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RATIONALE FOR A LIBRARY OF MODELS AND  
SPECIFICITY OF THE PRESENTED SELECTION
As the use of modeling and simulation in oncology drug 
development is becoming more prevalent, there is a need to 
create a library of models that researchers in pharmaceutical 
industries and academia can rely on while performing oncol-
ogy data analysis.

Such a library should offer a unique and standardized plat-
form for storing published mathematical structures of cancer 
and anticancer drug models, which can serve as a foundation 
for the analysis of new data sets and for the development of 
new models. In addition to storing the equations of the struc-
tural models, the repository should also store information on 
the statistical components of each model, in addition to the 
parameter values and uncertainties. It can then be used to 
retrieve a model that adequately captures a given biologi-
cal system, to obtain initial estimates, or to compare final 
estimates of different models. The preliminary version of the 
library will not only include models for tumor growth data and 
efficacy data of anticancer drugs but also models for toxicity 
data and models for circulating biomarkers and overall sur-
vival in the context of anticancer drug development and use 
in clinical practice. Herein, we report mixed-effect models of 
growth and effects of anticancer drug treatment. We focused 
our selection on models applied in a population analysis con-
text, given the solid value of this statistical approach in the 
integration of different levels of variability inherent to any bio-
logical process. As a consequence, this review is not exhaus-
tive. In particular, more mechanistic and biologically and 
pharmacologically plausible models—limited nowadays by 
the availability of data and the lack of appropriate statistical 
tools for parameter estimation and model evaluation, but with 
clear potential to tackle the critical challenges facing early 
drug development in oncology, e.g., exploring effects at dif-
ferent target sites—will not be discussed here. The reader 

can find further information and other views of oncology mod-
els in recent reviews1–3 and in the book by Bonate.4

FIRST ATTEMPTS TO MODEL TUMOR GROWTH
Very early attempts to characterize tumor dynamics were 
generally based on the belief that the process of tumor 
growth follows a simple exponential model.5 The hypothesis 
of an exponential growth process was in accordance with the 
idea that, under ideal conditions—i.e., all tumor cells have 
sufficient nutrients and oxygen—all cells composing the col-
ony should proliferate, leading after mitosis of one tumor cell 
to eventually two new ones.

However, starting from 1930, researchers began to 
observe that the diameters of grafted sarcomas in rats 
increased linearly with time (t), or that, in other words, the 
tumor volume (V) increased according to a cubic law6: V t~ 3

. Following the observation of a deceleration of the growth 
rate, without any phase at which the growth rate remained 
constant, the Gompertz equation7 was introduced for the 
first time in the context of tumor growth analysis and was 
shown to describe the growth of different types of tumors in 
animal models.5

Laird, in ref. 5, formulated the Gompertz model of tumor 
size (or number of cells) y over time t as follows:
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where y0 denotes the tumor size (or number of cells) at time 
0, and A and α are two positive constants regulating both 
growth rate and saturation size. Specifically, A is the initial 
growth rate of the process, and α stands for the decelera-
tion rate related to the natural death of the tumor cells. The 
model can also be written as a system of ordinary differential 
equations, which allows for a better understanding of the two 
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simultaneous processes that occur: exponential growth with 
a nonconstant growth rate (ρ) that decelerates exponentially 
as the tumor grows:

d
d

d
d

y
t

y

t

= ⋅

= − ⋅













ρ

ρ
α ρ

 (2)

Eq. 1 is a solution of system represented in Eq. 2 if the initial 
value of ρ  is assumed to be equal to A.

ρ t A=( ) =0 (3)

Note that here, the deceleration of the growth rate of the 
tumor is assumed to be “physiological,” i.e., to be associated 
with the natural death of tumor cells, a process that is depen-
dent on the present tumor volume (number of tumor cells).

The Gompertz equation can also be formulated as follows:
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where θ denotes the maximal size that y can reach. It can be 
shown that this Eq. 4 is equivalent to the two previous ones 
(i.e., Eqs. 2 and 3) when

θ α= ⋅y e
A

0
 (5)

Biologically speaking, the Gompertz model offers several 
advantages relative to the exponential growth model. In par-
ticular, the Gompertz model captures, within a continuous 
process, the tumor cells’ dependence on the availability of 
nutrients, oxygen, and space. As the tumor grows, the avail-
ability of these vital resources gradually decreases, lead-
ing to a deceleration of the growth rate, until the tumor size 
attains its maximum value (saturation threshold), denoted θ.

After being successfully used to describe the dynamics of 
tumor size in animal experiments, the Gompertz model was 
first used in human patients to describe tumor growth in mul-
tiple myeloma.8 On the basis of in vivo and in vitro assess-
ments of the rate of production of an immunoglobulin marker, 
the Gompertz model was shown to fit the observations of the 
dynamics of myeloma cell number over time.

