated with 
the weight 

2
min

max min

1 – .
1 –ij

t tw
t t
+⎛ ⎞= ⎜ ⎟+⎝ ⎠

 (9) 

In this way the weighting factor assumes values in the interval (0, 1] for all games in the 
database and increases monotonically in t. 

3.3.3 Neighbours 

Another idea in the Elo++ model is that team strength should not deviate much from the 
ratings of teams that it competes against. It seems to be a reasonable assumption not only 
in chess or football but in general in sports. Incorporation of the schedule of games in 
rating computations may be concisely summarised by the saying “you are known by the 
company you keep”. 

Let us define Ni as the multi-set of opponents that a chosen team i played against in 
mutual games, with | Ni | the size of this multi-set (possibly it includes the same team a 
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few times in case of multiple matches). We would expect that the average rating of rivals 
of team i should be close to the team i rating itself. The weighted average is computed as 

,i

i

ik kk N
i

ikk N

w r
a

w
∈

∈

=
∑
∑

 (10) 

where we sum over all the opponents of team i and weight the corresponding ratings with 
the previously introduced time factor. 

3.3.4 Calculation of the ratings 

The ratings r are computed by finding the minimum of the loss function 

( ) ( ) ( )22
1 2

games teams

, , , – – ,k ij ij ij i iL r r r w s p λ r a= +∑ ∑…  (11) 

where λ is the weight we assign to the regularisation component. With application of 
numerical methods we hope to find the minimum of the loss function on the training set. 
In this setting there are two parameters that need to be optimised: h that stands for the 
home team advantage and λ which governs the importance of regularisation component. 

To focus our attention on the comparison rather than optimisation of individual 
models we will apply a stochastic gradient descent for the problem of minimisation of the 
error function (11). This algorithm was suggested by the author in his original description 
of the method. 

In stochastic gradient descent, the database of results is scanned for a fixed number of 
P iterations. Initially, we set ri = 0 for every team. During each iteration, we scan the 
entire database of results. We perform the following updates for every game (here 
between teams i and j) in random order: 

( ) ( ) ( )

( ) ( ) ( )

1– – 1– – ,

1– – 1– – ,

i i ij ij ij ij ij i i
i

j j ij ij ij ij ij j j
j

r r η w s p p p λ r a
N

r r η w s p p p λ r a
N

⎡ ⎤← +⎢ ⎥
⎣ ⎦
⎡ ⎤← − +⎢ ⎥
⎣ ⎦

 

where η is the learning rate set to 
0.51 0.1 ,

0.1
Pη

p P
+ ⋅⎛ ⎞= ⎜ ⎟+ ⋅⎝ ⎠

 (12) 

with p being the number of the current iteration. The averages ai are recomputed only 
after each iteration. 

In this setting, we have two parameters to optimise: λ for the regularisation 
component and h that measures the impact of home advantage. The choice of the 
parameters is experimental based on the accuracy of predictions on the validation set. 

Elo++ in its primary application in the rating of the chess players performed very 
well. We hope for similar results when applied to rating football teams. 
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3.4 Least squares ratings 

The next model can be summarised as least squares ratings. We sketch the main idea of 
the model based on the work by Stefani (1977, 1980). A detailed analysis of the least 
squares ratings may be found in the work by Massey (1997). 

The model assumes that the margin of victory of team A against the other team B, 
denoted as y, is proportional to the difference in both team ratings rA, rB: 

– ,A By r r ε= +  (13) 

where ε is an error in the measurement. The model can be estimated by minimising the 
sum of squared errors across all the games. In this setting it is not possible to identify the 
parameters. We shall impose a sum-to-zero constraint or agree on some reference state 
and set the rating for a chosen team i to a default level, say, ri = 0. 

A simple modification to the method may be applied by introducing the home 
advantage parameter. Because home teams tend to score usually more goals we may 
capture this by setting 

– .A By r r h ε= + +  (14) 

Again, after imposing a proper constraint to identify parameters, the model is estimated 
by least squares. 

