FORMULATION TOXICITY

ITT5

Tom Pennington and Tsoogii Saizmaa February 3 2017

- Agrochemical formulations are mixtures of active ingredients and various coformulants.
- Toxicity of substance is measured by animal testing.
- If we can model toxicity of formulations/ingredients, we may be able to reduce animal testing.

• Formulation and some of its ingredients have a measured toxicity.

- Formulation and some of its ingredients have a measured toxicity.
- Other ingredients have toxicity in a given range, or may be discrete (e.g. "irritant"/"non-irritant"/"severely irritant").

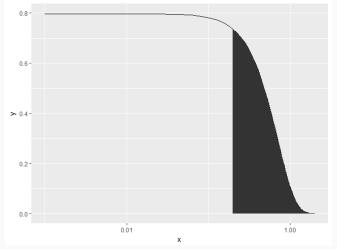
- Formulation and some of its ingredients have a measured toxicity.
- Other ingredients have toxicity in a given range, or may be discrete (e.g. "irritant"/"non-irritant"/"severely irritant").
- Inverse toxicity of a mix is often assumed to be sum of ingredient inverse toxicities (additivity). How can we check for non-additive interactions?

STEP 1: Derive Acute Toxicity Estimates (ATE) of individual ingredients

STEP 2: Calculation of ATE of a mixture and use classification criteria in the left table.

Exposure routes	Classification category or experimentally obtained acute toxicity range estimate (see Note 1)	Converted acute toxicity point estimate (see Note 2)	Ingredient(s) with unknown
Oral	0 < Category 1 ≤ 5	0.5	toxicity is <= 10 %;
(mg/kg bodyweight)	5 < Category 2 ≤ 50	5	
	50 < Category 3 ≤ 300	100	C
	300 < Category 4 ≤ 2000	500	100 5 i
	2000 < Category 5 ≤ 5000	2500	$\frac{100}{\text{ATEmix}} = \sum_{n} \frac{C_i}{\text{ATE}_i}$
Dermal	0 < Category 1 ≤ 50	5	ATEmix n ATE
(mg/kg bodyweight)	50 < Category 2 ≤ 200	50	
	200 < Category 3 ≤ 1000	300	
	1000 < Category 4 ≤ 2000	1100	Ingredient(s) with unknown
	2000 < Category 5 ≤ 5000	2500	ingreatend(s) with anknown
Gases	0 < Category 1 ≤ 100	10	toxicity is >10 %:
(ppmV)	100 < Category 2 ≤ 500	100	toxicity is > 10 %,
	500 < Category 3 ≤ 2500	700	
	2500 < Category 4 ≤ 20000	4500	
	Category 5 - See footnote to 3.1.2.5.		100 (5.0 :6 - 109/)
Vapours	0 < Category 1 ≤ 0.5	0.05	$\frac{100 - (\sum C_{unknown} \text{ if } > 10\%)}{\text{ATE}_{mix}} = \sum_{n} \frac{C_i}{\text{ATE}}$
(mg/l)	0.5 < Category 2 ≤ 2.0	0.5	ATE ATE
	2.0 < Category 3 ≤ 10.0	3	mix n
	10.0 < Category 4 ≤ 20.0	11	
	Category 5 - See footnote to 3.1.2.5.		C _i = concentration of ingredient i;
Dust/mist	0 < Category 1 ≤ 0.05	0.005	
(mg/l)	0.05 < Category 2 ≤ 0.5	0.05	n ingredients and i is running from 1 to n;
	0.5 < Category 3 ≤ 1.0	0.5	
	1.0 < Category 4 ≤ 5.0	1.5	ATE _i = Acute toxicity estimate of ingredient
	Category 5 - See footnote to 3.1.2.5.		

Additivity motivates the following


 $\mathbf{y} = \mathbf{A}\mathbf{x} + \epsilon$

- \cdot y Inverted formulation toxicities
- $\cdot\,$ A Matrix with rows containing ingredient proportions
- · x Inverted ingredient toxicities
- $\cdot \, \epsilon$ Measurement error

Bayesian inference of **x** incorporates prior knowledge and gives confidence in the result.

E.g. How confident can we be that an ingredient is Category 1 (< 5 mg/kg) in acute toxicity?

Simply integrate posterior over category interval:

• What's the source of uncertainty in results?

- What's the source of uncertainty in results?
- If we can deduce this, could reduce animal trials by testing chemicals that are responsible for uncertainty.

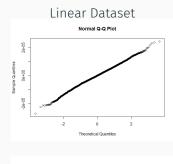
E.g. skin toxicity may simply be "Severely irritant" / "Irritant" / "Non-irritant".

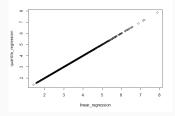
How can we incorporate this discrete data into the linear model?

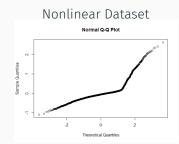
Class/Category	Serious Eye Damage - Category 1	Eye Irritation - Category 2A	Eye Irritation - Category 2B
Pictogram			(no pictogram)
Signal word	Danger	Warning	Warning
Hazard statement	Causes serious eye damage.	Causes serious eye irritation.	Causes eye irritation.

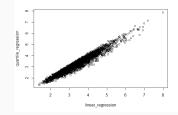
E.g. skin toxicity may simply be "Severely irritant" / "Irritant" / "Non-irritant".

How can we incorporate this discrete data into the linear model?


One possibility is a hidden / latent numerical toxicity in which categories are clustered.


 $\mathbf{x}_{i} \sim N({\mu_{c_i}}, {\sigma_{c_i}}^2)$


i.e. supervised learning but without direct observations of $\boldsymbol{x}_{\mathrm{i}}.$


Class/Category	Serious Eye Damage - Category 1	Eye Irritation - Category 2A	Eye Irritation - Category 2B
Pictogram			(no pictogram)
Signal word	Danger	Warning	Warning
Hazard statement	Causes serious eye damage.	Causes serious eye irritation.	Causes eye irritation.

DETECTING NON-ADDITIVITY

The problem requires methodology for the following:

- 1. A robust way to detect non-linear effects and estimate which combinations of chemicals will interact in a non-linear way.
- 2. Identify sources of uncertainty in results to inform what data needs to be collected.
- 3. Reliably predict from a mix of discrete/continuous/interval data.

Over to Tsoogii