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What is this?
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I A smoother applied to some data?
I The solution of a variational problem in a certain

reproducing kernel Hilbert space?
I The solution to a variational problem in a Sobolev space

incolving a particular semi-norm?
I An intrinsic latent Gaussian random field model with

posterior credible region?



Temperature anomaly last 10000y



Projected anomaly IPCC5



Fossil fuel energy produces CO2

. . . but it is relatively easy to match supply to demand.



Renewable energy doesn’t produce CO2

. . . but the big problem is matching supply and demand.



Demand management

I If we can’t control supply so easily, try controlling demand.
I Offer incentives to use power when it is available.
I Only works if:

1. We can predict supply (weather — quite well sorted out)
2. We can predict demand, so that we maximize incentives for

the behaviour we need. (Hard problem — work needed)
I To re-iterate, incentive based demand management can

only work if you can predict what demand would have been
without the incentive.

I Better prediction methods is where statistical applied
mathematicians can make a real difference.

I Let’s look at the maths for one class of predictive models
with track record. . .



Smooth prediction models: some background

I Consider a Hilbert space of real valued functions, f , on
some domain τ (e.g. [0,1]).

I It is a reproducing kernel Hilbert space, H, if evaluation is
bounded. i.e. ∃M s.t. |f (t)| ≤ M‖f‖.

I Then the Riesz representation thm says that there is a
function Rt ∈ H s.t. f (t) = 〈Rt , f 〉.

I Now consider Rt (u) as a function of t : R(t ,u)

〈Rt ,Rs〉 = R(t , s)

— so R(t , s) is known as reproducing kernel of H.
I Actually, to every positive definite function R(t , s)

corresponds a unique r.k.h.s.



Smoothing

I RKHS are quite useful for constructing smooth models, to
see why consider finding f̂ to minimize∑

i

{yi − f (ti)}2 + λ

∫
f ′′(t)2dt .

I Let H have 〈f ,g〉 =
∫

g′′(t)f ′′(t)dt .
I Let H0 denote the RKHS of functions for which∫

f ′′(t)2dt = 0, with finite basis φ1(t), . . . φM(t), say.
I Spline problem seeks f̂ ∈ H0 ⊕H to minimize∑

i

{yi − f (ti)}2 + λ‖Pf‖2.



Smoothing solution

I f̂ (t) =
∑n

i=1 ciRti (t) +
∑M

i=1 diφi(t). Why?
I Suppose minimizer were f̃ = f̂ + η where η ∈ H and η ⊥ f̂ :

1. η(ti ) = 〈Rti , η〉 = 0.
2. ‖Pf̂‖2 = ‖Pf̃‖2 + ‖η‖2 which is minimized when η = 0.

I . . . obviously this argument is rather general.
I So if Eij = 〈Rti ,Rtj 〉 and Tij = φj(ti) then we seek ĉ and d̂ to

minimize
‖y − Td − Ec‖22 + λcTEc.



Computational efficiency: smaller bases

I RKHS approach is elegant and general, but at O(n3) cost.
I Do we really need n coefficients?
I Consider a spline penalty

∫
(∇mf )2dt =

∫
fKmfdt , where

Km = ∇m∗∇m and ∇m∗ is adjoint of ∇m w.r.t.
〈f ,g〉 =

∫
f (t)g(t)dt .

I Consider eigenfunctions: Kmφi(t) = Λiφi(t), Λi+1 > Λi ≥ 0.
I Can expand f (t) =

∑
i αiφi(t) where αi = 〈f , φi(t)〉.

I Clearly αi → 0 (rapidly!) as i →∞ if
∫

(∇mf )2dt is low.
I Suggestive that we might not need n basis functions.



Smaller basis example

I Here are the first few eigenfunctions of K2. . .
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I So called Demmler-Reinsch basis approximates these...
would an L1 penalty on associated coefficients provide a
better route to smoothing in the quantile setting?



How small a basis: cubic spline example

x1 x2 x3 x4 x5 x6
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I A cubic interpolating spline ĝ matching a function gtrue at k
evenly spaced (h) knots, has O(h4) approximation error.

I If we observe gtrue at each knot n/k times with noise
(independently) then ĝ has O(

√
k/n) sampling error.

I So k = O(n1/9) gives optimal asymptotic error rate.
I With penalization use k = O(n1/9)−O(n1/5).



Reduced rank smoothers

I Obtain reduced rank basis by
1. using spline basis for a representative subset of data, or
2. using Lanczos methods to find an low order eigenbasis.

I Rich range of smoothers possible. . .

