Exclusion process modelling for the mixing problem

Kit, Tim, Marcus, Gianluca, Andrea, John, Matthias

ITT5

February 3 2017

Kit, Tim, Marcus, Gianluca, Andrea, John, Matthias Exclusion process modelling for the mixing problem

Recalling the problem

- "Seed Shaking":
 - Looking to optimise an existing process for tumbling-based seed coating.
 - Further desire to better understand granular flow and granular mixing.
- Our approach:
 - ASEP models can directly give numeric results.
 - Further "weakly asymmetric" limits can give a continuous PDE model for the mean flow.
 - The PDE gives a direct description of the macroscopic forces (hopefully some understanding) and faster numerical simulation.
 - Individual-based simulation can verify the PDE model.

Defining a microscopic interaction

- The Markov chain (N_n)_n moves as an exclusion process (right). The flexible biases can model gravity or mixing forces.
- Collision between a particle with relative coating C_p and another particle with C_o induces transfer of coating $rC_p(1 - C_o)$.
- To create a nontrivial limit we rescale the system with weak asymmetry $\rho/P \propto \Delta \propto \sqrt{\tau} \rightarrow 0.$

Lattice size Δ Time scale τ N maps into $\{0,1\}$ C into [0,1]

The Macroscopic Description

Define

$${P\Delta^2\over 4}
ightarrow D \;,\; 2\Delta
ho
ightarrow lpha$$

then in the limit we have coupled PDEs

$$N_t = \alpha \cdot \nabla N + D \nabla^2 N \tag{1}$$

$$C_{t} = 2rDC(N_{y}C_{y} + N_{x}C_{x})$$

+ $C(1 - r + rC)(\alpha \cdot \nabla N + D\nabla^{2}N)$ (2)
+ $(1 - (1 - r)N)(\alpha \cdot \nabla C + D\nabla^{2}C)$

The same equation also describes flow with a time dependent forcing direction $\alpha(t)$

Agreement between finite-difference PDE solution and individual-based simulations (video).

Simulation for specific answers

- If we are committed to a specific context it is very possible to answer questions on this simulation by Monte Carlo.
- Can identify fairly confidently a plateau in the mixing improvements from increasing blade size and rotation speed.

- Short term: solving the coating PDE.
- Extend to three spatial dimensions.
- Lattice models to show segregation?
- Could extend beyond reflecting boundary.
- Coating exchange mechanics could be better informed by experiment.