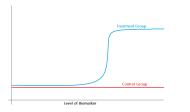
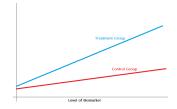
# Using GAMs to asess effect of biomarkers on treatment effect

Elizabeth, Nicole & Karim

February 1, 2017


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

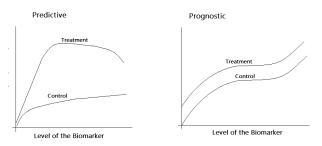

### Survival as a function of the Biomarker

|   | Treatment Group    |
|---|--------------------|
|   |                    |
|   |                    |
|   | Control Group      |
|   |                    |
| Ц | Level of Biomarker |

Need to ...

- estimate from the data these functions of the biomarker.
- use the functions to find a suitable cutoff point.






▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

## Proportional Hazards and GAMs

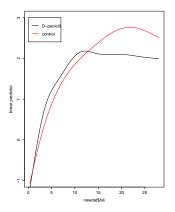
#### Proportional Hazards Model:

- Hazard function h<sub>i</sub>(t) = exp(β<sub>1</sub>x<sub>1i</sub> + ... + β<sub>p</sub>x<sub>pi</sub>)h<sub>0</sub>(t) is the hazard of individual i dying at time t, where h<sub>0</sub>(t) is the hazard baseline.
- Proportional hazards model (with GAM):  $\log(\frac{h_i(t)}{h_0(t)}) = \beta \operatorname{treat}_i + f_{treat_i}(\operatorname{biomarker}_i)$  where  $\beta$  is the treatment main effect and treat<sub>i</sub> is 1 if *i* is in the treatment group and 0 otherwise.



The GAM fits a model as a linear function of basis functions.

◆□▶ ◆圖▶ ★ 圖▶ ★ 圖▶ / 圖 / のへで


• We can see how  $f_0$ (biomarker) differs from  $f_1$ (biomarker)

## Example:

#### Mayo clinic primary biliary cirrhosis (PBC) data:

- Survival with patents with PBC.
- Treatment: D-penicillamine, and placebo.
- Biomarker: billirubin (mg/dl).

• 
$$\log(\frac{h_i(t)}{h_0(t)}) = \beta \operatorname{treat}_i + f_{\operatorname{treat}_i}(\operatorname{billirubin}_i)$$

