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1 Summary

This course provides an overview of the theory of generalized additive models represented by reduced rank
penalized splines, and their practical use with the mgcv package in R. Here generalized additive models in-
clude generalized additive mixed models, varying coefficient/geographic regression models, structured additive
regression models, generalized linear additive smooth structure models, signal regression models etc, since all of
these fit into the same inferential and computational framework (quadratically penalized GLMs). The course
will give a compact overview of the essential theory of penalized regression splines and GAMs, focussing on
the key theoretical concepts that underpin the more detailed literature: bases, penalties, the Bayesian model of
smoothing, and smoothing parameter selection. It will then cover the various types of smooth (one dimensional,
isotropic and tensor product interactions) that form the basic toolkit for model construction. Model checking,
building and selection will be discussed, including practical exercises with the mgcv package in R. The course
will finish with a look at some more advanced GAM topics: spatial and temporal autocorrelation, functional
data analysis, and inference via posterior simulation. Participants should preferably bring a laptop, with the
latest version of R installed.

Reading: Wood SN, (2006) Generalized Additive Models: An introduction with R

2 Before the course

1. The course assumes that you are familiar with the theory and use of Generalized Linear Models, up to
about the level of Chapter 2 of Wood (2006).

2. General familiarity with R and its help system (including browsing html help) is assumed.

3. It is also assumed that you are familiar with the use of glm in R for the fitting of GLMs, and have used
R’s predict, summary, anova, residuals, plot and AIC commands to examine fitted GLMs.

4. To complete the R practicals in the course you will need to bring a laptop with the latest version of R
and mgcv installed. Installing package gamair and gamm4 might also be a good idea. There will be about
2 hours of lab exercises, so a reasonable capacity laptop battery, fully charged, would be a good idea.

3 Course exercises

Data for the later exercises will be distributed on usb sticks. A selection of further, more advanced exercises
will also be available if required.

The mgcv library in R provides several functions for estimating generalized additive (mixed) models

1. gam is the default version. It’s use is much like glm, except that you can include smooth functions of
covariates in the rhs of the model formula, specifying the linear predictor.

2. bam is a version of gam designed for large datasets. Its use is just like gam. bam uses an algorithm that can
be faster, but is less stable, than gam. It’s memory footprint is much less than gam by not forming the
model matrix whole. It can use multiple cpu cores.

3. gamm fits generalized additive mixed models using PQL with nlme:lme as the underlying fitting engine.
This allows the whole rich random effects and correlation structure available with lme to be used with
GAMs, but has much the least stable fitting algorithm. Use of gamm is somewhat like gam and somewhat
like lme. (Package gamm4 provides the equivalent for lme4).
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mgcv also provides numerous functions for plotting, checking, summarizing and predicting with GAMs.

1. Getting started.

(a) Start R and type library(mgcv), to load the package.

(b) Type help.start() to launch HTML help. Navigate to the mgcv help pages in the browser that
launches.

(c) Look at the gam help file, and scroll down to the first example model fit. One line at a time, try
running the example code up to gam.check(b).

(d) Try re-fitting the model with gam option method="REML", and see if the effect estimates change much.

(e) Try replacing the additive structure s(x0)+s(x) with a smooth interaction term. There are various
options: s(x0,x1), te(x0,x1) and t2(x0,x1), try a couple and examine the fit using plot.

(f) Now navigate to the help file mgcv-package and read it, to get an overview of what the package
does.

2. Simple 1D smoothing.

(a) Type library(MASS), to load the motor-cycle crash data, mcycle.

(b) Plot acceleration against time, to remind yourself what the data look like.

(c) Use GAM to fit a simple smooth model to the data (acceleration is the response).

(d) Plot the fitted gam object, using options residuals=TRUE,pch=19,cex=.3.

(e) You can control the smooth in several ways. The k argument to s controls the basis dimension. Try
refitting the model with increased k using something like s(...,k=20).

(f) You can also change the type of smoothing basis. Try s(...,bs="ad") for an adaptive smooth, the
penalization of which changes along the length of the smooth. s(...,bs="ps",m=c(0,2),k=40) is
the piecewise linear smoother used earlier.

3. Data frame ozone contains daily(ish) ozone measurements over Los Angeles (O3, ppm), along with

vh The height at which the atmospheric pressure is 500mb in metres.

wind the wind speed (reported as miles per hour, but this seems improbable).

humidity (usual % scale).

temp air temperature (Fahrenheit).

ibh the inversion layer base height in feet.

ibt the inversion base temperature (Fahrenheit).

dpg ‘Dagget air pressure gradient’ (mmhg).

vis visibility in miles.

doy Julian day, where 1 is Jan 1 1976.

The aim is to build a model to explore the relationship between ozone and the other variables.

(a) Use something like ozone <- read.table("ozone.txt") to read the data into R. Use pairs(ozone)
to look at it.

(b) Try a model in which O3i ∼ Gaussian, and log(E(03i)) is given by a sum of smooth functions of each
of the predictors.

(c) Using the functions residuals and fitted to extract from the fitted model, plot residuals against
fitted values. Modify the model accordingly.
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(d) Check whether an additive (i.e. identity link) structure or a multiplicative (log link) structure might
be better. AIC, GCV etc. can be useful here.

(e) Try simplifying the model (the summary function may help).

(f) Interpret the smooth plots for your final model: do they make sense?

Extra part (only if time): The smooth function of doy should arguably be cyclic (i.e. values and deriva-
tives should match at ‘year ends’). Using the bs="cc" option to s can achieve this, but to get wrapping
at the year end (rather than the data ends) you need to supply knot locations for doy, which span a full
year. To do this you can use the knots argument to gam: something like knots=list(doy=c(25,390))

should do it (the strange range is because the data span less than a year, but are spread over 2 calender
years).

4. (a) Use setwd to set the R working directory to wherever ‘ragweed.rda’ is located.

(b) load("ragweed.rda") will load a dataset on ragweed pollen count into R. The aim is to predict
pollen count using the predictor variables in the dataframe.

(c) Fit an additive smooth model to the pollen counts (ragweed), which depends smoothly on day of the
season, temperature and wind speed. Also allow a dependence on rain. Use REML for smoothness
selection. Probably Tweedie or quasipoisson families are best.