The Gompertz model was also used to analyze survival 
data reported in ref. 9 for 250 female patients with untreated 
breast cancer who were hospitalized between 1805 and 
1933 at the Middlesex Hospital in London.10 Although tumor 
size measurements were not available, the researchers sim-
ulated the Gompertz model using tumor growth parameter 
values within a feasible range, and they calculated how long it 
would take until the tumor size became lethal to the patient (a 
“death” size threshold). A survival curve was generated and 
compared with the observed survival data.

TUMOR GROWTH MODELS USED AS A TOOL TO  
BETTER EvALUATE TREATMENT RESPONSE
In solid-tumor clinical trials, tumor size is typically mea-
sured using imaging techniques (e.g., computed tomogra-
phy scan, X-ray) and recorded according to the Response 

Evaluation Criteria in Solid Tumors (RECIST)11 as the sum 
of the longest diameters across targeted lesions measured 
on a limited number of organs. Then, according to RECIST, 
tumor size is transformed into an objective tumor response 
by classifying the continuous measurement according to 
one of four categories, namely, complete response, partial 
response, stable disease, and progressive disease. This step 
facilitates clinical interpretation of the measurements. This 
assessment method of drug effectiveness/resistance based 
on a point estimate, i.e., best overall response, has its limi-
tations.12,13 First, the transformation of a continuous variable 
into a four-category variable results in the loss of a great deal 
of information; second, the RECIST criteria are evaluated at 
discrete time points, and all the dynamic characteristics of 
tumor growth, treatment-related shrinkage, and resistance 
development are ignored. As a result, the use of RECIST to 
evaluate dose response—one of the key objectives of early 
drug development—is very challenging.

Since 2004, the US Food and Drug Administration, through 
its Critical Path Initiative, has been promoting quantitative 
modeling to improve the quality of decision making in the drug 
development process.14 In line with the Critical Path Initia-
tive, recent articles have presented new and innovative ways 
of leveraging the available RECIST clinical data in order to 
improve assessment of drug efficacy/resistance in the early 
to middle stages of drug development. Several models have 
been proposed to describe the time course of tumor size, 
expressed as the sum of the longest tumor dimensions, as 
opposed to the four categories of “objective tumor response.” 
These models use mathematical expressions ranging from 
simple analytical expressions to complex mathematical sys-
tems written with ordinary differential equations.

From 2008 up to now, 13 published papers have proposed 
an analysis of the time course of tumor size in patients in 
eight different therapeutic indications: colorectal cancer,15,16 
non–small cell lung cancer,17,18 renal cell carcinoma,19–22 thy-
roid cancer,23 metastatic breast cancer,24 prostate cancer,25 
gastrointestinal stromal tumor,19,26 and low-grade glioma.27 
In the next section, we provide a comprehensive description 
and synthesis of the mathematical expressions used in these 
models.

MODELS EXPRESSED AS ALGEBRAIC EQUATIONS
Several different studies have used algebraic equations to 
describe tumor size dynamics. In ref. 18, the tumor size curve 
over time is described as a combination of linear growth and 
exponential decay. The model can be written as follows:

y t y e g td t( ) = + ⋅⋅ − ⋅
0 (6)

where y is the predicted sum of the longest tumor diameters, 
and t represents the time elapsed since the beginning of 
the observation period and also corresponds to the time of 
treatment onset. The parameter y0 is the tumor size at the 
first measurement for the patient (also called the baseline 
tumor size), and d and g are, respectively, the drug-induced 
decay and net growth parameters. The model was applied to 
data collected in 3,398 non–small cell lung cancer patients 
receiving either mono- or polychemotherapy or placebo treat-
ment.18 Note that d relates to the drug/placebo effect but has 
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not been explicitly linked to actual doses or concentrations in 
this publication.

Stein et al. in ref. 25, proposed the following expression:

y t y e ed t g t( ) = + −( )⋅ − ⋅ ⋅
0 1 (7)

The term “—1” is used to ensure that at time 0, tumor size 
y(0) = y0.

Here, tumor size is assumed to increase and decrease 
exponentially, with d and g being the rate constants for the 
drug-induced decay and the net growth of the tumor size, 
respectively. Note that in the original article, this formula, 
even if proposed for the analysis of tumor size measure-
ments, was applied to the analysis of the time course of pros-
tate-specific antigen data. However, the same model was 
successfully used in ref. 16 to analyze tumor size dynamics 
in 1,126 patients with metastatic colorectal cancer. As in ref. 
18, parameters were estimated by matching y to tumor size 
measurements from patients, calculated according to the lon-
gest tumor diameters.

