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ABSTRACT: Herein we review our recent efforts in searching
for bioactive ligands by enumeration and virtual screening of the
unknown chemical space of small molecules. Enumeration from
first principles shows that almost all small molecules (>99.9%)
have never been synthesized and are still available to be prepared
and tested. We discuss open access sources of molecules, the
classification and representation of chemical space using
molecular quantum numbers (MQN), its exhaustive enumeration
in form of the chemical universe generated databases (GDB), and
examples of using these databases for prospective drug discovery.
MQN-searchable GDB, PubChem, and DrugBank are freely
accessible at www.gdb.unibe.ch.
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Small molecule drugs exert their action by binding to specific
molecular constituents of the cell such as to modulate

biochemical processes in a disease modifying manner. The
magnitude and specificity of binding depends on the
complementarity between the drug molecule and its target in
terms of shape, polarity, and chemical functionality. The
success of small molecule drugs stems from the facts that (a)
their size matches that of most biologically relevant binding
sites; (b) the structural and functional diversity available in
small molecules is sufficient to achieve strong and specific
binding to most of these binding sites; and (c) the
pharmacokinetics of small molecule drugs can be optimized
while retaining target binding to enable efficacy and safety in
vivo.1

Genome sequencing, proteomics, structural biology, and
yeast two-hybrid screens have documented the extremely large
number and diversity of potential drug targets and their
interactions.2 On the other hand, chemists have learned to
deliver potent and selective ligands on demand by combining
molecular design and synthesis methods with bioactivity assays
and activity optimization protocols.3 Although the experimental
evidence of polypharmacology shows that many drug molecules
are not selective and hit multiple targets,4 the driving
hypothesis of medicinal chemistry remains that a specific
small molecule ligand can be found for any binding site.5

The hypothesis above assumes that the number and diversity
of drug-sized molecules is sufficient to address all the different
binding sites in biology. Hence, the following fundamental
chemical question arises: how many molecules are in principle
possible? This question was formulated in the early days of
organic chemistry as soon as it was realized that organic
structures can be described as graphs,6 and over the years has
remained a playground of theoretical chemistry.7 The system-

atic enumeration of molecules found applications in the 1960s
in the area of computer aided structure elucidation (CASE),8

and since the 1990s to address molecular diversity in the
context of combinatorial chemistry for drug discovery.9

Considerations on the number of possible molecules has led
to the concept of the “chemical space” to describe the ensemble
of all organic molecules to be considered when searching for
new drugs.10 Herein we discuss the exploitation of this concept
for drug discovery, with focus on the exhaustive enumeration of
the small molecule chemical space realized in our group in form
of the chemical universe database GDB and its utilization for
ligand discovery in the area of neurotransmitter receptors and
transporters.

1. THE KNOWN CHEMICAL SPACE
Whereas the theoretically possible chemical space is very large
(see below), one may at first consider the known chemical
space, that is, the ensemble of all organic molecules reported
thus far. Thanks to several open access initiatives, this chemical
space is currently accessible to the public (Table 1). Most of
the databases listed in Table 1 can be searched for single
compounds or their analogues by structure, name, or
bioactivity.
The number of known molecules is impressive and

interesting; however, this number alone does not provide any
information on what these molecules are. The concept of
“chemical space” suggests a representation in form of a
geographical map to illustrate the distribution of molecules
and their properties. To obtain such a map, one first creates a
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property space by assigning dimensions to series of molecular
descriptors. Each molecule is placed in this multidimensional
property space using the descriptor values as positional
coordinates, as first introduced by Pearlman and Smith.10b

One then uses principal component analysis (PCA) to extract
the most relevant dimensions (in form the principal
components, PC), and represents projections of the chemical
space in a PC-plane, usually the (PC1,PC2) plane.23

Alternatively, one can also classify the descriptor value vectors
using self-organizing maps, which consist of two-dimensional
grids of nodes grouping the most similar vectors, and hence the
most similar molecules, in nearby nodes.24

Thousands of different molecular descriptors exist, and any
combination of these descriptors may be selected to produce a
property space formally possessing tens to hundreds of different
dimensions, from which a chemical space map can be derived.23