(d) Check your model using gam.check, and any other appropriate residual plots, adjusting if necessary.
Examine the smooth effects using e.g. plot(model,pages=1)

(e) Investigate whether a smooth interaction of temperature and windspeed gives a better model.

(f) Use your best model to produce a plot of expected pollen count against day of season, for 1994, under
conditions of no rain, windspeed 5 and temperature 75(F). Include 95% CIs on the plot. predict.gam
is the function to use to get the plot data.

4 Some very sketchy bibliographic notes

This is really just some useful pointers, rather than anything complete (it’s also clearly massively unbalanced
towards my papers). The earliest use of something like the piecewise linear smoother seems to be Whittaker
(1923). Hastie and Tibshirani (1990) are responsible for inventing the GAM framework and the software
interface. Wahba ’s work on splines and smoothing parameter estimation heavily influenced the development of
the framework presented here (see e.g. Wahba, 1990 and references therein). Gu and Wahba (1991) produced the
first multiple smoothing parameter estimation method, with Wood (2000) producing an equivalent for penalized
regression splines, eventually refining the methods until the rather stable method of Wood (2011). Reiss and
Ogden (2009) provide a particularly interesting comparison of likelihood and prediction error approaches to
smoothness selection. The idea of penalized regression splines goes back to Wahba (1980), but was given renewed
impetus by Eilers and Marx (1996, 1998) invention of P-splines, the sparseness of which greatly facilitated the
development of Bayesian simulation approaches to GAMs exemplified by Fahrmeir et al. (2004). The link
between smoothing and mixed models goes back to Kimeldorf and Wahba (1970), with the Bayesian presentation
used here being essentially that of Silverman (1985). Ruppert, Wand and Carrol’s (2003) book brought the idea
of estimating smooth models as mixed models to wide attention. Duchon (1977) is the rather intense origin of
thin plate splines and more, while Wood (2003) discusses their low rank eigen-approximation. Tensor product
smoothing started in the smoothing spline literature. See Wood (2006) and Wood, Scheipl and Faraway (2012)
for general treatments of the penalized regression spline equivalents (and references to other work on these).
Finite area smoothing is discussed in Wood, Bravington and Hedley (2008). Bayesian Confidence intervals for
model terms were first proposed in Wahba (1983). Nychka (1988) and Marra and Wood (2011) explain why
they have good frequentist properties. Tests useful for smooth terms are compared in Scheipl (2008), while
Wood (2013) derives usable p-values for smooth terms based on inversion of the Bayesian confidence intervals.
For functional data analysis see in particular Marx and Eilers (1999) and Ramsay and Silverman (2005).

Duchon, J. (1977) Splines minimizing rotation-invariant semi-norms in Solobev spaces in Construction Theory

of Functions of Several Variables Springer, Berlin.
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Approach Technometrics 41(1), 1-13.
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Journal of the Royal Statistical Society, Series B 71, 505-524.
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Basis Penalty Smoothers

Simon Wood

Mathematical Sciences, University of Bath, U.K.

Estimating functions

◮ Here are some ancient data. . .
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◮ If f is ‘a smooth function’, a suitable model might be

acceli = f (timei ) + ǫi .

◮ How to represent f ? What function space should we search?

◮ A space that is good for approximating known functions
would be a sensible starting point.



A space for f

◮ Taylor’s theorem might suggest using the space of
polynomials, but look at the middle panel’s attempt to
approximate the function on the left with a polynomial.
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◮ Trying to pass through the black dots and maintain continuity
of all derivatives requires wild oscillation.

◮ Reducing the continuity requirements gives the better
behaved piecewise linear interpolant on the right.

A simple basis for f

◮ So, for now, let’s represent f as a piecewise linear function,
with derivative discontinuities at x∗k .
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◮ . . . this can be written f (x) =
∑

k βkbk(x), where the bk are
tent functions: there is one per •. The coefficients βk give
f (x∗k ) directly.



The tent basis

◮ The kth tent function is 1 at x∗k and descends linearly to zero
at x∗k±1. Elsewhere it is zero.

◮ The full set look like this. . .
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◮ Under this definition of bk(x), we would interpolate x∗k , y
∗

k

data by just setting βk = y∗k .

How the tent basis works

◮ So the function is represented by multiplying each tent
function by its coefficient, βk , and summing the results. . .
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◮ Given the basis functions and coefficients, we can predict the
value of f anywhere in the range of the x∗ values.



Prediction matrix

◮ f is defined by the x∗k values defining the tent basis, and
coefficients βk .

◮ Now suppose that we want to evaluate the interpolant at a
series of values xi .

◮ If f = [f (x1), f (x2), . . .]
T , then

f = Xβ

where the prediction matrix is given by

X =









b1(x1) b2(x1) b3(x1) .

b1(x2) b2(x2) . .

. . . .

. . . .









Regression with a basis

◮ Returning to these data. . .
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◮ We can define a tent basis by choosing some t∗k values spread
evenly through the range of observed times.

◮ Then the model, ai = f (ti ) + ǫi becomes

a = Xβ + ǫ

. . . a straightforward linear model.



Estimation in R

◮ A few lines of R code are enough to produce X. Then lm can
be used to fit the model.

◮ Here is the result using K=40 evenly spaced t∗k (knots).
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◮ Far too wiggly! Reduce K

Reducing K

◮ After some experimentation, K = 15 seems reasonable. . .

10 20 30 40 50

−
1

0
0

−
5

0
0

5
0

time

a
c
c
e

l

◮ . . . but K selection is a bit fiddly and ad hoc.

1. Models with different K are not nested, so we can’t use
hypothesis testing.

2. We have little choice but to fit with every possible K value if
AIC is to be used.

3. Very difficult to generalize this model selection approach to
models with more than one function.



Smoothing

◮ Using the basis for regression was ok, but there are some
problems choosing K and deciding where to put the knots, x∗k .

◮ To overcome these consider using the basis for smoothing.

1. Make K ‘large enough’ that bias is negligible.
2. Use even x∗k spacing.
3. To avoid overfit, penalize the wiggliness of f using, e.g.

P(f ) =
K−1
∑

k+1

(βk−1 − 2βk + βk+1)
2

Evaluating the penalty

◮ To get the penalty in convenient form, note that









β1 − 2β2 + β3

β2 − 2β3 + β4

.

.









=









1 −2 1 0 . .

0 1 −2 1 ..

. . . . . .

. . . . . .









