Shaking Seeds - Fluid/Impact Modelling

February 1, 2017

Shaking Seeds - Fluid/Impact Modelling

Fluid Model I

Shaking Seeds - Fluid/Impact Modelling

P

< ∃ >

_ र ≣ ≯

Fluid Model I

Advection Diffusion Equation

$$rac{\partial m{c}}{\partial t} + ig(\mathbf{u} \cdot
abla ig) m{c} = D
abla^2 m{c}$$

Shaking Seeds - Fluid/Impact Modelling

/⊒ > < ∃ >

э

э

Fluid Model II

Shaking Seeds - Fluid/Impact Modelling

(*) *) *) *)

Incompressible Continuity Equation

$$abla \cdot \mathbf{u} = \mathbf{0}$$

□ > < = > <

Incompressible Continuity Equation

$$abla \cdot \mathbf{u} = \mathbf{0}$$

• Separate the flow into two major regions:

Incompressible Continuity Equation

$$abla \cdot \mathbf{u} = \mathbf{0}$$

- Separate the flow into two major regions:
 - Rigid body rotation

- ₹ 🖹 🕨

Incompressible Continuity Equation

$$abla \cdot \mathbf{u} = \mathbf{0}$$

- Separate the flow into two major regions:
 - Rigid body rotation
 - 2 Constant flow

→ Ξ →

Incompressible Continuity Equation

$$abla \cdot \mathbf{u} = \mathbf{0}$$

- Separate the flow into two major regions:
 - Rigid body rotation
 - 2 Constant flow
- Use stream functions to model the flow in these regions

Incompressible Continuity Equation

$$abla \cdot \mathbf{u} = \mathbf{0}$$

- Separate the flow into two major regions:
 - Rigid body rotation
 - 2 Constant flow
- Use stream functions to model the flow in these regions
- Smoothing techniques on the boundary between the regions

Fluid Model III

Shaking Seeds - Fluid/Impact Modelling

< E

Shaking Seeds - Fluid/Impact Modelling

▲ロト ▲御 と ▲注 と ▲注 と 二注

• Use the advection diffusion equation

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

- Use the advection diffusion equation
- Assume that the coating is initiall on one seed

- ₹ 🖬 🕨

- Use the advection diffusion equation
- Assume that the coating is initiall on one seed
- Track the spread of coating in the fluid, driven by the vorticity

- Use the advection diffusion equation
- Assume that the coating is initiall on one seed
- Track the spread of coating in the fluid, driven by the vorticity

Vorticity

$$\omega =
abla imes \mathbf{u} = -(\psi_{\mathsf{x}\mathsf{x}} + \psi_{\mathsf{y}\mathsf{y}})$$

- Use the advection diffusion equation
- Assume that the coating is initiall on one seed
- Track the spread of coating in the fluid, driven by the vorticity

Vorticity

$$\omega =
abla imes \mathbf{u} = -(\psi_{\mathsf{x}\mathsf{x}} + \psi_{\mathsf{y}\mathsf{y}})$$

SDE

$$dX_t = \begin{pmatrix} \psi_y \\ -\psi_x \end{pmatrix} dt + f(\omega) dW_t$$

Shaking Seeds - Fluid/Impact Modelling

- Conisder particles moving together with some randomness
- At Δt , probability $p\Delta t$ of collision
- Lose some proportion of concentration μc
- On average, lose $p\Delta t\mu c$

Diffusion

$$\frac{\mathrm{d}\boldsymbol{c}(t)}{\mathrm{d}t} = \mu \boldsymbol{p} \lambda \nabla^2 \boldsymbol{c}$$

• Vorticity may depend on μ