10 20 30 40 50

−
1

0
0

−
5

0
0

5
0

1
0

0

a

times

s
(t

im
e

s
,1

0
.9

)

10 20 30 40 50

5
0

6
0

7
0

8
0

b

Y

X

 −
0.4

 

 −0.2 

 −0.2 

 0 

 0.2 

 0.2 

 0.2 

 0.4 

 0.4 

 0.4  0.4 

 0.4 

 0.4 

 0.6 

 0
.6

 

 0.6 

 1.4 

xz

f(x,z)

c

−
0

.6
−

0
.4

−
0

.2
0

.0
0

.2
0

.4
0

.6
0

.8

s
(r

e
g

io
n

,6
3

.0
4

)

d

58.0 58.5 59.0 59.5 60.0 60.5

4
4

.0
4

4
.5

4
5

.0
4

5
.5

4
6

.0

e

lon

la
t

 −4 

 −3 

 −3 

 −
2
 

 −2 

 −
1
 

 −1 

 −1 

 0 

 0 

 0 

 1 

 1 

 2 

 2 

 2 

 3 

 4  5 
 5 

 6
 

 6 

 7
 

 −30 
 −20  −10 

 0 

 10 

 20 

 30 

 40 

 50 

 60 

 70 

 80 

 −160 

 −140 

 −120 

 −100 

 −80 

 −
60 

 −
40

 

 −20 
 0

 

 2
0 

 40  60 

 80 

 120  1
4
0
 

 1
6
0
 

 180 

 −20 

 −10 

 −10 

 0 

 10 
 20 

 30 

 40 

f



Applicable models

I Models useful in applications, such as load prediction, use
multiple smooth terms.

I e.g. yi ∼ EF(µi , φ) where g(µi) = Aiθ +
∑

j fj(xji).

I Reduced rank spline representation means g(µi) = Xiβ,

β̂ = argmax
β

l(β)− 1
2

∑
λjβ

TSjβ.

— l is log likelihood implied by EF(µi , φ).
I Can generalize to models where dependence on f is not

additive, and yi is not EF.
I Have multiple λj which need to be estimated.



The Bayesian link

I Suppose we assign a prior density β ∼ N(0, {
∑
λjSj}−).

I Then large sample limiting posterior is

β|y ∼ N(β̂, {I +
∑

λjSj}−1)

where I is Fisher information matrix (expected Hessian of
-ve log likelihood).

I Estimate λ by marginal likelihood maximization

λ̂ = argmax
λ

∫
f (y |β)fλ(β)dβ

1. Laplace approximate the integral, or
2. Do integral exactly for linearized ‘working model’.



The numerical/computational issues

I At simplest the (-ve) Marginal likelihood has this structure

V(λ) =
‖y− Xβ̂λ‖2 + β̂T

λSλβ̂λ
2φ

+
log |XTX + Sλ| − log |Sλ|+

2

I The determinants require very careful handling.
I Reliable optimization requires at least one, and preferably

two, derivatives w.r.t. logλ.
I Evaluation and optimization require pivoted QR (very

stable) or Cholesky (less so). O(nk2) cost.
I In big data settings can accumulate XTX or QR

decomposition iteratively without forming X.
I Is there a cheaper way?



Parallel methods

I Can we modify the methods to take advantage of 10-100
core shared memory computers (servers/workstations)?

I Iterative XTX and iterative QR are trivial to split between
cores and scale well.

I But we still need a final Cholesky or final QR step. To get
that to scale need parallel block pivoted Cholesky or QR.

I These become memory bandwidth limited: very badly in
the case of QR.

I Would more modern ‘tiling’ approaches to QR help to get
things to scale?



Software and applications

I The mgcv package shipped with R implements a wide
variety of smooth model components, automating basis set
up and model estimation.

I Future releases should include more scalable methods.
I It is quite widely used (∼ 1500 citations last year), here are

some estimates from a pupil dilation experiment about
reading and language processing. . .



Software and applications



Other applications

I Unemployment and inflation (BoE).
I Mortality rate trends (HSE)
I Fisheries stock assessment (e.g. CSIRO, CEFAS,

IFremar).
I Forest health and inventory, remote sensing calibration.
I Air pollution and other epidemiology.
I Medical statistics. . .



Example: predicting prostate status
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I Model category (benign/enlarged/cancer) predicted by
latent variable with mean

µi =

∫
f (D)νi(D)dD

where νi(D) is i th NI spectrum.
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Scale location extensions

I Can extend methods to additively model mean and
variance (and skew and. . . )

I Simple example: yi ∼ N(µi , σi)

µi =
∑

j

fj(xji), logσi =
∑

j

gj(zji).

I Here is a simple 1-D smoothing example of this. . .
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I An alternative to quantile regression?



Back to load prediction
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I A predictive smooth additive model. . .

Li = γj + fk (Ii ,Li−48) + g1(ti) + g2(Ii ,toyi) + g3(Ti ,Ii)

+ g4(T.24i ,T.48i) + g5(cloudi) + STih(Ii) + ei

if observation i is from day of the week j , and day class k .
I ei = ρei−1 + εi and εi ∼ N(0, σ2) (AR1).



Residuals
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Open questions. . .

I Full model not quite as good as 48 half hourly models.
I But surely 48 separate models is poor information sharing.
I Is the problem basis size? Can’t compute with a large

enough basis size to make combined model competitive?
I What is the best way to achieve information sharing and

computational efficiency?
I Do we just need better methods for bigger models?
I Or is one big model just wrong?
I Or is the problem that the statistical computing methods

are not efficient enough, or are missing something about
the structure?

I If we want to model at local level, how should information
be shared then?