Bonate and Suttle in ref. 28 proposed a modification to the 
model in Eq. 6 with the goal of ensuring a smooth curvature 
at the nadir tumor size (the transition between decay and 
growth). Specifically, they added a quadratic growth term:

y t y e g t h td t( ) = + ⋅ + ⋅⋅ − ⋅
0

2 (8)

Analytical models present some advantages for imple-
mentation: because of their mathematical simplicity, they are 
easy to implement in classical statistical software programs 
such as SAS, and computations are very quick. However, 
they have several disadvantages. First, they cannot account 
for varying dosing information (e.g., dose deescalation and 
modification). Second, they are purely empirical in nature 
and therefore cannot be used to extrapolate tumor dynamics 
to different dosing regimens or even to account for changes 
in a dosing regimen within a study. And finally, they are of lim-
ited use in attempts to understand or formulate new hypoth-
eses regarding the mechanisms driving tumor growth and 
response to treatments.

MODELS EXPRESSED AS ORDINARY DIFFERENTIAL 
EQUATIONS
Models for the analysis of clinical data
Ordinary differential equations are used to describe elemen-
tary changes in tumor size as a function of net growth (i.e., 
the difference between growth and natural death) and drug-
induced decay processes. Generally, this family of models 
can be written as:

d
d
y
t

net growth drug induced decay= −_ _ _ (9)

where 
d
d
y
t

 denotes the derivative in time of the tumor size, 

i.e., the change in tumor size over time.
The growth captured in net_growth can take different 

forms, including, e.g., linear growth (net_growth equal to a, 
with a being a constant), exponential growth (net_growth 
equal to a y t⋅ ( ), with a being a constant), or more complex 
forms that separate growth and natural decay (not induced 
by drugs).

It is useful to introduce a general growth law, called a “gen-
eralized logistic” law, which can be written as follows:
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with a, θ and ϕ  as three positive rate constants. Note that 
this expression can be interpreted as growth (a y⋅ ) com-

plemented by natural tumor cell death a y
y

⋅ 
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, which 
induces saturation.

In the Gompertz model, the parameter θ denotes a maxi-
mal size above which the tumor will not be able to grow. If ϕ  
is equal to one, Eq. 10 becomes the “logistic model”:
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If, on the other hand, parameter ϕ  tends to zero, resulting in 

slow deceleration of the net growth rate (e.g., ϕ  = 0.001), Eq. 

10 is an approximation of the Gompertz model as written in 

Eq. 4 because 
y y
θ

ϕ
θ

ϕ

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
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1 log  when ϕ  is small. The 

parameter α  from Eq. 4 is then equal to a ⋅ ϕ .
The drug-induced decay term in Eq. 9 can represent the 

action of an anticancer drug and is generally assumed to rep-
resent a first-order decay process as follows:

drug induced decay effect y_ _ = ⋅ (12)

As a practical comment, this insures nonnegativity of the 
solution for y(t).

The term effect can represent a constant parameter or a 
function of a metric of drug exposure (e.g., plasma concen-
tration), e.g.,

effect C t= ⋅β ( ) (13)

where C(t) denotes the drug concentration, either in plasma 
or at the effect site. Note that effect can also be related nonlin-
early to C(t), e.g., through an Emax model. The term β can be 
either constant or time dependent, as in the following example:

β λ= − ⋅e t (14)

In such a way, the decay term decreases with time. This 
expression accounts for the loss in drug_induced_decay over 
time due to declining efficacy of the drug, e.g., because of 
the emergence of “resistance.” A plausible biological expla-
nation for such resistance is heterogeneous drug sensitivity 
of cells within the tumor mass. Another explanation could be 
the possible emergence, with time, of cell mutations confer-
ring properties of resistance to the drug. Note that β can also 
be dependent on other terms, including, e.g., the time course 
of drug concentration.

Figure 1 proposes a summary of the different terms for 
net_growth and drug_induced_decay in the general differen-
tial equation model for tumor size dynamics.

Among the 13 published studies mentioned above, almost 
two thirds (8/13) present a model based on differential 
equations.
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Table 1 shows a summary of the various main models 
together with their associated mathematical expressions.

The model proposed in ref. 27 and applied to tumor size 
data in low-grade glioma patients is the most complex so far. 
In particular, the model is formulated as a system of ordi-
nary differential equations that incorporate different types 
of tumor tissues. This formulation is supported by the fact 
that these tumors are known to be composed primarily of 
nonproliferative quiescent tumor cells.30 Despite this com-
plexity, the same logic governs the balance between net 
growth and drug-induced decay processes within the dif-
ferent tumor cell compartments (i.e., the different types of 
tissues). In particular, the growth term of the proliferative 
cell compartment is modeled using a logistic term.

