
Adaptive Enrichment Designs for Clinical Trials

Thomas Burnett
University of Bath

30/1/2017



Overview

What is Adaptive Enrichment

Familywise Error Rate (FWER)

Hypothesis testing

Bayes optimal decisions



What is Adaptive Enrichment



Pre-identified sub-populations

H01 : θ1 ≤ 0 H02 : θ2 ≤ 0



Pre-identified sub-populations

H01 : θ1 ≤ 0 H02 : θ2 ≤ 0



Pre-identified sub-populations

H01 : θ1 ≤ 0 H02 : θ2 ≤ 0



Pre-identified sub-populations

H01 : θ1 ≤ 0 H02 : θ2 ≤ 0



Pre-identified sub-populations

H01 : θ1 ≤ 0 H02 : θ2 ≤ 0

H03 : θ3 ≤ 0 where θ3 = λθ1 + (1− λ)θ2



Pre-identified sub-populations

H01 : θ1 ≤ 0 H02 : θ2 ≤ 0

H03 : θ3 ≤ 0 where θ3 = λθ1 + (1− λ)θ2



Conducting Adaptive Enrichment

Pre-interim recruitment

Post-interim recruitment

H01 : θ1 ≤ 0



Conducting Adaptive Enrichment

Pre-interim recruitment

Post-interim recruitment

H01 : θ1 ≤ 0



Conducting Adaptive Enrichment

Pre-interim recruitment

Post-interim recruitment

H01 : θ1 ≤ 0 H02 : θ2 ≤ 0



Conducting Adaptive Enrichment

Pre-interim recruitment

Post-interim recruitment

H01 : θ1 ≤ 0



Conducting Adaptive Enrichment

Pre-interim recruitment

Post-interim recruitment

H02 : θ2 ≤ 0



Familywise Error Rate (FWER)
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Achieving strong control of FWER

Pθ(Reject any combination of true null hypotheses) ≤ α for all θ

To achieve this we require:

I If H01 true, P(Reject H01) ≤ α
I If H02 true, P(Reject H02) ≤ α
I If H01 and H02 true, P(Reject both H01 and H02) ≤ α

The Bonferroni correction where both H01 and H02 are tested at
α/2 is the simplest procedure that ensures strong control of the
FWER.
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Hypothesis testing



Closed testing procedures

For testing H01 and H02 we construct level α tests for

I H01 : θ1 ≤ 0,

I H02 : θ2 ≤ 0,

I H01 ∩ H02 : θ1 ≤ 0 and θ2 ≤ 0.

Then:

I Reject H01 globally if H01 and H01 ∩ H02 are both rejected.

I Reject H01 globally if H01 and H01 ∩ H02 are both rejected.

Simes rule and the method proposed by Dunnett provide two
methods for testing the intersection hypothesis that are suitable for
Adaptive Enrichment designs.
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Combination tests

Suppose P(1) and P(2) are the p-values from the first and second
stages of the trial. Using the weighted inverse Normal we find P(c)

the p-value for the whole trial.

Z (1) = φ−1(1− P(1)) and Z (2) = φ−1(1− P(2))

With w1 and w2 such that w2
1 + w2

2 = 1

Z (c) = w1Z
(1) + w2Z

(2)

P(c) = 1− φ(Z (c))

Choosing w1 and w2 in proportion to the sample size from each
stage gives the optimal procedure.
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Overall testing procedure

H01 H02 H01 ∩ H02

Pre-interim recruitment cohort p
(1)
1 p

(1)
2 p

(1)
12

Post-interim recruitment cohort p
(2)
1 p

(2)
2 p

(2)
12

Overall p
(c)
1 p

(c)
2 p

(c)
12



Bayes optimal decisions



Optimisation components

Prior distribution:
π(θ)

Utility function (gain):

G (θ) = γ1(θ1)I(Reject H01) + γ2(θ2)I(Reject H02)



Simple optimisation

Eπ(θ)(G (θ))
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Data available at the interim analysis:
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Bayes optimal rule

Eπ(θ),X (G (θ))



Key points

I Strong control of FWER

I Prior distribution

I Gain function

I Eπ(θ),X (G (θ)) for optimisation

I Eπ(θ)(G (θ)) for overall behaviour



Any questions?
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