The ratings are computed on daily basis in a sliding window approach. On a current 
day, we include four last years of play to compute the ratings. 

3.5 Network-based rating system 

The following two methods are derived from graph analysis with the teams represented 
as nodes and the edges corresponding to the games played between them. The first 
method we mention originates from social network analysis and can be viewed as a 
version of Katz (1953) centrality measure of a graph, which was introduced to determine 
the relative importance of individuals in a network of actors. This was done by counting 
direct and indirect acquaintances of an actor. If person A knows B one point is awarded. 
If person B knows person C the indirect connection between A and C is counted with a 
discount factor α ∈ (0, 1). More generally, if there is a path of length k in a network of 
actors between two persons, it is computed as one point discounted with αk–1. 

The adaptation of the method to rating sport teams was done by Park and Newman 
(2005). Let A be a following modification to an adjacency matrix of a graph. The (i, j) 
entry of the matrix A, aij, i, j = 1, 2,…,n, where n is the number of teams, corresponds to 
the number of victories of team j over the team i. We assume that a draw corresponds to a 
half loss and a half win. In analogy to social network ratings we may define a win and a 
loss score for the teams. The win score counts the total number of direct and indirect 
victories of a team, where indirect matches are discounted by an appropriate power of the 
discount factor α. For a chosen team i, we have that all direct wins of the team can be 
written as 

direct wins for team ,jij
i a=∑  
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where the summation is over all indexes j ∈ {1, 2,…,n}. The number of indirect wins at 
distance 2 is given by 

,
indirect wins of distance 2 for the team ,kj jij k

i a a=∑  

and so forth. We can compute the win score wi for team i weighted with discount factor 
αk–1 for the wins at distance k as 
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 (15) 

where in
id  is the number of edges pointing to the vertex i, i.e., the number of direct wins 

of team i and AT is the transpose of matrix A. From the above, we see that the win score 
for team i is the sum of the number of teams that i beat in direct encounters and these 
teams’ win score. Analogously we define the loss score l. 

The power series (15) converges whenever –1
max ,λ<α  where λmax denotes the largest 

eigenvalue of matrix A. In case λmax = 0, then in fact all eigenvalues of matrix A are zero 
and there are no restrictions on the choice of the parameter α. 

Working out equation (15) in matrix notation we arrive at the following formula for 
the vector of win scores w 

( )–1– ,T inw I A d= α  (16) 

and an analogous expression for the vector of loss scores 

–1( – ) ,outl I A d= α  (17) 

where dout is a vector of length n in which the ith coordinate stands for the number of 
edges pointing out of the vertex i, i.e., the number of direct losses by team i. As the 
ratings set r = w – l. 

For social network ratings we need to optimise parameter α. To this purpose, we 
express the parameter α as the percentage of the largest possible value it can assume, i.e., 

–1
max .λ  We search from 0 to 95% with the step size of 5% and calculate the ratings. Next, 

we make predictions for the games in the validation set (in a four-year sliding window 
approach) and measure their accuracy. Our final choice for the parameter α is the one 
yielding the best accuracy of predictions. 

3.6 Markovian ratings 

The method described in this subsection is derived from the analysis of an appropriate 
Markov chain. Application for rating sport teams was considered by several authors 
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including Callaghan et al. (2007) or Mattingly and Murphy (2010). Perhaps one of the 
most spectacular applications of Markovian ratings in other domains is the Google’s 
PageRank algorithm for rating web pages (Brin et al., 1999). The approach described 
below resembles mostly the ideas incorporated in the works Mattingly and Murphy 
(2010) and Kenner (1993) for estimating the probabilities of transitions. 