Finally, the model presented in ref. 17 uses a logistic term 
(Eq. 11) for the growth component of tumor size progression, 
in which the tumor saturation size (i.e., the maximal size it 
can attain) is the baseline size, y0. This means that after the 
shrinking effect of the drug diminishes entirely, the tumor will 
be able to grow until its baseline value. The drug action is 
taken into account with an “Emax” model, formulated such that 

Figure 1 General differential model for tumor size dynamics and 
development of the growth and decay terms as encountered in the 
reported publications.

dy
= net_growth – drug_induced_decay

Linear Exponential

Exposure-driven

Constant

effect = β · exposure

With resistance

effect = β · exposure · e−λ.t

net_growth = a drug_induced_decay = effect · y

Exponential

net_growth = a · y(t )

Generalized logistic family

net_growth = a · y(t ) · 1 −
y
θ

α

dt

Table 1 Summary of the mathematical equations and the complexity of the eight different models published for the analysis of tumor size dynamics in patients

Reference Type of equations Model Number of structural parameters

(Wang, Sung et al. 2009)18 Algebraic y t y e g td t( ) = + ⋅⋅ − ⋅
0

Three

(Stein, Gulley et al. 2011)25 Algebraic y t y e ed t g t( ) = + −( )⋅ − ⋅ ⋅
0 1 Two (in publication: y0 not estimated and 

fixed to observed y0)

(Bonate and Suttle 2013)22 Algebraic y t y e g t h td t( ) = + ⋅ + ⋅− ×.0
2 Four

(Tham, Wang et al. 2008)17 Ordinary differential d
d 0
y
t

a y y effect y= ⋅ ⋅ −( )⋅
Four (in publication: Emax fixed to 1)

(Claret, Girard et al. 2009)29 Ordinary differential d
d
y
t

a y effect e yt= ⋅ − ⋅ ⋅− ⋅λ
Three (in publication: y0 not estimated and 
fixed to observed y0)

(Frances, Claret et al. 2011)24 Ordinary differential 
d
d
y
t

a y log
y

effect e yt= ⋅ ⋅






− ⋅ ⋅− ⋅θ λ  
Five (in publication: separate β  for the two 
drugs. The term θ was not estimated and 
was fixed at 10 cm)

(Stein, Wang et al. 2012)20 Ordinary differential d
d
y
t

a effect y= − ⋅ Five (in publication: dose-dependent β. 
y0 covariate for and α β)

(Ribba, Kaloshi et al. 2012)27 Ordinary differential d
d
y
t

a y
y

b y c y effect y1
1 1 3 11= ⋅ ⋅ −





− ⋅ + ⋅ − ⋅
θ

 
Eight (in publication: y1 refers to the prolifera-
tive tissue, y2 and y3 to quiescent tissues; θ 
was not estimated and was fixed to 10 cm)

effect
E

amt
max= −

+
⋅

1
50

Ce
Ce

dCe
d

Ce
t

k Exposuree= −( )0
.

effect exposure= ⋅β

effect exposure= ⋅β

effect exposure= ⋅β

d
d
y
t

b y effect y2
1 2= ⋅ − ⋅

d
d
y
t

effect y c d y3
2 3= ⋅ − +( )

y y y y= + +1 2 3

effect exposure= ⋅β
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the effect of the drug is to reduce the growth rate of the tumor. 
The model can be written as follows:

d
d
y
t

a y y effect y= ⋅ −( )⋅0 (15)

where a Tturnover

=
1

 following the notation of the publication17 

and   effect
E exposure

amt exposure
= −

+
⋅

1
50

max . This model incorporates 

the drug-induced decay term differently compared with the 
general model proposed in Eq. 9. In fact, it is the only model 
for clinical data developed thus far in which the drug is 
assumed to decay the growth rate and not to induce a direct 
reduction of the tumor size. The authors chose this mod-
eling strategy because the drug compound they modeled 
was known to act by slowing tumor cells’ growth, through its 
influence on their DNA, rather than by increasing the death 
rate of surviving cells. In the analysis of preclinical data, a 
similar strategy has been chosen to model the action of anti-
angiogenic drugs, whose primary mode of action consists of 
inhibiting tumor growth through the disruption of the forma-
tion of intratumoral blood vessels.31–33

It is important to note that the development and analysis 
of each model presented here were carried out using a pop-
ulation (mixed-effects) approach, with the exception of the 

analysis of prostate-specific antigen dynamics in ref. 25. The 
patient sample sizes in the various models ranged from 56 
(ref. 17) to 3,398 (ref. 18), with a median of 391 individuals. 
Regarding parameter estimation, the algebraic models are 
the least complex, incorporating only three structural param-
eters.16,18,21,25 The other models each include four structural 
parameters, with the exception of the model in ref. 27, which 
used eight structural parameters.

