Additive models, load prediction etc.

 Simon Wood University of Bath, EPSRC funded
What is this?

- A smoother applied to some data?
- The solution of a variational problem in a certain reproducing kernel Hilbert space?
- The solution to a variational problem in a Sobolev space incolving a particular semi-norm?
- An intrinsic latent Gaussian random field model with posterior credible region?

Temperature anomaly last 10000y

Ice Core Temperature Reconstructions

Data retrieved from the NCDC at ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/

Projected anomaly IPCC5

Fossil fuel energy produces CO2

... but it is relatively easy to match supply to demand.

Renewable energy doesn't produce CO2

... but the big problem is matching supply and demand.

Demand management

- If we can't control supply so easily, try controlling demand.
- Offer incentives to use power when it is available.
- Only works if:

1. We can predict supply (weather - quite well sorted out)
2. We can predict demand, so that we maximize incentives for the behaviour we need. (Hard problem - work needed)

- To re-iterate, incentive based demand management can only work if you can predict what demand would have been without the incentive.
- Better prediction methods is where statistical applied mathematicians can make a real difference.
- Let's look at the maths for one class of predictive models with track record...

Smooth prediction models: some background

- Consider a Hilbert space of real valued functions, f, on some domain τ (e.g. $[0,1]$).
- It is a reproducing kernel Hilbert space, \mathcal{H}, if evaluation is bounded. i.e. $\exists M$ s.t. $|f(t)| \leq M\|f\|$.
- Then the Riesz representation thm says that there is a function $R_{t} \in \mathcal{H}$ s.t. $f(t)=\left\langle R_{t}, f\right\rangle$.
- Now consider $R_{t}(u)$ as a function of $t: R(t, u)$

$$
\left\langle R_{t}, R_{s}\right\rangle=R(t, s)
$$

— so $R(t, s)$ is known as reproducing kernel of \mathcal{H}.

- Actually, to every positive definite function $R(t, s)$ corresponds a unique r.k.h.s.

Smoothing

- RKHS are quite useful for constructing smooth models, to see why consider finding \hat{f} to minimize

$$
\sum_{i}\left\{y_{i}-f\left(t_{i}\right)\right\}^{2}+\lambda \int f^{\prime \prime}(t)^{2} d t
$$

- Let \mathcal{H} have $\langle f, g\rangle=\int g^{\prime \prime}(t) f^{\prime \prime}(t) d t$.
- Let \mathcal{H}_{0} denote the RKHS of functions for which $\int f^{\prime \prime}(t)^{2} d t=0$, with finite basis $\phi_{1}(t), \ldots \phi_{M}(t)$, say.
- Spline problem seeks $\hat{f} \in \mathcal{H}_{0} \oplus \mathcal{H}$ to minimize

$$
\sum_{i}\left\{y_{i}-f\left(t_{i}\right)\right\}^{2}+\lambda\|P f\|^{2}
$$

Smoothing solution

- $\hat{f}(t)=\sum_{i=1}^{n} c_{i} R_{t_{i}}(t)+\sum_{i=1}^{M} d_{i} \phi_{i}(t)$. Why?
- Suppose minimizer were $\tilde{f}=\hat{f}+\eta$ where $\eta \in \mathcal{H}$ and $\eta \perp \hat{f}$:

1. $\eta\left(t_{i}\right)=\left\langle R_{t_{i}}, \eta\right\rangle=0$.
2. $\|P \hat{f}\|^{2}=\|P \tilde{f}\|^{2}+\|\eta\|^{2}$ which is minimized when $\eta=0$.