β = Dβ

by definition of D

◮ Hence
P(f ) = βTDTDβ = βTSβ

by definition of S.



Penalized fitting

◮ Now the penalized least squares estimates are

β̂ = argmin
β

∑

i

{ai − f (ti)}2 + λP(f )

smoothing parameter λ controls the fit-wiggliness tradeoff.

◮ For computational purposes this is re-written

β̂ = argmin
β

‖a− Xβ‖2 + λβTSβ.

◮ Formally,
β̂ = (XTX+ λS)−1XTa

but direct use of this expression has sub-optimal
computational stability.

Computing the smooth fit

◮ In fact

‖a −Xβ‖2 + λβTSβ =

∥

∥

∥

∥

[

a

0

]

−
[

X√
λD

]

β

∥

∥

∥

∥

2

◮ The rhs is the RSS for an augmented linear model, which can
be stably fit using lm. Here’s an example using K = 40, but
now penalizing. . .
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Issues raised by smoothing

◮ Notice the dominant role of the penalty in the smoothed f —
the discontinuity of the basis is barely visible, the penalty has
so smoothed the results.

◮ But the dramatic effect of penalization raises questions

1. How do we measure complexity of the model now that
penalization has clearly yielded a result much smoother than
K=40 would suggest?

2. What distributional properties will f̂ have under penalized
estimation?

3. How do we go about choosing/estimating the degree of
penalization (λ)?

The natural basis

◮ To get started on these questions note that any basis-penalty
smoother can be reparameterized so that its basis matrix is
orthognal and its penalty is diagonal.

◮ Let a smoother have model matrix X and penalty matrix S.

◮ Form QR decomposition X = QR, followed by symmetric
eigen-decompostion

R−TSR−1 = UΛUT

◮ Define P = UTR. And reparameterize β′ = Pβ.

◮ In the new parameterization the model matrix is X′ = QU,
which has orthogonal columns. (X = X′P.)

◮ The penalty matrix is now the diagonal matrix Λ (eigenvalues
in decreasing order down leading diagonal).



Effective Degrees of Freedom

◮ Penalization restricts the freedom of the coefficients to vary.
So with 40 coefficients we have < 40 effective degrees of

freedom (EDF).

◮ How the penalty restricts the coefficients is best seen in the
natural parameterization. (Let y be the response.)

◮ Without penalization the coefficients would be β̃′ = X′Ty.

◮ With penalization the coefficients are β̂′ = (I+ λΛ)−1X′Ty.

◮ i.e. β̂j = β̃j(1 + λΛjj)
−1.

◮ So (1 + λΛjj)
−1 is the shrinkage factor for the i th coefficient,

and is bounded between 0 and 1. It gives the EDF for β̂j .

◮ So total EDF is tr{(1 + λΛjj)
−1} = tr(F), where

F = (XTX+ λS)−1XTX}, the ‘EDF matrix’.

EDF Illustrated
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Smoothing bias

◮ The formal expression for the penalized least squares
estimates is β̂ = (XTX+ λS)−1XTy

◮ Hence

E (β̂) = (XTX+ λS)−1XTE (y)

= (XTX+ λS)−1XTXβ

= Fβ 6= β

◮ Smooths are baised!

◮ i.e. we control model mis-specification bias by using a large K

. . . but to control the resulting variance we have to penalize

. . . which leads to smoothing bias.

◮ The bias makes frequentist inference difficult (including
bootstrapping!).

A Bayesian smoothing model

◮ We penalize because we think that the truth is more likely to
be smooth than wiggly.

◮ Things can be formalized by putting a prior on wiggliness

wiggliness prior ∝ exp(−λβTSβ/(2σ2))

◮ . . . equivalent to a prior β ∼ N(0,S−σ2/λ) where S− is a
generalized inverse of S.

◮ From the model y|β ∼ N(Xβ, Iσ2), so from Bayes’ Rule

β|y ∼ N(β̂, (XTX+ λS)−1σ2)

◮ Finally σ̂2 = ‖y − Xβ̂‖2/{n − tr(F)} is useful.



Consequences of the Bayesian model

◮ The Bayesian model has the same structure as a linear mixed
model, and can be computed as such.

◮ β ∼ N(0,S−σ2/λ) ⇒ f ∼ N(0, (XSXT)−σ2/λ), i.e. f is
equivalent to a Gaussian random field with covariance matrix
(XSXT)−σ2/λ.

◮ But even if we compute f using mixed model technology, we
are really being Bayesian in most cases. . .

◮ . . . usually we do not expect f to be re-drawn from the prior
on each replication of the response data, as a true random
effect would be.

The Bayesian model in action

◮ An argument due to Nychka (1988) shows that the intervals
for f based on the Bayesian posterior have good across the
function frequentist coverage, because the Bayesian covariance
matrix can be viewed as including a squared bias component.

◮ Here is an example of such an interval
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Smoothness selection approaches

◮ The smoothing model yi = f (xi ) + ǫi , ǫi ∼ N(0, σ2), is
represented via a basis expansion of f , with coefficients β.

◮ The β estimates are β̂ = argminβ ‖y −Xβ‖2 + λβTSβ

where X is the model matrix derived from the basis, and S is
the wiggliness penalty matrix.

◮ λ controls smoothness — how should it be chosen?

◮ There are 3 main statistical approaches

1. Choose λ to minimize error in predicting new data.
2. Treat smooths as random effects, following the Bayesian

smoothing model, and estimate λ as a variance parameter
using a marginal likelihood approach.

3. Go fully Bayesian by completing the Bayesian model with a
prior on λ (requires simulation and not pursued here).

Prediction error: cross validation
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1. Choose λ to try to minimize the error predicting new data.

2. Minimize the average error in predicting single datapoints
omitted from the fit. Each datum left out once in average.

3. If A = X(XTX+ λS)−1XT, it turns out that

Vo(λ) =
1

n

∑

i

(yi − µ̂
[−i ]
i )2 =

1

n

∑

i

(yi − µ̂i)
2

(1− Aii)2



OCV not invariant
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◮ OCV is not invariant in an odd way. If Q is orthogonal then
fitting objective

‖Qy −QXβ‖2 + λβTSβ

yields identical inferences about β as the original objective,
but it gives a different Vo .