In 12 of the 13 studies discussed above, the model variable 
y(t) was matched to the observed sum of the longest dimen-
sions of the tumor. The one exception was that of the study 
on low-grade glioma27; this model used mean tumor diameter 
as the dependent variable. This choice was in agreement 
with a standard approach for treatment evaluation in low-
grade gliomas.34 Regarding the software used for parameter 
estimations, all mixed-effects models relied on the NONMEM 
software,35 except for the brain tumor study, where Monolix 
(Lixoft) was used.27

A summary of the 13 studies, presenting analysis of tumor 
size dynamics in clinical settings, is shown in Table 2.

Models for the analysis of preclinical data
Preclinical experiments comprise an important stage in the 
process of understanding drug effects. A multitude of dif-
ferent techniques, animals, and processes can be used to 

Table 2 Main details of the 13 studies presenting analysis of tumor size dynamics in clinical settings

Reference Tracked variable

Total number of 
individuals  
analyzed Indication(s) Compound(s)

Inclusion of 
a placebo 

group

Software 
used for the 

analysis

(Wang, Sung et al. 
2009)18

Sum of longest 
dimensions

3,398 Non–small cell 
lung cancer 

PCB, PC, DC, DCb, VC, PB, ET, DT, PT Yes NONMEM

(Stein, Gulley et al. 
2011)25

PSA 267 Prostate cancer Thal, K+A, T+D, ATTP, TRIC No Not a mixed-
effects model

(Maitland, Wu et al. 
2013)21

Sum of longest 
dimensions

749 RCC Sorafenib Yes NONMEM

(Claret, Gupta et al. 
2013)16

Sum of longest 
dimensions

1,126 Metastatic 
colorectal cancer

Bevacizumab, irinotecan, fluorouracil, 
leucovorin, fluorouracil+bevacizumab

No NONMEM

(Bonate and Suttle 
2013)22

Sum of the  
longest dimensions

643 RCC Pazopanib No NONMEM

(Tham, Wang et al. 
2008)17

Sum of longest 
dimensions

56 Non–small cell 
lung cancer

Gemcitabine + carboplatin No NONMEM

(Claret, Girard et al. 
2009)29

Sum of longest 
dimensions

286 Colorectal cancer Capecitabine, 5-fluorouracil No NONMEM

(Claret, Lu et al. 
2010)23

Sum of longest 
dimensions

184 Thyroid cancer Motesanib No NONMEM

(Houk, Bello et al. 
2010)19

Sum of longest 
dimensions

ND mRCC, GIST Sunitinib No for mRCC, 
yes for GIST 

NONMEM

(Frances, Claret  
et al. 2011)24

Sum of longest 
dimensions

391 Metastatic breast 
cancer

Capecitabine + docetaxel No NONMEM

(Stein, Wang et al. 
2012)20

Sum of longest 
dimensions

407 mRCC Everolimus Yes NONMEM

(Hansson, Amantea 
et al. 2013)26,36

Sum of longest 
dimensions

303 GIST Sunitinib Yes NONMEM

(Ribba, Kaloshi  
et al. 2012)27

Mean tumor  
diameter

 70 Low-grade glioma PCV, radiotherapy, temozolomide Yesa Monolix

Note that the model proposed in ref. 25 was used to analyze PSA (and not tumor size) dynamics.
ATTP, avastin, thalidomide, taxotere, prednisone; CCNU, vincristine; DC, docetaxel and cisplatin; DCb, docetaxel and carboplatin; DT, docetaxel; ET, erlotinib; 
GIST, gastrointestinal stromal tumor; K+A, ketoconazole + alendronate; mRCC, metastatic renal cell carcinoma; ND, not defined; PB, placebo; PC, paclitaxel 
and carboplatin; PCB, paclitaxel, carboplatin, and bevacizumab; PCV, procarbazine; PSA, prostate-specific antigen; PT, pemetrexed; Thal, thalidomide;  
T+D, thalidomide + docetaxel; TRIC, PSA vaccine study; VC, vinorelbine and cisplatin.
aThe data analyzed in Ribba, Kaloshi et al. (2012)27 present repeated measurements before treatment.
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carry out relevant experiments, specifically adapted for each 
drug of interest. In oncology, exploratory preclinical studies 
often entail s.c. implantation of human tumor fragments into 
the flanks of nude mice (xenograft). Once the tumors have 
reached a predetermined size, drugs are administered. 
Slide calipers are used to periodically measure tumor size 
over a predefined period of time. A standard measurement 
approach is to measure three tumor diameters and to cal-
culate the corresponding geometric mean, which is then an 
approximation of the tumor volume.40

