Mathematical models for dermal absorption

nttps://en.wikipedia.org/wiki/Epidermis

Key Considerations Spatially heterogeneous domain Boundary conditions Dynamic processes

Corneodesmosomes (Protein rivets) http://eliasandwilliams.com/skin-barrier/

PK (Pharmacokinetic) modelling

Conservation equation

$$V\frac{d\langle C\rangle}{dt} = \alpha D - a\langle C\rangle$$

McCarley & Bunge (2001) J. Pharm. Sci. 9: 1699-1719

Key Considerations

What information is lost by assuming average concentration? Should the model have multiple compartments? Should other dynamic behaviours be included in model?

Potential to estimate parameters from literature.

Drug Kinetics: ADME processes

- Absorption
- **D**istribution
- Metabolism
- Excretion

Key Considerations

Mechanisms for binding Reversible process?

Differences bound vs. unbound drug

Movement in skin

Key Considerations

Components of movement Routes through skin – aqueous vs lipid Spatial domain Path length Boundary conditions

Conservation equation

$$\frac{\partial \boldsymbol{c}}{\partial t} + \nabla \cdot \boldsymbol{J} = \boldsymbol{f}(\boldsymbol{c})$$

Boundary conditions specified on *J* and/or *c*

Example $c = (C_u(x, t), C_b(x, t))$ $C_u(x, t) =$ Concentration unbound drug at x at time t $C_b(x, t) =$ Concentration bound drug at x at time t

$$J_{u} = -D\nabla C_{u} - \nu C_{u},$$
$$J_{b} = -\nu C_{b}$$
$$f = (\mu C_{b} - \varphi C_{u}, \varphi C_{u} - \mu C_{b})$$

Relationship between movement and physico-chemical properties of drugs

Potts & Guy (1992) Pharm. Res. **9:** 663-669 Hadgraft(2004) Eur. J. Pharm. & Biopharm. **58**: 291-299

Impact of diffusion rate on skin drug reservoir

D

Drug extraction from skin reservoir