GCV: generalized cross validation

◮ If we find the Q that causes the leading diagonal elements of
A to be constant, and then perform OCV, the result is the
invariant alternative GCV:

Vg =
n‖y − µ̂‖2

{n − tr(A)}2

◮ It is easy to show that tr(A) = tr(F), where F is the degrees
of freedom matrix.

◮ In addition to invariance, GCV is much easier to optimize
efficiently in the multiple smoothing parameter case.



Marginal Likelihood smoothness selection
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1. Choose λ to maximize the average likelihood of random draws
from the prior implied by λ.

2. If λ too low, then almost all draws are too variable to have
high likelihood. If λ too high, then draws all underfit and have
low likelihood. The right λ maximizes the proportion of draws
close enough to data to give high likelihood.

3. Formally, maximize e.g. Vr (λ) = log
∫

f (y|β)fλ(β)dβ. -
Marginal Likelihood.

Prediction error vs. likelihood λ estimation
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1. Pictures show GCV and REML scores for different replicates
from same truth.

2. Compared to REML, GCV penalizes overfit only weakly, and
so is more likely to occasionally undersmooth.



Summary

◮ We can construct smoothers from sets of basis functions, with
associated quadratic penalties.

◮ Estimation is then by quadratically penalized least squares.

◮ Penalization reduces freedom to vary: we need a notion of
effective degrees of freedom.

◮ A Bayesian view of smoothing is useful for further inference.

◮ The appropriate amount of penalization can be estimated by
marginal likelihood or prediction error methods.



Generalized Additive Models
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Introduction

◮ We have seen how to

1. turn model yi = f (xi ) + ǫi into y = Xβ + ǫ and a wiggliness
penalty βTSβ.

2. estimate β given λ as β̂ = arg minβ ‖y− Xβ‖2 + λβTSβ.
3. estimate λ by GCV, AIC, REML etc.
4. use β|y ∼ N(β̂, (XTX+ λS)−1σ2) for inference.

◮ . . . all this can be extended to models with multiple smooth
terms, for exponential family response data . . .



Additive Models

◮ Consider the model

yi = Aiθ +
∑

j

fj(xji ) + ǫi , ǫi ∼ N(0, σ2)

◮ Ai is the i th row of the model matrix for any parametric terms,
with parameter vector θ. Assume it includes an intercept.

◮ fj is a smooth function of covariate xj , which may be vector
valued.

◮ The fj are confounded via the intercept, so that the model is
only estimable under identifiability constraints on the fj .

◮ The best constraints are
∑

i fj(xji) = 0 ∀ j .

◮ If f = [f (x1), f (x2), . . .] then the constraint is 1Tf = 0, i.e. f
is orthogonal to the intercept. Other constraints give wider
CIs for the constrained fj .

Representing the model

◮ Choose a basis and penalty for each fj .

◮ Let the model matrix for fj be X and let λβTSβ be the
penalty (more generally

∑

j λjβ
TSjβ).

◮ Reparameterize to absorb the constraint 1TX = 0. The
simplest recipe is as follows

1. Subtract the column mean from each column of X to give X′.
2. Drop the column of X′ with lowest variance to give

constrained model matrix X[j], and drop the corresponding row
and column of S to give constrained penalty matrix Sj .

3. After fitting, when creating a new version of X[j] for predicting
at new covariate values, it’s important to subtract the original
column means x from the new matrix’s columns, and to drop
the same column as before (simply repeating steps 1 and 2 on
the new model matrix will lead to an interesting mess).



The estimable AM

◮ Now yi = Aiθ +
∑

j fj(xji) + ǫi becomes y = Xβ + ǫ where

X = [A : X[1] : X[2] : · · · ]

and β contains θ followed by the basis coefficients for the fj .

◮ After suitable padding of the Sj with zeroes the penalty
becomes

∑

j λjβ
TSjβ.

◮ Now β̂ = arg minβ ‖y − Xβ‖2 +
∑

j λjβ
TSjβ.

◮ Again λ can be estimated by GCV, REML etc.

Linear functional generalization

◮ Occasionally we may want a model that depends on an fj in
some way other than simple evaluation. So let Lij be a linear
operator and consider an extended model

yi = Aiθ +
∑

j

Lij fj(xj ) + ǫi

e.g. Lij fj =
∫

ki (x)fj (x)dx (ki known), or just Lij fj = f (xji ).

◮ Dropping j for now, we can discretize Li f (x) ≃
∑

k L̃ik f (xk).

◮ So Li f (x) ≃
∑

k L̃ikX̃kβ, where X̃k is kth row of model
matrix evaluating f (x) at the points xk .

◮ Then the model matrix for Li f (x) is L̃X̃. The penalties are
just those for f .

◮ Hence the extended model can be written in the same general
form as the simple AM.



Generalized Additive Models

◮ Generalizing again, we have

g(µi ) = Aiθ +
∑

j

Lij fj(xj), yi ∼ EF(µi , φ)

g is a known smooth monotonic link function, EF an
exponential family distribution so that var(yi ) = V (µi)φ.

◮ Set up model matrix and penalties as before.

◮ Estimate β by penalized MLE. Defining the Deviance.
D(β) = 2{lmax − l(β)} (lmax is saturated log likelihood). . .

β̂ = argmin
β

D(β) +
∑

j

λjβ
TSjβ

◮ λ estimation is by generalizations of GCV, REML etc.

GAM computation: β̂|y

◮ Penalized likelihood maximization is by Penalized IRLS.

◮ Initialize η̂ = g(y) and iterate the following to convergence.

1. Compute pseudodata zi = g ′(µ̂i )(yi − µ̂i )/αi + η̂i and iterative
weights, wi = αi/

{

V (µ̂i )g
′(µ̂i )

2
}

as for any GLM.
2. Compute a revised β estimate

β̂ = argmin
β

∑

i

wi(zi − Xiβ)
2 +

∑

λjβ
TSjβ

and hence revised estimates η̂ and µ̂.

◮ αi = 1 + (yi − µ̂i )(V
′

i /Vi + g ′′

i /g
′

i ) gives Newton’s method.

◮ αi = 1 gives Fisher scoring, where the expected Hessian of the
likelihood replaces the actual Hessian in Newton’s method.

◮ Newton based versions of wi and zi are best here, as it makes
λ estimation easier.



EDF, β|y and φ̂

◮ Let S =
∑

j λjSj and W = diag{E (wi )} (Fisher version).

