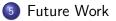

Shaking Seeds - Fluid/Impact Modelling

February 3, 2017

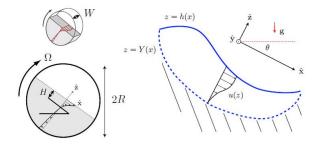
Shaking Seeds - Fluid/Impact Modelling

February 3, 2017 1 / 10


Outline

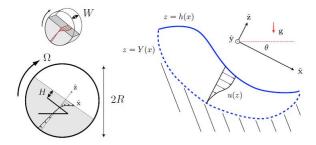
Stochasticity

4 First Impressions


3

э.

3


47 ▶

Problem & Aim

3

Problem & Aim

- Seek to model the seeds as a fluid
- Attempt to understand the behaviour of the spread of coating

Considerations:

3

3

• • • • • • • • • • • •

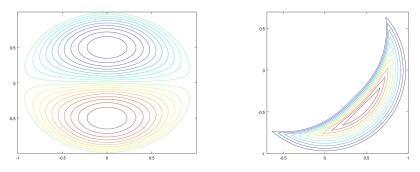
Considerations:

• Model the seeds as an incompressible fluid

Considerations:

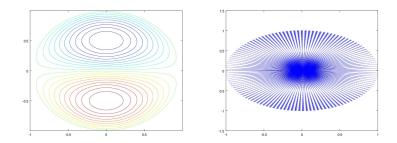
- Model the seeds as an incompressible fluid
- Approximate flows:

Considerations:


- Model the seeds as an incompressible fluid
- Approximate flows:
 - Flows of twin vortecies

Considerations:

- Model the seeds as an incompressible fluid
- Approximate flows:
 - Flows of twin vortecies
 - Crescent shaped region of a solid body rotation and a constant flow


Considerations:

- Model the seeds as an incompressible fluid
- Approximate flows:
 - Flows of twin vortecies
 - Crescent shaped region of a solid body rotation and a constant flow

Shaking Seeds - Fluid/Impact Modelling

Use Twin Vortex Flow

Stream Function

$$\psi = \frac{\omega}{2}r(r-R)\sin\theta$$

Flow Field

$$u_r = \frac{\omega}{2}(r-R)\cos\theta, \quad u_{ heta} = -\frac{\omega}{2}(2r-R)\sin\theta$$

Shaking Seeds - Fluid/Impact Modelling

3

イロト イヨト イヨト イヨト

• Use a Brownian motion/stochastic approach to model collisions

- Use a Brownian motion/stochastic approach to model collisions
- These collisions account for coating exchange between seeds

SDE

- Use a Brownian motion/stochastic approach to model collisions
- These collisions account for coating exchange between seeds

$\mathrm{d}\mathbf{X}_t = \mathbf{u} + \varepsilon \mathrm{d}\mathbf{W}_t$

SDE

- Use a Brownian motion/stochastic approach to model collisions
- These collisions account for coating exchange between seeds

$\mathrm{d}\mathbf{X}_t = \mathbf{u} + \varepsilon \mathrm{d}\mathbf{W}_t$

• Solve this using a numerical scheme, using the **u** as before

- Use a Brownian motion/stochastic approach to model collisions
- These collisions account for coating exchange between seeds

 $\mathrm{d}\mathbf{X}_t = \mathbf{u} + \varepsilon \mathrm{d}\mathbf{W}_t$

- $\bullet\,$ Solve this using a numerical scheme, using the u as before
- Impose conditions that ε to be smaller nearer the drum boundary

- Use a Brownian motion/stochastic approach to model collisions
- These collisions account for coating exchange between seeds

 $\mathrm{d}\mathbf{X}_t = \mathbf{u} + \varepsilon \mathrm{d}\mathbf{W}_t$

- $\bullet\,$ Solve this using a numerical scheme, using the u as before
- Impose conditions that ε to be smaller nearer the drum boundary
- Construct some vorticity dependence for ε

2 Particle Tracing

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

50 Particle Distribution

3

• • • • • • • • • • • •

300 Particles Colour Map

3

(日) (同) (三) (三)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• Implement the model with something similar to crescent shaped stream function

___ ▶

- Implement the model with something similar to crescent shaped stream function
- Consider a more robust stream function where the vorticity, $\nabla\times {\bf u},$ does not diverge near the origin

- Implement the model with something similar to crescent shaped stream function
- Consider a more robust stream function where the vorticity, $\nabla\times {\bf u},$ does not diverge near the origin
- Expand the model to include compressible flow

- Implement the model with something similar to crescent shaped stream function
- Consider a more robust stream function where the vorticity, $\nabla\times {\bf u},$ does not diverge near the origin
- Expand the model to include compressible flow
- Conisder time dependent diffusion

- Implement the model with something similar to crescent shaped stream function
- Consider a more robust stream function where the vorticity, $\nabla \times {\bf u},$ does not diverge near the origin
- Expand the model to include compressible flow
- Conisder time dependent diffusion
- Explore optimal mechanism for introducing