Setting the scene



Clinical Pharmacology

Science that studies the characteristics, effects, reactions and uses
of drugs. Notes: it spans from FiH to market access.

pharmacokinetics pharmacodynamics

DOSE » EXPOSURE > RESPONSE

To describe these relationships, we use models.



Aims of Clinical Pharmacology ro
“The right dose for the right patient”
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To describe this, To support this, we use
we use deterministic statistic models

models



Pharmacometrics as a discipline

‘Pharmacometrics’? has emerged as a discipline thanks to the introduction of a
new tool designed to address the specifics needs of clinical pharmacology.

NONMEM was created in the 70’s by L. Sheiner and S. Beal.

« Bottom-up approach (using prior knowledge)
= towards more mechanistic models

 Parameter estimates are conditional to the observed data
= more Bayesian than frequentist — in spirit

* ODE, non-linear longitudinal mixed-effects models
= PK and disease (progression) modeling

IWord used for the 1sttime in JPKPD in 1982.



Pharmacometrics in the OrgCharts
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Theophylline: the PK model example

Serum concentrations of the drug theophylline are measured in 12 subjects over a 25-
hour period after oral administration?.
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Theophylline: a PK model example

Oral dose D q M >
k., Ke
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A(t) is the amount of drug at absorption site (e.g. vein)
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Theophylline: a PK model example

Based on the observations, we estimate the typical
values of 8 = (k,, CL,V) and how they vary in the
population of subjects.

Statistical model

Yl] =m(tl-j, Hi)-l_gij EijNN(O,O'Z)
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Vi = exp(6 + 12;) ni~MVN(0,0)

CL; = exp(63 + n3;)

Enforced positivity,
log-normal distribution



Model building
AIC
3. Model
/\ selection /\
1. Data 2. Model 4. Model 5. Model
inspection development diagnostic validation
Obs vs. ipred
Residuals (‘iwres’, ‘pwres’, ‘npde’) k-fold CV
Shrinkage (n) External validation




R packages to fit NLME (ODE) models

Package nimeODE FME
Likelihood 2-steps likelihood approxim?:; MCMC sampling
estimation - Penalized non-linear least squares
(PNLS)
- Linear mixed-effect (LME)
Main authors J. Pinheiro, D. Bates, C. Tornge? K. Soetaert, T.
Petzoldt3
Maintenance Minimal (2004) Active (2016)
Model Basic Very basic
rlingnncfir‘c
Model validation  None None

Solution 1: Work out the analytical solution of the ODE and use R packages with better

GoF/model qualification suit (e.g. nime, saemix?)

Solution 2: Use other tools (e.g. Monolix, NONMEM)

ILindstrom and Bates (1990) Biometrics; 2Tornoe et al. (2004) CMPB; Soetaert and Petzoldt (2010) JSS;

4Comets et al. (2011) PAGE meeting.
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ITTS
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Motivation: Clin dev in Oncology bty

Clinical dev.: Ph1l HV (SAD, MAD)— Ph2 (DR inc. Pboy—> Ph3 (x2) (pivotal)

Clinical dev. in Phl CRM (SAD)—— Ph2 (1 dose vs. SoCy— Ph3 (x1) (pivotal)
Onco:

Clinical dev. in Ph1l CRM (all)---- expansion (target pop.— Ph3 (x1) (pivotal)
Onco, in 2017: |

external data SoC

In solid tumors, decision to initiate Ph3 activities are typically based on tumor size
data.

Key investment point 12



Tumor size (SLD) data
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Tumor size dynamics

% = aY — bY - exp(—4t) (1)
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Tumor size dynamics — structural models?

1) Y() =Y, exp(—dt) + gt
2 Y(t) =Y, - (exp(—dt) + exp(gt) — 1)

@) Y(t) =Y, -exp(—dt) + gt + ht?

ay b b
4 —=a-bY & Y()=-+ (YO — Z) - exp(at)
(5) Z—: =aY - -(Yob—Y)
© S =aY¥ —bY-exp(=At)
(7) Z—: = aY - log (g) — bY - exp(—At)

1Ribba et al. (2014) CPT:PSP.

Depending on random effects two
(or more) different models may
have similar ‘performance’ (AlC,
diagnostic tools).

Yet, these models may lead to
different predictions (in particular
w.r.t. [IV).

Which model should be retained?
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lllustration (1/2) - Murphy et al. (2016)*
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Model a b c SSR AIC.
Exponential 0.0262 /d 54900 69.8
Mendelsohn 0.286 /d 0.616 35100 73.6
Logistic 0.0370 /d 2000 mm? 39800 74.5
Linear 58.7mm3/d 1690 mm?> 41200 74.8
Surface 0.265 mm/d 506 mm? 44000 75.2
Gompertz 0.279 /d 13900 mm?® 12000 mm® 40100 88.6
Bertalanffy  0.306 mm/d  0.0119 /d 33700 73.3

IMurphy et al. (2016) BMC Cancer, 16:163.

Various models lead
to AIC within a 4
points range.

16



llustration (2/2) - Murphy et al. (2016)!
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Doing now what patients need next