◮ The Effective Degrees of Freedom matrix becomes

F = (XTWX + S)−1XTWX

◮ Then the EDF is tr(F). EDFs for individual smooths are found
by summing the Fii values for their coefficients.

◮ In the n → ∞ limit

β|y ∼ N(β̂, (XTWX+ S)−1φ)

◮ The scale parameter can be estimated by

φ̂ =
∑

i

wi(zi − Xi β̂)
2/{n − tr(F)}.

λ estimation

◮ There are 2 basic computational strategies for λ selection.

1. Single iteration schemes estimate λ at each PIRLS iteration
step, by applying GCV, REML or whatever to the working
penalized linear model. This approach need not converge.

2. Nested iteration, defines a λ selection criterion in terms of the
model deviance and optimizes it directly. Each evaluation of
the criterion requires an ‘inner’ PIRLS to obtain β̂λ. This
converges, since a properly defined function of λ is optimized.

◮ The second option is usually preferable on grounds of
reliability, but the first option can be made very memory
efficient with very large datasets.

◮ The first option simply uses the smoothness selection criteria
for the linear model case, but the second requires that these
be extended. . .



Deviance based λ selection criteria

◮ Mallows’ Cp/ UBRE generalizes to

Va = D(β̂λ) + 2φtr(F)

◮ GCV generalizes to

Vg = nD(β̂λ)/{n − tr(F)}2

◮ Laplace approximate (negative twice) REML is

Vr =
D(β̂) + β̂TSβ̂

φ
− 2ls(φ)

+ (log |XTWX+ S| − log |S|+)−Mp log(2πφ).

Nested iteration computational strategy

◮ Optimization wrt ρ = logλ is by Newton’s method, using
analytic derivatives.

◮ For each trial λ used by Newton’s method. . .

1. Re-parameterize for maximum numerical stability in computing
β̂ and terms like log |S|+.

2. Compute β̂ by PIRLS (full Newton version).
3. Calculate derivatives of β̂ wrt ρ by implicit differentiation.
4. Evaluate the λ selection criterion and its derivatives wrt ρ

◮ . . . after which all the ingredients are in place for Newton’s
method to propose a new λ value.

◮ As usual with Newton’s method, some step halving may be
needed, and the Hessian will have to be peturbed if it is not
positive definite.



One last generalization: GAMM

◮ A generalized additive mixed model has the form

g(µi ) = Aiθ+
∑

j

Lij fj(xj)+Zib, b ∼ N(0,ψ), yi ∼ EF(µi , φ)

◮ . . . actually this is not much different to a GAM. The random
effects term Zb is just like a smooth with penalty bTψ−1b.

◮ If ψ−1 can be written in the form
∑

k λkSk then the GAMM
can be treated exactly like a GAM. (gam).

◮ Alternatively, using the mixed model representation of the
smooths, the GAMM can be written in standard GLMM form
and estimated as a GLMM. (gamm/gamm4).

◮ The latter option is often preferable when there are many
random effects, and the former when there are fewer.

Summary

◮ A GAM is simply a GLM in which the linear predictor partly
depends linearly on some unknown smooth functions.

◮ GAMs are estimated by a penalized version of the method
used to fit GLMs.

◮ An extra criterion has to be optimized to find the smoothing
parameters.

◮ A GAMM is simply a GLMM in which the linear predictor
partly depends linearly on some unknown smooth functions.

◮ From the mixed model representation of smooths, GAMMs
can be estimated as GAMs or GLMMs.

◮ Bayesian results are useful for inference.



A toolbox of smooths

Simon Wood

Mathematical Sciences, University of Bath, U.K.

Smooths for semi-parametric GLMs

◮ The piecewise linear smoother is not bad, but we can find

better and more general basis-penalty smoothers for a

variety of modelling purposes.

◮ In one dimension there are several alternatives, and not

alot to choose between them.

◮ In 2 or more dimensions there is a major choice to make.
◮ If the arguments of the smooth function are variables which

all have the same units (e.g. spatial location variables) then
an isotropic smooth may be appropriate. This will tend to

exhibit the same degree of flexibility in all directions.
◮ If the relative scaling of the covariates of the smooth is

essentially arbitrary (e.g. they are measured in different

units), then scale invariant smooths should be used, which

do not depend on this relative scaling.



Splines

◮ All the smooths covered here are based on splines. Here’s

the basic idea . . .
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◮ Mathematically the red curve is the function minimizing

∑

i

(yi − f (xi))
2 + λ

∫

f ′′(x)2dx .

Splines have variable stiffness

◮ Varying the flexibility of the strip (i.e. varying λ) changes

the spline function curve.
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◮ But irrespective of λ the spline functions always have the

same basis.



Why splines are special

◮ We can produce splines for a variety of penalties, including

for functions of several variables. e.g.

∫

f ′′′(x)2dx or

∫ ∫

fxx (x , z)
2+2fxz(x , z)

2+fzz(x , z)
2dxdz

◮ Splines always have an n dimensions basis - quadratic

penalty representation.

◮ If yi = g(xi) and f is the cubic spline interpolating xi , yi then

max |f − g| ≤
5

384
max(xi+1 − xi )

4 max(g′′′′)

(best possible — end conditions are a bit unusual for this).

◮ Bases that are optimal for approximating known functions

are a good starting point for approximating unknown

functions.

Penalized regression splines

◮ Full splines have one basis function per data point.

◮ This is computationally wasteful, when penalization

ensures that the effective degrees of freedom will be much

smaller than this.

◮ Penalized regression splines simply use fewer spline basis
functions. There are two alternatives:

1. Choose a representative subset of your data (the ‘knots’),

and create the spline basis as if smoothing only those data.

Once you have the basis, use it to smooth all the data.
2. Choose how many basis functions are to be used and then

solve the problem of finding the set of this many basis
functions that will optimally approximate a full spline.

I’ll refer to 1 as knot based and 2 as eigen based.



Knot based example: "cr"

◮ In mgcv the "cr" basis is a knot based approximation to

the minimizer of
∑

i(yi − f (xi))
2 + λ

∫

f ′′(x)2dx — a cubic

spline. "cc" is a cyclic version.
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Eigen based example: "tp"

◮ The "tp", thin plate regression spline basis is an eigen

approximation to a thin plate spline (including cubic spline

in 1 dimension).
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P-splines: "ps" & "cp"

◮ There are many equivalent spline bases.

