Using GAMs to asess effect of biomarkers on treatment effect

Elizabeth, Nicole \& Karim

February 1, 2017

Survival as a function of the Biomarker

Need to...

- estimate from the data these functions of the biomarker.
- use the functions to find a suitable cutoff point.
Level of Biomarker

Proportional Hazards and GAMs

Proportional Hazards Model:

- Hazard function $h_{i}(t)=\exp \left(\beta_{1} x_{1 i}+\ldots+\beta_{p} x_{p i}\right) h_{0}(t)$ is the hazard of individual i dying at time t, where $h_{0}(t)$ is the hazard baseline.
- Proportional hazards model (with GAM): $\log \left(\frac{h_{i}(t)}{h_{0}(t)}\right)=\beta$ treat $_{i}+f_{\text {treat }_{i}}\left(\right.$ biomarker $\left._{i}\right)$ where β is the treatment main effect and treat ${ }_{i}$ is 1 if i is in the treatment group and 0 otherwise.

Predictive

Level of the Biomarker

Prognostic

- The GAM fits a model as a linear function of basis functions.
- We can see how f_{0} (biomarker) differs from f_{1} (biomarker)

Example:

Mayo clinic primary biliary cirrhosis (PBC) data:

- Survival with patents with PBC.
- Treatment: D-penicillamine, and placebo.
- Biomarker: billirubin ($\mathrm{mg} / \mathrm{dl}$).
$-\log \left(\frac{h_{i}(t)}{h_{0}(t)}\right)=\beta$ treat $_{i}+f_{\text {treat }_{i}}\left(\right.$ billirubin $\left._{i}\right)$