We construct a simple Markov chain that models the behaviour of a football fan, 
which is not stable in his feelings. When supporting a particular team, the fan looks for 
all the opponents that his team has played and either remains with his current team or 
switches his support in favour of another team. The better a team performs, the bigger 
chance for the supporter to choose it. With an appealing assumption that the fan is 
memoryless we can analyse an appropriate Markov chain with the states corresponding to 
teams. By calculating the probability distribution of which teams the fan is going to 
support in the long run we obtain the ranking for the teams. 

We formalise the discussion as follows. Let i, j be two teams which played a certain 
number of matches in the past with team i scoring Gi goals in total. The probability that 
the supporter prefers team j over i, pij, is proportional to the expression 

1ˆ ,
2

j
ij

i j

G
p

G G
+

=
+ +

 (18) 

where the corrections made by adding 1 to the nominator and 2 to the denominator aim to 
prevent division by zero and zero transition probabilities as well. Another possibility is to 
set 

1ˆ ,
2

j
ij

i j

W
p

W W
+

=
+ +

 (19) 

where Wi counts the number of victories of team i over team j (we treat draws as a half 
win and a half loss). The probability pii of the event that the fan remains with his current 
team i is proportional to the value 

( )ˆ ˆ1– .ii ij
j

p p=∑  (20) 

If two teams have not played against each other, then it is not possible to make a 
transition between them. We plug the computed values to a square matrix , 1,2, ,ˆ( )ij i j np = …  
and normalise its rows by dividing by n to obtain stochastic matrix M with entries 
(pij)i,j=1;2,…,n. Matrix M is a model of the fan’s behaviour. 

To assure existence of a stationary distribution we may use similar idea as in the 
PageRank algorithm. Let E be a n × n matrix with all entries equal to 1

n  and consider the 
convex combination of the matrices 

(1– ) ,M M E= +� α α  (21) 

where α ∈ [0, 1]. The modified matrix M�  is also a stochastic matrix and corresponds to 
an irreducible and aperiodic Markov chain for any α ∈ (0, 1] (possibly for α = 0, if the 
original Markov chain has both properties itself). For the team ratings we compute 
stationary distribution π of the chain 
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,π πM= �  (22) 

which gives us team ratings, ri = πi for the ith coordinate of the vector π corresponding to 
the ith team. 

The optimisation of parameter α is done in analogous manner as in the case of the 
discount factor in the network-based system above. In our work, we compute different 
ratings by varying the parameter from 90% to 99% with the step of 1% again with the use 
of four-year sliding window. Next, we measure the accuracy of derived predictions on the 
validation set (see Section 4.2), and set α to its optimal value. 

3.7 The Power Rank 

The Power Rank rating system is the last algorithm under our consideration. The ratings 
produced by this method for different sports are maintained on the website 
ThePowerRank.com. Predictions for comparison were provided by Dr. Edward Feng, 
inventor of the method. The author does not publish the details on how exactly his 
algorithm works. We only know that it is a combination of the PageRank algorithm with 
certain techniques applied in statistical physics. 

Having described several ranking methods now we describe how their predictive 
powers were compared. 

4 Experimental setup 

In this section, we describe the dataset used for our experiments, validation and test sets, 
how we turned ratings into predictions, and what evaluation measures were used to assess 
the methods’ performance. 

4.1 Dataset 

The data used for experiments described in this paper is concerned with international 
football matches, and it was obtained via the official FIFA website. The games were 
played between 15 July 2006, when the new version of the FIFA ranking was introduced, 
and 2 May 2012. For each game we have information on the outcome, possible extra time 
or penalty shoot-out, the date it was played, its location and the type of the game 
(friendly, World Cup match, etc.). For the purposes of the analysis below we are 
interested only in the final score of the match with no special treatment of the games 
ended after extra time or penalty shootout. In a few cases the victory has been awarded to 
either of the teams, or the game was suspended. We deleted such matches from the 
dataset. 