In the section that follows, we present several preclinical 
models whose mathematical representations are similar 
to those presented in the previous section. One modeling 
framework often used for the analysis of tumor size dynam-
ics in mice is presented in ref. 38. This framework relies on 
a general model for time-dependent transduction systems.39 
Three different models are presented to describe the action 
of a drug on tumor cells:

(i) The first model formulation assumes a first-order (expo-
nential) net growth process with a drug-induced decay 
term that is a function of the drug concentration and is 
formulated as an “Emax” model:

drug induced decay b y t

E exposure
amt exposure

y

_ _ = − ⋅ ( )
= −

+
⋅

⋅max

50

(( )t
 (16)

(ii) The second formulation assumes that the drug acts on a 
fraction of the tumor cells. A second cell type (or compart-
ment) is thus introduced with back-and-forth exchange 
with the first compartment (on which the drug is active). 
The compartments are typically assumed to correlate with 
phases of cell division, but experimental data are typically 
not available for modeling to support such an assumption.

(iii) The third formulation assumes a delay in the action of the 
drug. Four transit compartments are introduced to delay 
the effect of the decay term, which represents the action 
of the compounds. This formulation was introduced to 
account for delays in drug effect on tumor size, com-
monly observed in mice treated with chemotherapeutic 
compounds.

The model proposed in ref. 40 is similar to the “transit com-
partment” model in ref. 38. In this model, the growth term 
is modified to account for a transition between an initial 
exponential growth phase (which is supposed to reflect the 
initial growth process, when tumor cells have enough oxy-
gen to proliferate) and linear growth (when the availability 
of nutrients and oxygen becomes limited due to excessive 
tumor size). Thus, the model is based on a different biologi-
cal assumption from that of the Gompertz model because a 
hypothetical switch occurs between the two growth phases. 
A transit chain is coupled to the affected cells to account for 
the duration of the death process after drug action. Thus, 
the transit chain applies to the process of death and not, as 
in ref. 38, to the process of the drug’s distribution to its site 
of action. On the basis of the model in ref. 40, Shah et al. 
developed a multiscale mechanism–based pharmacokinetic/
pharmacodynamic model for antibody–drug conjugates in 
mice and successfully predicted progression-free survival 

rates and complete response rates in patients treated with 
brentuximab–vedotin.41 A similar translational strategy was 
applied by Haddish-Berhane et al. to predict first-in-human 
doses of antibody–drug conjugates.42

The model proposed in ref. 31 for evaluating the effect of 
an antiangiogenic drug in preclinical experiments is similar 
to the model in ref. 17, which describes the time course of 
tumor size in non–small cell lung cancer patients treated with 
gemcitabine. A Gompertz model is used for the net growth 
process, in which the saturation size (parameter θ  in Eqs. 
4, 10, or 11) is not constant but varies as a function of differ-
ent parameters and, in particular, of a drug effect parameter. 
Typically, administration of a drug induces a reduction of θ.  
Thus, as in ref. 17, in the model of ref. 31, the drug acts by 
reducing the growth rate and not directly by inducing decay in 
the tumor size. A similar idea was explored in ref. 32, where 
the growth dynamics of the untreated tumor proposed in ref. 
40 were revised to take into account the growth rate reduc-
tion effect of an antiangiogenic drug. Bueno et al., in ref. 43 
used a similar approach to model the effect of a type 1 recep-
tor transforming growth factor-β kinase antagonist.

DISCUSSION AND PERSPECTIvES
For decades, researchers have turned to models of tumor 
size data to characterize the dynamics of tumor growth and 
response to treatment. More recently, mixed-effect models 
have been proposed as a means of facilitating decisions on 
whether to move to phase III clinical trials based on tumor 
size response in phase II trials18,29 for evaluating the value 
of biomarkers in predicting tumor response26 and for innova-
tive patient treatments in clinical routine.28,44 In this review, we 
have presented the historical development of tumor growth 
models and have elaborated on recent published nonlinear 
mixed-effects mathematical models aimed at analyzing tumor 
size dynamics. We have proposed a synthetic presentation of 
these models and provided necessary technical details for 
their implementation and simulation.

The main focus of this review was to report on 13 recent 
scientific studies presenting eight different mixed-effect mod-
els for the analysis of tumor size dynamics in clinical settings. 
These studies are summarized in Table 2, which can serve 
as a guide for the initial selection of an appropriate model 
structure according to the investigated cancer indication. We 
have shown that despite the apparent heterogeneity in the 
formulations of the differential-equation-based models, they 
all originate from the same general mathematical expres-
sion (Eq. 9), which comprises a net growth term and a drug-
induced decay term.