We recently proposed a set of 42 integer value descriptors
called molecular quantum numbers (MQNs).25 MQNs count
elementary features of molecules including atom and bond
types, polar groups, and topological features, which are all easily
identified in a structural formula by anyone with basic
knowledge of organic chemistry (Table 2). The MQN system
defines a simple and universal chemical space to classify organic
molecules, in analogy to the periodic system classifying the
elements according to their atomic and principal quantum
numbers.26 For most databases, a relevant fraction (>70%) of
the variance of MQN-space is covered within the first two or
three PCs, implying that maps derived from projections in the
PC-planes provide a relevant overview of their chemical space.
The MQN-map of PubChem in form of the (PC2,PC3)

plane provides a representative example (Figure 1).27 In this
map, molecules of increasing size are distributed concentrically
around the center where the smallest molecules are located, as
illustrated by color-coding with the number of non-hydrogen
atoms (HAC, heavy atom count, Figure 1A). The horizontal
(PC2) axis represents molecular rigidity, with acyclic, flexible
molecules at left, and cyclic, rigid molecules at right, as
illustrated by color-coding by the fraction of cyclic atoms in the
molecules (Figure 1B). The vertical axis (PC3) represents
polarity, as illustrated by color-coding by the fraction of
hydrogen bond acceptor atoms in the molecule (Figure 1C).
Molecules of different classes occupy distinct regions of this
map (Figure 1D). For example, acyclic branched alkanes, which
were enumerated by Cayley, the inventor of graph theory, as
the first attempts to consider chemical space, form a thin stripe
extending to the southwest of the map.6 Peptides, which are

also acyclic but more polar, stretch out directly west. The
increasingly more cyclic and polar oligosaccharides and
oligonucleotides populate the northwest and northeast portion
of the map, while polycyclic hydrocarbons such as diamond-
oids28 and graphenes29 stretch out directly at east correspond-
ing to entirely cyclic molecules. Groups of related bioactive
compounds often cluster together on MQN maps. For
example, a group of the 2445 ligands active on nicotinic
acetylcholine receptors (nAChR) reported in ChEMBL are
concentrated on the center right portion of the map, which
corresponds to cyclic aromatic and heteroaromatic molecules of
up to 30 heavy atoms.
The idea behind any representation of chemical space is to

be able to use the positional information within this space to
search for bioactive molecules, thus performing virtual
screening to select compounds for in vitro testing. In that
respect, the relevance of any chemical space must be judged by
its ability to group compounds with similar bioactivity
together.10,23 This is, for example, the case for the above-
mentioned MQN-space, as can be exemplified by the efficient
recovery of groups of bioactive compounds such as those in the
DUD (Database of Useful Decoys)30 using MQN-distances as
selection criteria.27 Many chemical spaces constructed from
descriptors of chemical structure, including also binary
substructure or pharmacophore fingerprint spaces, perform
well for virtual screening, whereby a variety of similarity
measures can be used as distance measures.31 However, the
main limitation of such similarity searches is that nearest
neighbor relationships often indicate compounds that are
structurally similar and therefore rather unsurprising from the
point of view of analoguing. In that respect, it should be noted
that MQN-similarity does not select for substructure similarity
and can reveal nontrivial lead-hopping relationships between
actives.27

2. THE UNKNOWN CHEMICAL SPACE
Virtual screening is mostly used to select compounds from
existing collections such as to focus the time and resources
dedicated to experimental testing on the most promising
molecules. Naturally, the approach can be extended to also save
the time and resources dedicated to organic synthesis. This
implies to perform virtual screening on virtual rather than
actual molecules, hence the idea to explore the yet unknown
chemical space. This concept forms the basis for the field of de
novo drug design, which attempts to design bioactive
compounds in silico prior to their synthesis.32

Table 1. The Known Chemical Spacea

database description sizea Web address ref

PubChem known molecules from various public sources 32.5 M http://pubchem.ncbi.nlm.nih.gov 11
Chemspider online resource from the Royal Society of Chemistry 26.0 M http://www.chemspider.com/ 12
ZINC commercially available small molecules 21.0 M http://zinc.docking.org 13
NCI Open anticancer and AIDS compounds with screening data 0.25 M http://cactus.nci.nih.gov/ncidb2.1 14
ChemDB commercially available small molecules 4.1 M http://cdb.ics.uci.edu 15
BindingDB bioactive molecules with binding affinity data 0.36 M http://www.bindingdb.org 16
ChemBank small molecules annotated with screening data 1.2 M http://chembank.broadinstitute.org/ 17
ChEMBL small molecules annotated with experimental data 1.1 M https://www.ebi.ac.uk/chembldb 18
CTD comparative toxicogenomics database 0.17 M http://ctdbase.org 19
HMDB human metabolome database 0.0085 M http://www.hmdb.ca 20
SMPDB small molecule pathway database 0.001 M http://www.smpdb.ca 21
DrugBank experimental and approved small molecule drugs 0.0065 M http://www.drugbank.ca 22