Using the location of matches, we derived an additional attribute indicating the host 
of a match. It is a well-known phenomenon in sports, and particularly in football, that the 
team playing at home has some advantage over the opposition. Its sources and variations 
have been studied extensively (see, e.g., Pollard, 2008; Seckin and Pollard, 2008; Pollard 
et al., 2008). A corresponding phenomenon in chess is the advantage due to playing 
white. The information about the home team is used explicitly by some methods under 
our consideration – Elo models and the least squares ratings. 



   

 

   

   
 

   

   

 

   

    The predictive power of ranking systems in association football 41    
 

    
 
 

   

   
 

   

   

 

   

       
 

4.2 Validation 

Calculation ratings is done on a daily basis, i.e., ratings calculated for one day might be 
different from those a day before or after. The matches taken into account are either those 
having been played in a four-year period before the day in question (as in the FIFA 
ranking – we employ the same convention in the least squares ratings, network-based and 
Markovian ratings), or from the first date in the dataset (Elo methods, The Power Rank). 
Note that because of our particular dataset, the latter also covers a period not significantly 
longer than four years. 

The performance reported in the next section is calculated based on 979 games played 
between 1 April 2011 and 2 May 2012. 

As some rating methods require parameter tuning, the introduction of a validation set 
was also necessary. The validation set covers 726 games played between 15 July 2010 
and 31 March 2011. 

4.3 Prediction function 

In this section, we describe how we turn ratings into predictions of the outcome of 
individual games. 

Some of the methods we consider (Elo, Elo++) are self-contained in the sense that 
they not only estimate the ratings but also provide a way to predict future games. In fact, 
the prediction function is the core of the Elo model and its main driving force. In case of 
other methods, we need to transform the ratings produced by them to predictions. 

Given two teams A and B with ratings rA and rB, respectively, the prediction of the 
match outcome is given by the model 

( )
( )( )

( )

{  at home}

{  at home}
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–
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A B A

A B A

sa r r h

A B a r r h
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+ ⋅

+ ⋅
=

+
P

1

1
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where the component associated with the parameter h aims to capture the advantage of 
the home team and 1{A at home} is equal to 1 if team A is the host of the game and 0 
otherwise (we assume such an ordering that team B is always a guest of the game). As 
usual, s stands for the actual result of the game, i.e., s = 1 and s = 0 corresponds to the 
win of team A and team B, respectively. To incorporate draws we follow the convention 
adopted in Glickman (1999). We assume that a single draw yields the same likelihood as 
a win followed by a loss. The probability of team A’s win over B followed by a loss 
against the same team (or the other way around) is equal to (under assumption of 
independence between these events) 
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For modelling a single draw we take the square root of the expression above to arrive at 
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Therefore, draws are included in the model by setting s = 0.5 in (23). 
The likelihood function for the observed match results as the function of the 

parameters a and h is as follows (provided that outcomes of the matches are independent 
events): 

( )( )
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 (24) 

The parameters (a, h) are set to their maximum likelihood estimates. To perform 
predictions on ratings for a match at a given day we estimate the prediction function with 
the use of games in the period prior to that day. For the first game in the test set, these 
parameters are obtained by estimation on the games in the validation set. The ratings ri 
that we plug to the likelihood function (24) are the most recent (daily updated) estimates 
derived by a given method. We make one exception to this rule by providing accuracy 
measurements for monthly FIFA ranking releases that are published on the official 
website. 

4.4 Evaluation measures 

When predicting the result of a future match we follow the same convention as in the Elo 
model. In other words, we attempt to calculate the probability that a chosen team from an 
ordered pair wins the game. 

In our experiments, we consider two evaluation measures, i.e., the binomial deviance 
and the squared error of the predictions. 

Our main accuracy measure is the statistic of the binomial deviance which for 
prediction pi for the ith game is equal to 

( ) ( )( )10 10log 1– log 1– ,i i i is p s p− +  

where si ∈ {0, 0.5, 1} is the actual result of the game from the perspective of a chosen 
team. The binomial deviance is undefined (infinite) in case of sure predictions pi = 0 or  
pi = 1 when yi = 1 or yi = 0, respectively. In the computations of this statistic,  
we round values of pi lower than 0.01 to 0.01 and for the values of pi greater 0.99 we set 
0.99. 