It was shown that the Gompertz equation is at the basis of 
the development of tumor size models and can be used to 
account for tumor growth in the absence of treatment. This 
model includes three parameters (baseline, growth rate, and 
saturation threshold) and is thus relatively simple, while also 
being supported by biology (reflecting tumor size limitations 
due to limited availability of oxygen and nutrients during 
tumor growth). It also allows for the incorporation of different 
drug effects and, in particular, reduction of the growth rate 
through modification of the saturation value. We have seen 
that the generalized logistic model (Eq. 10) is similar to the 
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Gompertz model with the presence of a saturation value. This 
model incorporates an additional parameter (ϕ in Eq. 10), 
which regulates the transition between the initial exponen-
tial phase and the growth-saturated phase (a small ϕ  will 
result in a smooth transition). It should be noted, however, 
that this model also presents disadvantages. Technically, the 
saturation size θ  is difficult to estimate based on preclinical 
or clinical data because the plateau is generally not observed 
in preclinical or clinical settings. For instance, in both refs. 24 
and 27, this parameter was fixed to 10 cm. In ref. 17, it was 
fixed to the tumor baseline value. Figure 2 shows simulations 
for a range of parameter values of the Gompertz, generalized 
logistic, and Simeoni models40 These three classical models 
rely on similar assumptions, except that the Simeoni model 
assumes tumor size to grow linearly with time after an initial 
exponential phase.

Overall, the Gompertz model remains an interesting model 
for the analysis of tumor size data sets in both preclinical 
and clinical settings. Of note, however, Hart et al., in 1998, 
showed the better performance of a non–mechanism-based 
quadratic function of time (i.e., parabolic growth), compared 
with the Gompertz equation, in the analysis of large-scale 
breast cancer mammography data.45

The rate of drug attrition in oncology has now reached a 
critical level of 95%, and only 40% of compounds that yield 
positive results in phase II trials are subsequently successful 
in phase III trials.46 It is thus reasonable to consider that the 
use of tumor size growth models might facilitate informed, 
quantitatively based decisions for the drug development pro-
cess in oncology. One of the main potential benefits of these 
tools is the possibility, based on early tumor size measure-
ments collected in phase I and phase II trials, to predict the 
probable efficacy results of phase III clinical trials.18,29

The coupling of tumor size models with models describing 
overall patient survival offers a key new perspective regard-
ing their use. It is also the most likely coupling to succeed. 
Tumor size data offer a dual advantage: they can be collected 
early on in clinical development, and they can also serve as 
a treatment efficacy metric that reflects the ultimate clinical 
end point (survival) relatively closely. Several studies have 
shown the potential of modeling tumor size to predict long-
term clinical outcomes such as survival. For example, the 
change in tumor size ratio (TSR) in week 7 after treatment 
onset has been identified as a predictor of overall survival in 
colorectal cancer patients treated with capecitabine or 5-fluo-
rouracil.29 TSR has since been applied to analyze the effects 
of several drugs for various tumor types. For example, the 
tumor size ratio at week 8 after treatment onset was a signifi-
cant predictor of survival in non–small cell lung cancer18 and 
for thyroid cancer patients treated with motesanib.23 Claret 
et al., in ref. 16, proposed using the “time to growth” (time 
elapsed from the onset of treatment until the tumor reaches 
its minimal size) as a predictor of overall survival because 
they found this metric to yield more accurate predictions than 
those from tumor size ratio in metastatic colon cancer (see 
also ref. 47) Hansson et al.26,36 evaluated the full time course 
of biomarkers, tumor size, and adverse effects for prediction 
of survival and found these dynamic variables to be superior 
to constant-value metrics such as the tumor size ratio in a 
specific week. A recent review presents a summary of met-
rics that have been incorporated into population models to 
predict survival in oncology3 and provides a discussion of the 
advantages and disadvantages of each metric.