aOpen access collections as of April 2012. Corporate collections and nonopen access sources are not listed.
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The playground for de novo drug design concerns all organic
molecules that are of potential interest as drugs, usually the
molecules following Lipinski’s “rule of five” (Ro5).33 The Ro5
states that a molecule displays favorable pharmacokinetic
properties in terms of absorption and distribution if at least
two of the following four criteria are met: (1) MW ≤ 500 Da
(not too large), (2) logP ≤ 5 (not too lipophilic), (3) HBA ≤

10, and (4) HBD ≤ 5 (not too hydrogen-bonding). Whereas
the known chemical space including public databases and
corporate collections probably contains on the order 100
million molecules, it has been estimated that the Lipinski virtual
chemical space might contain as many as 1060 compounds
when considering only basic structural rules,10a,34 or a more
modest 1020−1024 molecules if combination of known
fragments are considered.35

These size estimates suggest that this entire chemical space is
far too large for an exhaustive enumeration, even using today’s
computers. One is therefore left with a partial, targeted
enumeration as the only option to produce molecules for
virtual screening. Virtual libraries were first designed for
combinatorial chemistry by combining fragments using
established synthetic routes.36 The program BREED, which
systematically generates combinations from a list of fragments,
is a good current application of this principle.37 A group at
Pfizer have used such a combinatorial strategy to enumerate
what seems to be the largest virtual library reported so far. The
Pfizer Global Virtual Library (PGVL) lists approximately1012

virtual molecules that can be potentially synthesized from
validated reaction protocols.38 Alternatively, one can couple
compound enumeration with virtual screening in form of
genetic algorithms that perform cycles of molecule generation
and fitness selection. This approach restricts enumeration to
compounds with the highest probability of a given bioactivity,
and forms the bulk of de novo drug design methods to date.32

While the targeted enumeration approaches in de novo drug
design offer a practical method to find new ligands, they do not
address the initial fundamental question of describing the entire
chemical space. This question may not be tractable for the far
too vast Lipinski space, yet exhaustive enumeration offers an
opportunity to characterize the chemical space of very small
organic molecules, a question which has recently gained
particular relevance in the context of fragment-based drug
discovery.39 Our group has reported the first exhaustive
enumeration of chemical space for fragment-sized organic
molecules, which produced an impressive number of molecules
up to 11 atoms (generated database up to 11 atoms: GDB-11,
with C, N, O, F, 26.4 million cmpds with 153 ± 7 Da)40 and 13
atoms (generated database up to 13 atoms: GDB-13, with C, N,
O, Cl and S, 977 million compds 180 ± 8 Da).41 These
databases list molecules as SMILES strings,42 which represent
the structural formula. Conversion to 3-dimensional stereo-
isomers and conformers can be performed using a stereoisomer
generator such as CORINA.43

An overview of GDB-13 is provided by MQN-maps, which
show that the database spans from acyclic to polycyclic
molecules (Figure 2A) with varying numbers of H-bond
acceptor atoms (Figure 2B), and mostly consists of heterocyclic
and fused heterocyclic compounds (Figure 2C). In the case of
GDB-11, we have shown that the vast majority of GDB-
molecules larger than 10 atoms are chiral.40b Almost all GDB-
molecules follow the Ro533 as well as lead-likeness44 and
fragment-likeness45 rules, because these rules restrain molecular
size.
A striking feature of the GDB databases is that the number of

molecules is very large compared to known molecules and
grows exponentially with the number of atoms in the molecules
(Figure 2D). Due to the sheer number of molecules in GDB-
13, the vast majority of them (>99.9%) has never been
synthesized, and this would be even more true for an exhaustive
enumeration with more atoms. However, the currently available

