

Setting the scene

Clinical Pharmacology

Science that studies the characteristics, effects, reactions and uses of drugs. Notes: it spans from FiH to market access.

To describe these relationships, we use models.

Aims of Clinical Pharmacology

"The right dose for the right patient"

To describe this, we use deterministic models To support this, we use statistic models

Pharmacometrics as a discipline

'Pharmacometrics'¹ has emerged as a discipline thanks to the introduction of a new tool designed to address the *specifics needs* of clinical pharmacology.

NONMEM was created in the 70's by L. Sheiner and S. Beal.

- Bottom-up approach (using prior knowledge)
 towards more mechanistic models
- Parameter estimates are conditional to the observed data
 more Bayesian than frequentist *in spirit*
- ODE, non-linear longitudinal mixed-effects models
 PK and disease (progression) modeling

Pharmacometrics in the OrgCharts

Theophylline: the PK model example

Roche

Serum concentrations of the drug theophylline are measured in 12 subjects over a 25hour period after oral administration¹.

Theophylline: a PK model example

A(t) is the amount of drug at absorption site (e.g. vein)

Concentration at t:

$$m(t) = \frac{M}{V} = \frac{k_a D}{V(k_a - k_e)} [\exp(-k_e t) - \exp(-k_a t)]$$

$$k_e = \frac{CL}{V} \qquad \text{clearance}$$
volume of distribution

Theophylline: a PK model example

Roche

Statistical model

Based on the observations, we estimate the typical values of $\theta = (k_a, CL, V)$ and how they vary in the population of subjects.

$$Y_{ij} = m(t_{ij}, \theta_i) + \varepsilon_{ij} \qquad \varepsilon_{ij} \sim N(0, \sigma^2)$$

$$m(t, \theta_i) = \frac{k_{ai}D_i}{V_i(k_{ai} - \frac{CL_i}{V_i})} \left[\exp(-\frac{CL_i}{V_i}t) - \exp(-k_{ai}t) \right]$$

$$k_{ai} = \exp(\theta_1 + \eta_{1i})$$

$$V_i = \exp(\theta_2 + \eta_{2i})$$

$$CL_i = \exp(\theta_3 + \eta_{3i})$$

$$\prod_{i=1}^{n}$$
Enforced positivity, log-normal distribution

Model building

R packages to fit NLME (ODE) models

Solution 1: Work out the analytical solution of the ODE and use R packages with better GoF/model qualification suit (*e.g.* nlme, saemix⁴)

Solution 2: Use other tools (e.g. Monolix, NONMEM)

¹Lindstrom and Bates (1990) Biometrics; ²Tornoe *et al.* (2004) CMPB; Soetaert and Petzoldt (2010) JSS; ⁴Comets *et al.* (2011) PAGE meeting.

Roche

ITT5

Ph1 CRM (SAD) \longrightarrow Ph2 (1 dose vs. SoC) $\xrightarrow{\vee}$ Ph3 (x1) (pivotal)

Clinical dev. in

Onco:

Motivation: Clin dev in Oncology

Ph1 CRM (all)---- expansion (target pop.) Ph3 (x1) (pivotal) Clinical dev. in Onco, in 2017: external data SoC

Clinical dev.: Ph1 HV (SAD, MAD) → Ph2 (DR inc. Pbo) → Ph3 (x2) (pivotal)

In solid tumors, decision to initiate Ph3 activities are typically based on tumor size data.

Tumor size (SLD) data

Tumor size dynamics

$$\frac{dY}{dt} = aY - bY \cdot \exp(-\lambda t) \quad (1)$$

- Tumor size ratio at a given date or Maximum shrinkage
- Time to (re)growth or time below threshold
- Resistance and/or Tumor growth rate
- TS at baseline

¹Ribba et al. (2014) CPT:PSP.

Tumor size dynamics – structural models¹

- (1) $Y(t) = Y_0 \cdot \exp(-dt) + gt$
- (2) $Y(t) = Y_0 \cdot (\exp(-dt) + \exp(gt) 1)$
- (3) $Y(t) = Y_0 \cdot \exp(-dt) + gt + ht^2$
- (4) $\frac{dY}{dt} = a bY \iff Y(t) = \frac{b}{a} + \left(Y_0 \frac{b}{a}\right) \cdot \exp(at)$
- (5) $\frac{dY}{dt} = aY \cdot (Y_0b Y)$

(6)
$$\frac{dY}{dt} = aY - bY \cdot \exp(-\lambda t)$$

(7)
$$\frac{dY}{dt} = aY \cdot \log\left(\frac{\theta}{Y}\right) - bY \cdot \exp(-\lambda t)$$

Depending on random effects two (or more) different models may have similar 'performance' (AIC, diagnostic tools).

Yet, these models may lead to different predictions (in particular *w.r.t.* IIV).

Which model should be retained?

Illustration (1/2) - Murphy et al. (2016)¹

1600 1400 (1200 (mm, 1000 800 600 400 200	 Exponential Mendelsohn Logistic Linear Surface Gompertz Bertalanffy Data 	•			
0	0 10 20	30 40 Time (d)	50 60		
Model	a	b	с	SSR	AIC_C
Exponential	$0.0262 /{ m d}$			54900	69.8
Mendelsohn	0.286 /d	0.616		35100	73.6
Logistic	$0.0370 / \mathrm{d}$	2000 mm^3		39800	74.5
Linear	$58.7 \text{ mm}^3/\text{d}$	1690 mm^3		41200	74.8
Surface	$0.265 \mathrm{~mm/d}$	506 mm^3		44000	75.2
Gompertz	0.279 / d	$13900 \mathrm{~mm^3}$	$12000 \ \mathrm{mm^3}$	40100	88.6
Bertalanffy	$0.306 \mathrm{~mm/d}$	$0.0119 \ /d$		33700	73.3

Various models lead to AIC within a 4 points range.

Illustration (2/2) - Murphy et al. (2016)¹

Fig. 4 Estimates of dirically important measurements. Model predictions of the maximum tumor volume (*left*), doubling time (*center*), and minimum concentration of chemotherapy needed for eradication (*hight*) based on parameter estimates from the half (*top row*) or the full (*center row*). Worschech data set. The bottom row shows the percent change in each of the predictions when the full data set is used rather than the truncated data set.

Doing now what patients need next