Such modeling initiatives have aimed at not only better 
designing of phase III clinical trials but also suggesting inno-
vative methods for providing quantitatively based suggestions 

Figure 2 Simulations illustrating plausible growths of tumor volume in xenografted mice for a range of parameter values of the Gompertz 
(left panel), generalized logistic (middle panel), and Simeoni models37 (right panel).
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to clinicians in treatment of cancer patients in clinical practice. 
For instance, in ref. 27, the authors suggest that the model 
can be used to individualize low-grade glioma patient therapy 
based on the analysis of tumor size data collected before 
treatment onset. Other models developed under a population 
context48–50 or for individual patients are also of use for patient 
treatment individualization.49

Regarding the development of models for preclinical data, 
efforts are currently under way to develop models that account 
for the effect of immunotherapy,51–54 models that account for 
combinations of drugs,32,52,55 models to account for intracel-
lular dynamics in combined systems biology/pharmacomet-
ric models,56 and models to translate preclinical results into 
clinical findings.,41,42,57,58 On this last topic, although recent 
published studies provide exciting and encouraging results, 
we think that more complex and plausible models integrat-
ing data on biological and pharmacological mechanisms, 
including biomarkers—together with appropriate parameter 
estimation and model evaluation methods—will be needed to 
predict clinical activity from preclinical information. It is also 
important to carry out data analysis studies based on more 
sophisticated preclinical models, than the classically used 
subcutaneous xenografts.

New studies will need to be developed to validate the rel-
evance of these recent initiatives. In this respect, it is hoped 
that regulatory agencies, together with pharmaceutical com-
panies, will launch a global program to promote the use of 
such analyses in the investigation of systematically marketed 
therapies. The European Medicines Agency’s Policy 070 on 
publication and access to clinical trial data will definitively 
help in that regard by creating the opportunity for scientists 
to access pools of individual-level data from clinical trials 
(http://www.ema.europa.eu/docs/en_GB/document_library/
Other/2013/06/WC500144730.pdf). Similar initiatives are 
already available for other therapeutic indications, such as 
stroke, through the Vista repository (http://www.vista.gla.
ac.uk). We believe that access to appropriate data is the most 
problematic issue for further mechanistic developments and 
relevant applications of models. In oncology, in addition to the 
significant costs of evaluating tumor size response through 
imaging techniques, the method itself of evaluating treat-
ment efficacy in clinical trials with an end point assessed at a 
specific time point resulted in forgetting the potential interest 
in evaluating the dynamic aspect of the response. In addi-
tion, safety, accessibility, and/or economical aspects also 
limit the possibility of performing multiple computed tomog-
raphy scans or magnetic resonance imaging evaluation of 
tumor size and thereby to fully explore the pharmacokinetic/
pharmacodynamic relationships and to characterize natural 
tumor growth. Finally, the clinical observations used (size of 
target lesions) could also be discussed; other observations 
such as new lesion appearance might be of great interest, in 
particular for extrapolation to survival. The modeling of circu-
lating biomarkers (see refs. 59 and 60 for reviews of model-
ing initiatives) is also a clear avenue in the development of 
more mechanistic models and for identification of predictive 
biomarkers. As an example, the soluble vascular endothe-
lial growth factor receptor has been presented as a longitu-
dinal and mechanism-based predictive biomarker for overall 

survival following sunitinib treatment in gastrointestinal stro-
mal tumor patients.26,36

Another avenue for model improvement is the integration 
of the underlying biological and pharmacological complexi-
ties following a systems pharmacology approach. The devel-
opment of such mechanistic models may provide insights 
into the understanding of key features, for instance, the emer-
gence of resistance to treatment. Thus far, the approach used 
to model drug resistance, and in particular its link to time, has 
been purely empirical and has been often confounded with 
the time course of drug elimination. Other approaches linking 
resistance to either dose or exposure need to be explored. 
Finally, most models we report here assume drug effects that 
kill cells directly, whereas the mechanism of action of most 
drugs is to reduce proliferation and promote apoptosis during 
mitosis.

Fundamentally, we believe it is important to use biologically 
and pharmacologically plausible models including integration 
with modern molecular and systems biology to better describe 
and represent the underlying biological and pharmacological 
complexities. The formulation of more mechanistic models, 
such as those already developed for prostate cancer,53,61 
chronic myeloid leukemia,62 or high-grade glioma,63–66 includ-
ing models for the analysis of full imaging data, provides an 
important opportunity. Modeling initiatives will need to fol-
low a multiscale strategy, integrating data and information 
from the molecular level (molecular pathways targeted by 
the investigated compounds), through the cellular level (cell 
cycle regulation), to the macroscopic level (tumor dimen-
sions). Theoretical studies have already proposed methods 
to link these three integration levels assuming, for instance, 
the subcellular level dynamics at a steady state when focus-
ing on the timescale of tumor size evolution (see refs. 67,68, 
as examples). Ongoing technical extensions of mixed-effect 
regression techniques69,70 indicate that it will be soon possible 
to use these mechanistic models within a population analysis 
context.

Overall, more concerted efforts by different stakeholders 
may in the future contribute to further improving the role of 
modeling and simulation in drug development and for regula-
tory and therapeutic decisions in oncology.
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