Since we estimate the prediction function by maximum likelihood we consider the 
binomial deviance as our main quality indicator. 

Nevertheless, we also calculate the squared error of the prediction, as it is a common 
measure used in evaluating predictions: 

( )2– .i is p  

The accuracy of a given method is measured by averaging prediction errors for individual 
games. 

Similar accuracy measures were used for assessment of proposed solutions in both 
Kaggle chess players rating competitions. 
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5 Results and discussion 

Table 4 shows the accuracies of various ranking methods and their versions, as measured 
using binomial deviance and mean squared error. The 90% confidence intervals derived 
by normal approximation are also reported. 

In addition to the methods described in Section 3, we report performance on three 
additional methods. Two of these are considered baselines aimed at providing context to 
performance values. One of these two methods always predicts draws, while the other 
always predicts the home team to win. The third method is an ensemble, i.e., its 
predictions are formed by combining the predictions individual methods. Combination is 
done by using the best performing four individual methods (Elo WWR, EloRatings.net, 
least squares and The Power Rank), by averaging individual predictions. The 
introduction of this method is motivated by the fact that ensembles often work better than 
individual predictors (see, e.g., Dietterich, 2000). 

5.1 Individual methods 

As shown in Table 4, all described methods outperform the two baselines, i.e., all draws 
and home team, significantly. 
Table 4 Accuracy of predictions 

Ranking system Binomial deviance Mean squared error 

FIFA ranking daily 1.3681 (1.3481, 1.388) 0.1443 (0.1244, 0.1643) 
FIFA ranking release 1.3705 (1.3504, 1.3905) 0.145 (0.125, 0.1651) 

Elo WWR 1500 1.3698 (1.3498, 1.3898) 0.1447 (0.1246, 0.1647) 
Elo WWR FIFA06 1.2674 (1.2489, 1.2861) 0.1268 (0.1081, 0.1455) 
Elo WWR FIFA06 WDL 1.2934 (1.2744, 1.3123) 0.1302 (0.1113, 0.1492) 

EloRatings.net 1.2634 (1.2446, 1.2821) 0.1271 (0.1084, 0.1458) 
EloRatings.net 1500 1.3265 (1.307, 1.346) 0.137 (0.1176, 0.1565) 
EloRatings.net FIFA06 1.2811 (1.2624, 1.2999) 0.128 (0.1092, 0.1468) 

Elo++ (λ, h) = (0.05, 0.4) 1.3062 (1.2871, 1.3254) 0.1336 (0.1144, 0.1527) 

Least squares 1.2786 (1.2597, 1.2975) 0.1288 (0.11, 0.1477) 
Least squares home team 1.2681 (1.2493, 1.2869) 0.1272 (0.1085, 0.146) 

Network-based ratings 1.4268 (1.4061, 1.4476) 0.1556 (0.1348, 0.1763) 

Markovian ratings wins 1.3605 (1.3407, 1.3803) 0.1406 (0.1208, 0.1604) 
Markovian ratings goals 1.3557 (1.336, 1.3754) 0.1402 (0.1205, 0.1599) 

The Power Rank 1.2735 (1.2546, 1.2924) 0.1286 (0.1096, 0.1475) 

Ensemble 1.2358 (1.2174, 1.2543) 0.1223 (0.1038, 0.1407) 
All draws 1.5960 - 0.1902 - 
Home team 4.1733 - 0.3325 - 

Among the single methods, the best accuracy is achieved by two Elo models: the 
EloRatings.net system is the most accurate with respect to binomial deviance, and the Elo 
model applied by FIFA in ranking women’s teams, when we look at the mean squared 



   

 

   

   
 

   

   

 

   

   44 J. Lasek et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

error. The difference in accuracy between the FIFA ranking and two versions of the Elo 
model, Elo++, the least squares and The Power Rank predictions are significant with 
respect to binomial deviance, based on the 90% confidence intervals. Slightly better 
performance is achieved by the two versions of the Markovian ratings. This shows that 
the FIFA ranking method can be outperformed by several alternative methods. 