Table 2. The 42 Molecular Quantum Numbers (MQNs)

atom counts (12)

c carbon
f fluorine
cl chlorine
br bromine
i iodine
s sulfur
p phosphorus
an acyclic nitrogen
cn cyclic nitrogen
ao acyclic oxygen
co cyclic oxygen
hac heavy atom count

polarity counts (6)a

hbam H-bond acceptor sites
hba H-bond acceptor atoms
hbdm H-bond donor sites
hbd H-bond donor atoms
neg negative charges
pos positive charges

bond counts (7)

asb acyclic single bonds
adb acyclic double bonds
atb acyclic triple bonds
csb cyclic single bonds
cdb cyclic double bonds
ctb cyclic triple bonds
rbc rotatable bond count

topology counts (17)b

asv acyclic monovalent nodes
adv acyclic divalent nodes
atv acyclic trivalent nodes
aqv acyclic tetravalent nodes
cdv cyclic divalent nodes
ctv cyclic trivalent nodes
cqv cyclic tetravalent nodes
r3 3-membered rings
r4 4-membered rings
r5 5-membered rings
r6 6-membered rings
r7 7-membered rings
r8 8-membered rings
r9 9-membered rings
rg10 ≥10 membered rings
afrc atoms shared by fused rings
bfrc bonds shared by fused rings

aPolarity counts consider the ionization state predicted for the
physiological pH = 7.4. hbam counts lone pairs on H-bond acceptor
atoms, and hbdm counts H-atoms on H-bond donating atoms. bAll
topology counts refer to the smallest set of smallest rings. cafr and bfr
count atoms repectively bonds shared by at least two rings. afr and bfr
enhance the differentiation of polycyclic systems with nonplanar
shapes such as norbornanes, as discussed in ref 27a.
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computing power and data storage capacity will probably limit
exhaustive enumeration to fragment-sized molecules only
(HAC ≤ 20). The enumeration of larger molecules has been
approached by Oprea et al. focusing on scaffold topologies.46

This description does not explicitly enumerate molecules but
describes structural types in broad terms, and, for example,
shows that only a small subset of the possible scaffold
topologies occur in known molecules, suggesting avenues for
innovation.
Although the enumeration of GDB considers only functional

groups and ring systems that are chemically stable and in
principle synthetically accessible,40,41 many of the GDB
molecules appear to be far too challenging for synthesis. To
simplify the exploitation of GDB toward the potentially least
problematic and synthetically more tractable molecules, we
have generated subsets of the database excluding substructures

and functional groups that are problematic from the point of
view of medicinal and synthetic chemistry.47 For instance many
GDB-molecules contain nonaromatic carbon−carbon double or
triple bonds (63% of GDB-13), small rings (3- and 4-
membered rings, 54% of GDB-13), nonaromatic N−N− and
N−O bonds from oximes and hydrazones (35% of GDB-13),
or metabolically unstable groups (e.g., aldehydes, epoxides,
aziridines, esters, carbonates, sulfates, 29% of GDB-13).
Eliminating molecules featuring any of these substructures
leaves a restricted subset of 43.7 million molecules, which is 20-
fold smaller than the entire database, yet still exceeds the
number of molecules up to 13 atoms in PubChem by 2 orders
of magnitude (Figure 2D). A freely accessible MQN-searchable
version of GDB-13 is available at www.gdb.unibe.ch in which
eight different such restriction criteria can be applied at will,
which defines 256 different subsets of various sizes.47 It should

Figure 1. Color-coded MQN-map of the PubChem chemical space (19.2 million structures) as the (PC2,PC3)-plane, marked as the horizontal and
vertical axes starting from the (0,0) coordinate where hydrogen is located. The values corresponding to each color are indicated on the maps. PC2,
PC3 refer to the 2nd and 3rd principal component, respectively, in the PCA of the MQN data for PubChem. (A) Average number of non-hydrogen
atoms per molecule. (B) Average fraction of cyclic atoms per molecule. (C) Average fraction of H-bond acceptor atoms per molecule. (D)
Compound categories including computationally enumerated molecules (up to hac = 500) for each category. Ro3 are Congreve’s “rule of 3”
molecules, and Ro5 are Lipinski’s “rule of 5” molecules.
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be noted that defining these restricted subsets does not solve
the synthetic challenge to actually prepare any of the GDB-13
molecules. Their synthesis has to be considered on a case by
case basis and in the vast majority of cases represents a
nontrivial task even for molecules from the subsets.