◮ With bases for which all the basis functions are translations

of each other, it is sometimes possible to penalize the

coefficients of the spline directly, rather than penalizing

something like
∫

f ′′(x)2dx .

◮ Eilers and Marx coined the term ‘P-splines’ for this

combination of spline bases with direct discrete penalties

on the basis coefficients.

◮ P-splines allow a good deal of flexibility in the way that

bases and penalties are combined.

◮ However splines with derivative based penalties have good

approximation theoretic properties bound up with the use

of derivative based penalties, and as a result tend to

slightly out perform P-splines for routine use.

P-spline illustration
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An adaptive smoother

◮ Can let the p-spline penalty vary with the predictor. e.g.

Pa =

K−1
∑

k=2

ωk(βk−1 − 2βk + βk+1)
2 = βTDTdiag(ω)Dβ

where D =





1 −2 1 0 ·
0 1 −2 1 ·
. . . . .



.

◮ Now let ωk vary smoothly with k , using a B-spline basis, so

that ω = Bλ, where λ is the vector of basis coefficients.

◮ So, writing B·k for the k th column of B we have

βTDTdiag(ω)Dβ =
∑

k

λkβ
TDTdiag(B·k)Dβ =

∑

k

λkβ
TSkβ.

1 dimensional smoothing in mgcv

◮ Smooth functions are specified by terms like

s(x,bs="ps"), on the rhs of the model formula.

◮ The bs argument of s specifies the class of basis. . .

"cr" knot based cubic regression spline.

"cc" cyclic version of above.

"ps" Eilers and Marx style p-splines, with flexibility as to

order of penalties and basis functions.

"ad" adaptive smoother in which strength of penalty

varies with covariate.

"tp" thin plate regression spline. Optimal low rank eigen

approx. to a full spline: flexible order penalty derivative.

◮ Smooth classes can be added (?smooth.construct).



1D smooths compared
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◮ So cubic regression splines, P-splines and thin plate

regression splines give very similar results.

◮ A cyclic smoother is a little different, of course.

◮ An adaptive smoother can look very different.

Isotropic smooths

◮ One way of generalizing splines from 1D to several D is to

turn the flexible strip into a flexible sheet (hyper sheet).

◮ This results in a thin plate spline. It is an isotropic smooth.

◮ Isotropy may be appropriate when different covariates are

naturally on the same scale.

◮ In mgcv terms like s(x,z) generate such smooths.
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Thin plate spline details

◮ In 2 dimensions a thin plate spline is the function

minimizing

∑

i

{yi − f (xi , zi )}
2 + λ

∫

f 2
xx + 2f 2

xz + f 2
zzdxdz

◮ This generalizes to any number of dimensions, d , and any

order of differential, m, such that 2m > d + 1.

◮ Any thin plate spline is computed as

f̂ (x) =

n
∑

i=1

δiηi(x) +

M
∑

i=1

αiφi(x)

where ηi and φi are basis functions of known form and α, δ
minimize ‖y − Eδ − Tα‖2 + δTEδ s.t. TTδ = 0, where E

and T are computed using the ηi and φi .

Thin plate regression splines

◮ Full thin plate splines have n parameters and O(n3)
computational cost.

◮ This drops to O(k3) if we replace E by its rank k eigen

approximation, Ek , at cost O(n2k). Big saving if k ≪ n

◮ Out of all rank k approximations this one minimizes

max
δ 6=0

‖(E − Ek )δ‖

‖δ‖
and max

δ 6=0

δT(E − Ek )δ

‖δ‖2

i.e. the approximation is somewhat optimal, and avoids

choosing ‘knot locations’.

◮ For very large datasets, randomly subsample the data the

data and work out the truncated basis from the subsample,

to avoid O(n2k) eigen-decomposition costs being too high.



TPRS illustration

◮ As the theory suggests, the eigen approximation is quite

effective. The following figure compares reconstructions of

of the true function on the left, using and eigen based thin

plate regression spline (middle), and one based on

choosing knots. Both are rank 16 approximations.
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Duchon Splines s(x,z,bs="ds")

◮ The m > d/2 requirement causes thin plate splines in more than

a few dimensions to be impractical, as the null space of the
penalty rapidly becomes too high dimensional.

◮ But thin plate splines are only one special case of the splines
introduced by Duchon (1977). He also considered penalties

∫

Rd

‖τ‖2s
∑

ν1+···+νd=m

m!

ν1! . . . νd !

(

F
∂mf

∂xν1

1 . . . ∂xνd

d

(τ )

)2

dτ

where F denotes Fourier transform and τ is frequency.

◮ With s = 0 this is a thin plate spline penalty, but with s > 0 higher

frequencies of the derivative field are penalized more heavily.

◮ Smoothers using this penalty exist if m + s > d/2, and have the

form of a TPS, with a reduced dimensional null space. e.g.
m = 2, s = d/2 − 1 gives null space dimension d + 1.

◮ Eigen-approximation is as for TPS.



Scale invariant smoothing: tensor product smooths
◮ Isotropic smooths assume that a unit change in one

variable is equivalent to a unit change in another variable,

in terms of function variability.
◮ When this is not the case, isotropic smooths can be poor.
◮ Tensor product smooths generalize from 1D to several D

using a lattice of bendy strips, with different flexibility in

different directions.

xz

f(x,z)

Tensor product smooths

◮ Carefully constructed tensor product smooths are scale

invariant.

◮ Consider constructing a smooth of x , z.

◮ Start by choosing marginal bases and penalties, as if

constructing 1-D smooths of x and z. e.g.

fx (x) =
∑

αiai(x), fz(z) =
∑

βjbj(z),

Jx (fx ) =

∫

f ′′x (x)
2dx = αTSxα & Jz(fz) = BTSzB



Marginal reparameterization

◮ Suppose we start with fz(z) =
∑6

i=1 βjbj(z), on the left.
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◮ We can always re-parameterize so that its coefficients are

functions heights, at knots (right). Do same for fx .

Making fz depend on x

◮ Can make fz a function of x by letting its coefficients vary

smoothly with x

xz

f(z)

xz

f(x,z)



The complete tensor product smooth

◮ Use fx basis to let fz coefficients vary smoothly (left).

◮ Construct in symmetric (see right).

xz

f(x,z)

xz
f(x,z)

Tensor product penalties - one per dimension

◮ x-wiggliness: sum marginal x penalties over red curves.