5.2 Method versions 

Looking at the performance of different versions of Elo models, we see that the choice of 
the prior has a major impact on accuracy. For instance, uniform priors (see ‘1500’ 
versions) are outperformed by better-informed priors. 

Experimenting with the parameters (λ, h) in Elo++ we obtain best results when setting 
the values to (0.05, 0.4). Despite Elo++ winning the Kaggle competition, even its 
optimised version does not give best performance for football. However, this might be 
because of the fact that it uses less information, i.e., it does not incorporate either 
information on goals scored or match type. The importance of goals scored is shown by 
our results on the Elo WWR WDL model version in which the actual result is mapped to 
an appropriate value from the set {0, 0.5, 1} rather than to the values in Table 2. 

The significance of the information on margin of victory is also stressed by good 
performance of the simple least squares model. The least squares method can further be 
improved by taking into account home team advantage (already in Elo++). 

Regarding the Network-based ratings model, we could not achieve good performance 
even by tuning its parameter (the best performance, reported in Table 4, was achieved 
using α set to 20% of the bound –1

max ).λ  This low performance might be due to the issue 
of regional grouping of games (confederations), the lack of the time dimension and 
possible ‘loops’ in matches (e.g., team A beat team B, B beat C and C beat A). 

Concerning Markovian ratings, the optimal values of parameter α for the chain with 
transitions computed on goals is α = 0.96, and for the transitions calculated solely on 
win/draw/loss information, it is α = 0.99. In both of these versions, the same graph 
structure of the teams is explored, which results in virtually the same performance. 

5.3 Method combination 

As Table 4 also shows, a simple combination of predictions (ensemble) based on several 
rating methods produces superior performance to any single method described in this 
paper. However, if one is to create rankings based on such combination, it is not 
straightforward how to do this, and also, it is often desirable that the ranking algorithm is 
transparent and easy to understand. Based on this, we recommend that if the goal is to 
make predictions, several methods need to be combined, and if rankings are to be created, 
a well performing individual method might be more desirable, so as to balance predictive 
performance and method transparency. 

6 Conclusions and future work 

The aim of the paper was to provide an overview of, and investigate the predictive 
capabilities of different ranking systems for national football teams. The main benchmark 



   

 

   

   
 

   

   

 

   

    The predictive power of ranking systems in association football 45    
 

    
 
 

   

   
 

   

   

 

   

       
 

was the FIFA ranking. Our experiments has shown that it is possible to outperform the 
official ranking procedure by relatively simple algorithms, which is surprising given the 
high influence of this ranking on football competitions. On the other hand, the FIFA 
methodology used for ranking women’s teams, based on the Elo rating system, is indeed 
a very competitive rating method. Applying an analogous procedure in ranking men’s 
national teams might be worth taking into consideration. 

We see two possible directions of future work on the topic of ranking football teams. 
First, we may develop better performing ranking methods, which we would base on one 
of the two discussed Elo rating system. Their performance is high, they are not overly 
complicated, and perhaps they can be improved further for even better predictive 
performance. 

Second, it may be worth investigating how possible inefficiencies in the FIFA 
ranking can be exploited by national football associations. We have seen in this paper 
that the official ranking system does not award points in the most accurate manner. Using 
this information, and a better model, a team might be able to advance in the current 
rankings by choosing opponents for friendly games that they are likely to gain the most 
ranking points against. Hence, we may want to seek an optimal strategy for scheduling 
friendly matches, or to identify if some teams apply such strategy already. 
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