3. LIGAND DISCOVERY FROM GDB

To translate our exploration of the virtual chemical space into
real molecules, we have focused on drug discovery projects for
neurotransmitter receptors and transporters, because these
targets often require small molecule ligands such as those
enumerated in GDB. Our first proof of concept was based on
GDB-11 and dedicated to the glycine site of the NMDA
receptor, for which a high-resolution crystal structure with
bound glycine was available.48 A fragment-based Bayesian
classifier, which determines a bioactivity probability score for
any compound from the product of the relative frequency of
occurrence of all its substructures in known active versus
inactive compounds,49 was used to select 15 000 virtual
analogues of known NMDA-receptor ligands from GDB-11.
These ligands were converted to 70 000 stereoisomers using
CORINA43 and docked using Autodock 3.0.5.50 The top 1%
scoring ligands, which contained several known NMDA-glycine
site ligands, were inspected, and 23 compounds were selected
for synthesis and testing. An interesting series of dipeptides
such as 1 was identified and optimized to yield dipeptide 2 as a

micromolar ligand (Figure 3). In a second study, GDB-11 was
used to enumerate 250 000 possible analogues of aspartate and
glutamate, both of which are substrates of the glutamate
transporter GLT-1.51 A similar docking approach followed by
synthesis and testing led to the discovery of a low micromolar

Figure 2. Overview of the chemical universe database GDB-13 containing 977 million structures up to 13 atoms of C, N, O, Cl, S. (A−C) Color-
coded MQN-map of the (PC1,PC2) plane. PC1 (horizontal dimension) and PC2 (vertical dimension) refer to the 1st respectively 2nd principal
component in the PCA of the MQN data for GDB-13. (D) Size of the GDB database, its 43.7 M subset, and PubChem as a function of molecular
size.

Figure 3. NMDA glycine site and GLT-1 inhibitors identified from
GDB-11 by virtual screening, synthesis and testing. Activities were
determined by electrophysiology (NMDA glycine site) or by
radioactive ligand uptake inhibition (GLT-1) for the human receptors
expressed in Xenopus oocytes.
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inhibitor of this transporter in form of a norbornane-aspartate
derivative rac-3 and its optimized analogue rac-4.
A related strategy was applied to search for nicotinic

acetylcholine receptor (nAChR) ligands in GDB in form of
analogues of the known α7 nAChR partial agonists PNU-
282,987 (5)52 and SSR180711 (6) (Figure 4).53 A limited set of

aromatic acyl groups appearing in known active analogues of
these ligands54 was combined with a large diversity of diamines
extracted from GDB-11.55 Connecting all aliphatic diamines
containing a tertiary and a primary or secondary amine
separated by a two-carbon spacer with five selected acyl groups
yielded a total of 1.2 million virtual analogues of 5 and 6, from
which a random selection of 70 000 ligands (6.2% of the
library) was subjected to virtual screening by docking using
both Autodock 3.0.550 and Glide.56 Docking was performed on
the crystal structure of the Lymnaea signalis acetylcholine
binding protein with bound nicotine (AChBP, PDB ID:
1UW6),57 a homologue of the human α7 nAChR useful for
structure-based drug discovery.58

Easily accessible diamines were selected from the 1000 top
scoring molecules from each docking method, choosing
diamines which were unknown or at least not previously
described in the α7 nAChR literature. The diamines were
synthesized and acylated with various acyl groups, eventually
yielding a total of 38 ligands which were evaluated for
modulation of the human α7 nAChR by electrophysiology.
Although no agonistic effects were observed, several of the
ligands displayed significant inhibition of the receptor. A
detailed characterization of four inhibitors showed that at least
one of them, compound 7, acted as a competitive antagonist of
acetylcholine, presumably by direct binding to the nicotinic site
as suggested by docking. The other three ligands 8−10 showed
mixed or noncompetitive inhibition, suggesting additional
interactions with the receptor, such as direct blockade of the
ion channel (Figure 4).