- ... obviously this argument is rather general.
- So if $E_{i j}=\left\langle R_{t_{i}}, R_{t_{j}}\right\rangle$ and $T_{i j}=\phi_{j}\left(t_{i}\right)$ then we seek \hat{c} and \hat{d} to minimize

$$
\|y-T d-E c\|_{2}^{2}+\lambda c^{T} E c
$$

Computational efficiency: smaller bases

- RKHS approach is elegant and general, but at $O\left(n^{3}\right)$ cost.
- Do we really need n coefficients?
- Consider a spline penalty $\int\left(\nabla^{m} f\right)^{2} d t=\int f \mathcal{K}^{m} f d t$, where $\mathcal{K}^{m}=\nabla^{m *} \nabla^{m}$ and $\nabla^{m *}$ is adjoint of ∇^{m} w.r.t. $\langle f, g\rangle=\int f(t) g(t) d t$.
- Consider eigenfunctions: $\mathcal{K}^{m} \phi_{i}(t)=\Lambda_{i} \phi_{i}(t), \Lambda_{i+1}>\Lambda_{i} \geq 0$.
- Can expand $f(t)=\sum_{i} \alpha_{i} \phi_{i}(t)$ where $\alpha_{i}=\left\langle f, \phi_{i}(t)\right\rangle$.
- Clearly $\alpha_{i} \rightarrow 0$ (rapidly!) as $i \rightarrow \infty$ if $\int\left(\nabla^{m} f\right)^{2} d t$ is low.
- Suggestive that we might not need n basis functions.

Smaller basis example

- Here are the first few eigenfunctions of $\mathcal{K}^{2} \ldots$

- So called Demmler-Reinsch basis approximates these... would an L1 penalty on associated coefficients provide a better route to smoothing in the quantile setting?

How small a basis: cubic spline example

- A cubic interpolating spline \hat{g} matching a function $g_{\text {true }}$ at k evenly spaced (h) knots, has $O\left(h^{4}\right)$ approximation error.
- If we observe $g_{\text {true }}$ at each knot n / k times with noise (independently) then \hat{g} has $O(\sqrt{k / n})$ sampling error.
- So $k=O\left(n^{1 / 9}\right)$ gives optimal asymptotic error rate.
- With penalization use $k=O\left(n^{1 / 9}\right)-O\left(n^{1 / 5}\right)$.

Reduced rank smoothers

- Obtain reduced rank basis by

1. using spline basis for a representative subset of data, or
2. using Lanczos methods to find an low order eigenbasis.

- Rich range of smoothers possible...

Applicable models

- Models useful in applications, such as load prediction, use multiple smooth terms.
- e.g. $y_{i} \sim \operatorname{EF}\left(\mu_{i}, \phi\right)$ where $g\left(\mu_{i}\right)=A_{i} \theta+\sum_{j} f_{j}\left(x_{j i}\right)$.
- Reduced rank spline representation means $g\left(\mu_{i}\right)=X_{i} \beta$,

$$
\hat{\beta}=\underset{\beta}{\operatorname{argmax}} I(\beta)-\frac{1}{2} \sum \lambda_{j} \beta^{\mathrm{T}} S_{j} \beta
$$

— I is log likelihood implied by $\operatorname{EF}\left(\mu_{i}, \phi\right)$.

- Can generalize to models where dependence on f is not additive, and y_{i} is not EF.
- Have multiple λ_{j} which need to be estimated.

The Bayesian link

- Suppose we assign a prior density $\beta \sim N\left(0,\left\{\sum \lambda_{j} S_{j}\right\}^{-}\right)$.
- Then large sample limiting posterior is

$$
\beta \mid y \sim N\left(\hat{\boldsymbol{\beta}},\left\{\mathcal{I}+\sum \lambda_{j} S_{j}\right\}^{-1}\right)
$$

where \mathcal{I} is Fisher information matrix (expected Hessian of -ve log likelihood).

- Estimate λ by marginal likelihood maximization

$$
\hat{\lambda}=\underset{\lambda}{\operatorname{argmax}} \int f(y \mid \beta) f_{\lambda}(\beta) d \beta
$$

1. Laplace approximate the integral, or
2. Do integral exactly for linearized 'working model'.

The numerical/computational issues

- At simplest the (-ve) Marginal likelihood has this structure

$$
\mathcal{V}(\boldsymbol{\lambda})=\frac{\left\|\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}}_{\lambda}\right\|^{2}+\hat{\boldsymbol{\beta}}_{\lambda}^{\mathrm{T}} \mathbf{S}_{\lambda} \hat{\boldsymbol{\beta}}_{\lambda}}{2 \phi}+\frac{\log \left|\mathbf{X}^{\mathrm{T}} \mathbf{X}+\mathbf{S}_{\lambda}\right|-\log \left|\mathbf{S}_{\lambda}\right|_{+}}{2}
$$