◮ z-wiggliness: sum marginal z penalties over green curves.

xz

f(x,z)

xz

f(x,z)



Tensor product expressions

◮ So the tensor product basis construction gives:

f (x , z) =
∑∑

βijbj(z)ai (x)

◮ With double penalties

J∗z (f ) = βTII ⊗ Szβ and J∗x (f ) = βTSx ⊗ IJβ

◮ The construction generalizes to any number of marginals

and multi-dimensional marginals.

◮ Can start from any marginal bases & penalties (including

mixtures of types).

◮ Note that the penalties maintain the basic meaning

inherited from the marginals.

Isotropic vs. tensor product comparison
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. . . each figure smooths the same data. The only modification is

that x has been divided by 5 in the bottom row.



Tensor product smoothing in mgcv

◮ Tensor product smooths are constructed automatically

from marginal smooths of lower dimension. The resulting

smooth has a penalty for each marginal basis.

◮ mgcv can construct tensor product smooths from any

single penalty smooths useable with s terms.

◮ te terms within the model formula invoke this construction.
For example:

◮ te(x,z,v,bs="ps",k=5) creates a tensor product

smooth of x, z and v using rank 5 P-spline marginals: the
resulting smooth has 3 penalties and basis dimension 125.

◮

te(x,z,t,bs=c("tp","cr"),d=c(2,1),k=c(20,5))

creates a tensor product of an isotropic 2-D TPS with a 1-D

smooth in time. The result is isotropic in x,z, has 2 penalties

and a basis dimension of 100. This sort of smooth would be
appropriate for a location-time interaction.

◮ te terms are invariant to linear rescaling of covariates.

t2 alternative tensor products

An alternative construction, due to Fabian Scheipl, and closely

related to smoothing spline ANOVA, starts from a different

marginal reparameterization

◮ Reparameterize each marginal smooth into unpenalized

components and a component with an identity penalty.

◮ Form tensor product bases from each combination of

unpenalized and penalized components, picking one from

each margin.

◮ Each of the resulting bases is subject to a separate identity

penalty, except for the basis made up only from

unpenalized marginal components.

◮ The basis for the whole smooth is the sum of all these

bases.

◮ t2 in mgcv implements this using same syntax as te.



Other interactions with smooths s(...,by=z)

◮ Suppose we want a term of the form f (x)z, where z is

metric.

◮ s(x,by=z) achieves this.

◮ An interaction with a factor variable, a, is also possible.

◮ s(x,by=a) produces a smooth of x for each level of a.

◮ s(x,by=a,id="foo") forces all these smooths to have

the same smoothing parameter.

◮ s(x,a,bs="fs") is similar, but efficient with gamm and

gamm4 when a has many levels.

◮ te/2 terms also accept by variables.

The basis dimension

◮ You have to choose the number of basis functions to use

for each smooth, using the k argument of s or te.

◮ The default is essentially arbitrary.

◮ Provided k is not too small its exact value is not critical, as
the smoothing parameters control the actual model
complexity. However

1. if k is too small then you will oversmooth.

2. if k is much too large then computation will be very slow.

◮ Checking that k is not too small will be covered in a later

segment.



Miscellanea

◮ Most smooths will require an identifiability condition to

avoid confounding with the model intercept: gam handles

this by automatic reparameterization.

◮ gam will also handle the side conditions required for nested

smooths. e.g. gam(y˜s(x)+s(z)+s(x,z))will work.

◮ However, such nested models are not always easy to

interpret.

◮ te, t2, s(...,bs="tp") and s(...,bs="ds") can, in

principle, handle any number of covariates.

◮ The "ad" basis can handle 1 or 2 covariates, but no more.

Discrete spatial smoothing: Markov random fields

◮ Sometimes data come allocated to irregular partitions of

space (e.g. administrative regions).

◮ Markov random fields area a popular way of smoothing

such data.

◮ The smooth has a coefficient, γi , for each region.

◮ The neighbouring regions of each region are found, and a

quadratic penalty constructed. If Ni is the set of indices of

the neighbours of region i , then the simplest penalty is

∑

i

(
∑

j∈Ni

(γi − γj))
2

◮ Eigen based rank reduction is effective here.



Markov random field illustration

data(columb.polys) ## district shapes list

xt <- list(polys=columb.polys)

gam(crime ˜ s(district,bs="mrf",xt=xt),data=columb)
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Smoothing on the globe

◮ Thin plate spline like smoothers can be constructed for the

sphere [s(la,lo,bs="sos")]. . .

 −30 

 −20 
 −10 

 0 

 10 

 20 

 30 

 40 

 4
0
 

 50 

 50 

 60 

 70 

 80 

 −160 
 −160 

 −140 

 −120 

 −100 

 −80 

 −
60 

 −
40 

 −20  0
 

 2
0 

 40 

 60 

 80 

 100 

 120 

 1
4
0
 

 1
6
0
 

 −0.8 

 −0.6 

 −0.4 

 −0.2 

 0 

 0
.2

 

 0
.4

 

 0
.6

 

 0
.8

 

 −
0
.8

 

 −
0
.6

 

 −
0
.4

 

 −
0.

2 

 0 
 0.2 

 0.4 

 0.6 

 0.8 

 1 

 −
20 

 −10 

 0
 

 0
 

 10 

 10 

 20 

 20 

 30 

 40 

 50 

 60 

 70 

 80 

 −
1
6
0
 

 −
1
4
0
 

 −120 

 −100 

 −80 

 −
60 

 −
40

 

 −20  0  20 

 40 

 60 

 80 

 100 

 120 

 140 

 160 

 1
80

 



Finite area smoothing

◮ Suppose now want to smooth samples from this function
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◮ . . . without ‘smoothing across’ the gap in the middle?

◮ Let’s use a soap film . . .
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The boundary condition

x

y

z

The boundary interpolating film
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Distorted to approximate data
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Soap film smoothers

◮ Mathematically this smoother turns out to have a

basis-penalty representation.

◮ See package soap from my web page.

◮ It also turns out to work. . .
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Random effect s(...,bs="re")

◮ Statistically, smooths consist of a basis and a quadratic

penalty, where the penalty matrix can be treated as the

generalized inverse of a covariance matrix.

◮ They can therefore be estimated as random effects.

◮ Reversing this, we can treat simple random effects as (zero

dimensional) smooths.