The above studies relied on structure-based drug discovery
using docking to select ligands for synthesis and testing.
However the method is limited to scoring at most a few million
potential ligands, which is clearly too low to tackle very large
databases such as GDB. Our next study was dedicated to testing
a ligand-based virtual screening approach that would be
compatible with GDB-13 and its almost one billion structures.
In particular, we were interested to see if the concept of MQN-
space discussed above (section 1) could be used for virtual
screening in a prospective study. A preliminary study showed
that GDB-13 molecules that were nearest neighbors of known
drugs in MQN-space, using the city-block distance CBDMQN
(the sum of the absolute differences between value pairs across
all 42 MQNs) as distance measure, showed strong shape
similarity to the drug as measured by the shape-similarity score
ROCS (Rapid Overlay of Chemical Structures),59 suggesting
that the MQN-distance measure might select for bioactive
analogues of known drugs.47

As an application example, we selected to search for new
nicotinic ligands by MQN-similarity to nicotine (11), a natural
product with 12 atoms well within the chemical space of GDB-
13 (Figure 5).60 The fact that known nicotinic ligands up to 13

atoms from ChEMBL were much closer to nicotine in MQN-
space (average CBDMQN =22.8 ± 12.5) compared to GDB-13
molecules (average CBDMQN = 38.8 ± 11.1) suggested that the
selection procedure should indeed work. Among 31 504 MQN-
space nearest neighbors of nicotine selected from the functional
group filtered GDB-13 subset of 43.7 million structures
discussed above (section 3), 48 were indeed already listed as
nicotinic ligands in ChEMBL. Another 692 compounds were
listed in ZINC, from which 61 compounds were acquired from
commercial sources for experimental evaluation by electro-
physiology. While the positive control neonicotine (12) gave
the known agonistic effect, 11 compounds of the 60 other test
compounds (18%) effected 60% inhibition of the ACh evoked
current or more. Closer characterization of three of them
showed that these acted as micromolar inhibitor with both
competitive or noncompetitive mode of action.

Figure 4. Discovery of α7 nAChR inhibitors by fragment-based
diversification of known ligands using GDB-11.

Figure 5. Discovery of α7 nAChR inhibitors by nearest neighbor
searching in the MQN-space of GDB-13.
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Although 13−15 did not act as agonists like nicotine and
neonicotine do, a subsequent evaluation by docking showed
that these ligands were essentially indistinguishable from
nicotine or neonicotine in terms of docking pose or docking
energy. This suggested that a more sophisticated virtual
screening procedure based on docking rather than MQN
similarity might have selected the very same compounds for
testing.

4. CONCLUSION AND OUTLOOK

Small molecule drugs are essential to the success of modern
medicine. Considerations on the size of chemical space indicate
that the vast majority of possible molecules are still unknown
and yet to be synthesized and tested, even at the level of
relatively small, fragment sized molecules such as those in the
chemical universe databases GDB-11 and GDB-13. The key
challenge in exploiting this vast resource lies in the throughput
and predictive value of virtual screening. Indeed, while it is not
difficult to identify thousands of high-scoring molecules from
chemical space, the success rates of virtual screening predictions
rarely exceed 1−5% upon in vitro testing. Such success rates are
spectacular compared to random screening, but are too low for
committing large synthetic resources for preparing the modeled
compounds. In the first three examples discussed above,
synthetic resources were engaged to follow rather conservative
library designs, a strategy which certainly contributed to success
independent of the structure-based scoring schemes followed.
In the last example where analogues of nicotine were

identified in GDB-13 by proximity in MQN-space by contrast,
the virtual screening hits were much more diverse. In this case,
we chose the faster “purchase and test” approach to reach a
proof-of-concept of the approach. The key aspect of this
experiment concerned the speed of the virtual screening
method. Indeed searching by MQN-similarity is remarkably
fast. A freely accessible web-based application is available from
our webpage www.gdb.unibe.ch to search GDB-13 or any of its
subsets for MQN-nearest neighbors of any molecule.61 A
typical similarity search such as that used to retrieve MQN-
nearest neighbors of nicotine requires only a few seconds of
computing time. Engaging significant synthetic resources to
prepare selected GDB-13 virtual screening hits will however
require additional scoring such as shape matching or docking to
prioritize hits.
The chemical space exploration strategies discussed here

should be generally applicable to various targets including many
CNS targets where small molecule drugs perform best.
Experiments along these lines are currently in progress in our
laboratory, including the development of improved compound
enumeration, classification and virtual screening schemes, and
the implementation of chemical synthesis to evaluate the
methods by prospective drug discovery.
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