- The determinants require very careful handling.
- Reliable optimization requires at least one, and preferably two, derivatives w.r.t. $\log \lambda$.
- Evaluation and optimization require pivoted QR (very stable) or Cholesky (less so). O(nk $\left.{ }^{2}\right)$ cost.
- In big data settings can accumulate $\mathbf{X}^{\mathrm{T}} \mathbf{X}$ or QR decomposition iteratively without forming \mathbf{X}.
- Is there a cheaper way?

Parallel methods

- Can we modify the methods to take advantage of 10-100 core shared memory computers (servers/workstations)?
- Iterative $\mathbf{X}^{T} \mathbf{X}$ and iterative QR are trivial to split between cores and scale well.
- But we still need a final Cholesky or final QR step. To get that to scale need parallel block pivoted Cholesky or QR.
- These become memory bandwidth limited: very badly in the case of QR.
- Would more modern 'tiling' approaches to QR help to get things to scale?

Software and applications

- The mgcv package shipped with R implements a wide variety of smooth model components, automating basis set up and model estimation.
- Future releases should include more scalable methods.
- It is quite widely used (~ 1500 citations last year), here are some estimates from a pupil dilation experiment about reading and language processing...

random effect Subject

Software and applications

Other applications

- Unemployment and inflation (BoE).
- Mortality rate trends (HSE)
- Fisheries stock assessment (e.g. CSIRO, CEFAS, IFremar).
- Forest health and inventory, remote sensing calibration.
- Air pollution and other epidemiology.
- Medical statistics...

Example: predicting prostate status

- Model category (benign/enlarged/cancer) predicted by latent variable with mean

$$
\mu_{i}=\int f(D) \nu_{i}(D) d D
$$

where $\nu_{i}(D)$ is $i^{\text {th }} \mathrm{NI}$ spectrum.

Scale location extensions

- Can extend methods to additively model mean and variance (and skew and...)
- Simple example: $y_{i} \sim N\left(\mu_{i}, \sigma_{i}\right)$

$$
\mu_{i}=\sum_{j} f_{j}\left(x_{j j}\right), \quad \log \sigma_{i}=\sum_{j} g_{j}\left(z_{j i}\right) .
$$

- Here is a simple 1-D smoothing example of this...

- An alternative to quantile regression?

Back to load prediction

- A predictive smooth additive model...

$$
\begin{aligned}
\mathrm{L}_{i}=\gamma_{j} & +f_{k}\left(\mathrm{I}_{i}, \mathrm{~L}_{i-48}\right)+g_{1}\left(\mathrm{t}_{i}\right)+g_{2}\left(\mathrm{I}_{i}, \text { toy }_{i}\right)+g_{3}\left(\mathrm{~T}_{i}, \mathrm{I}_{i}\right) \\
& +g_{4}\left(\mathrm{~T} .24_{i}, \mathrm{~T}_{3} .48_{i}\right)+g_{5}\left(\text { cloud }_{i}\right)+\mathrm{ST}_{i} h\left(\mathrm{I}_{i}\right)+e_{i}
\end{aligned}
$$

if observation i is from day of the week j, and day class k.

- $e_{i}=\rho \boldsymbol{e}_{i-1}+\epsilon_{i}$ and $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$ (AR1).

Residuals

Open questions...

- Full model not quite as good as 48 half hourly models.
- But surely 48 separate models is poor information sharing.
- Is the problem basis size? Can't compute with a large enough basis size to make combined model competitive?
- What is the best way to achieve information sharing and computational efficiency?
- Do we just need better methods for bigger models?
- Or is one big model just wrong?
- Or is the problem that the statistical computing methods are not efficient enough, or are missing something about the structure?
- If we want to model at local level, how should information be shared then?