◮ s(a,b,bs="re") creates a terms with model matrix

model.matrix(˜a:b-1) and a scaled identity

penalty/covariance matrix.

◮ Any number of covariates are possible.

◮ Function gam.vcomp helps later interpretation by

converting smoothing parameters to variance components.

Summary

◮ We can treat simple random effects as 0 dimensional

smooths.

◮ In 1 dimension, the choice of basis is not critical. The main

decisions are whether it should by cyclic or not and

whether or not it should be adaptive.

◮ In 2 dimensions and above the key decision is whether an

isotropic smooth, s, or a scale invariant smooth, te/t2, is

appropriate. (te/2 terms may be isotropic in some

marginals.)

◮ Smooths and factors can be made to interact.

◮ Spatial smoothing may sometimes require more

specialized smoothers (Markov random fields, spherical

splines, finite area smooths).

◮ The basis dimension is a modelling decision that should be

checked.



Checking & Selecting GAMs

Simon Wood

Mathematical Sciences, University of Bath, U.K.

Model checking overview

◮ Since a GAM is just a penalized GLM, residual plots

should be checked exactly as for a GLM.

◮ It should be checked that smoothing basis dimension is not

restrictively low. Defaults are essentially arbitrary.

◮ The GAM analogue of co-linearity is often termed

‘concurvity’. It occurs when one predictor variable could be

reasonably well modelled as a smooth function of another

predictor variable. Like co-linearity it is statistically

destabilising and complicates interpretation, so is worth

checking for.



Residual checking

◮ Deviance, Pearson, working and raw residuals are defined

for a GAM in the same way as for any GLM.

◮ In mgcv the residuals function will extract them,

defaulting to deviance residuals.

◮ Residuals should be plotted against

1. fitted values.
2. predictor variables (those included and those dropped).

3. time, if the data are temporal.

◮ Residual plotting aims to show that there is something

wrong with the model assumptions. It’s good to fail.

◮ The key assumptions are

1. The assumed mean variance relationship is correct, so that
scaled residuals have constant variance.

2. The response data are independent, so that the residuals
appear approximately so.

Distribution checking

◮ If the independence and mean-variance assumptions are

met then it is worth checking the distributional assumption

more fully.

◮ The implication of quasi-likelihood theory is that provided

the mean variance relationship is right, the other details of

the distribution are not important for many inferential tasks.

◮ QQ-plots of residuals against standard normal quantiles

can be misleading in some circumstances: for example low

mean Poisson data, with many zeroes.

◮ It is better to obtain the reference quantiles for the

deviance residuals by repeated simulation of response

data, and hence residuals, from the fitted model. mgcv

function qq.gam will do this for you.

◮ gam.check produces some default residual plots for you.



Residual checking example

> b <- gam(y˜s(x0)+s(x1,x2,k=40)+s(x3)+s(x4),

+ family=poisson,data=dat,method="REML")

>

> gam.check(b)

Method: REML Optimizer: outer newton

full convergence after 8 iterations.

Gradient range [-0.0001167555,3.321004e-05]

(score 849.8484 & scale 1).

Hessian positive definite, eigenvalue range [9.66288e-05,10.52249].

[edited]

◮ The printed output is rather detailed information about

smoothing parameter estimation convergence.

◮ 4 residual plots are produced, the first is from qq.gam, unless

quasi-likelihood is used, in which case we have to fall back on a

normal QQ-plot (but anyway don’t care about this plot). The rest
are self explanatory.

gam.check plots
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More residual plots

rsd <- residuals(b)

qq.gam(b,rep=100); plot(fitted(b),rsd)

plot(dat$x0,rsd); plot(dat$x1,rsd)
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Checking k the basis dimension

◮ Provided it is not restrictively low the choice of basis

dimension, k , is not critical, because the effective degrees

of freedom of a term are primarily controlled by the

smoothing penalty.

◮ But it must be checked that k is not restrictively low —

default values are arbitrary.

◮ Four checking methods are useful.

1. Plot partial residuals over term estimates, looking for

systematic departures.
2. Test the residuals for residual pattern.

3. Try re-smoothing the model deviance residuals with respect
to the covariate(s) of interest using a higher k , to see if any

pattern is found.

4. Try re-fitting the model with increased k and see if the
smoothness selection criterion increases substantially.

◮ 1 and 2 should be routine. 3 and 4 are useful if you are

suspicious, but are also more time consuming.



Partial residuals

◮ Partial residuals are specific to each smooth term.

◮ Recall that the working residuals for a GLM are the

weighted residuals from the working linear model using in

the IRLS fitting scheme, at convergence.

◮ The partial residuals for fj are the working residuals that

you obtain using a linear predictor with f̂j set to zero. These

are the same as the working residual added to f̂j .

◮ The partial residuals should look like a random scatter

around the smooth.

◮ Systematic deviation of the mean partial residual from f̂j
can indicate that k is too low.

Partial residual example

library(MASS)

m <- gam(accel˜s(times,bs="ps"),data=mcycle,weights=w)

plot(m,residuals=TRUE,pch=19,cex=.3)
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. . . note the systematic pattern in the departure of the partial

residuals from the smooth. Should increase k.



A simple residual test

◮ An estimate of scale parameter φ can be obtained by

differencing scaled residuals.

◮ Differencing residuals that are neighbours according to

some covariate(s) should give an estimate of φ that is

statistically indistinguishable from a differencing estimate

obtained with any random ordering of residuals, if there is

no residual pattern with respect to the covariates.

◮ This is the basis for a simple, and rapid, randomisation test.

◮ If pattern is detected, then it may indicate that k is too low.

◮ . . . but care is needed: pattern may also be caused by

mean-variance problems, missing covariates, structural

infelicities, zero inflation etc. . .

Residual test example

> gam.check(m)

[edited]

Basis dimension (k) checking results. Low p-value (k-index<1) may

indicate that k is too low, especially if edf is close to k’.

k’ edf k-index p-value

s(times) 9.000 7.981 0.529 0

◮ k-index is ratio of neighbour differencing scale estimate to

fitted model scale estimate.

◮ k’ is the maximum possible EDF for the term.

◮ Here a low p-value coupled with high EDF suggests k may

be too low.



Alternative check example

> rsd <- residuals(m)

> ## smooth residuals with k doubled, to check pattern

> ## gamma>1 favours smoother models.

> gam(rsd˜s(times,bs="ps",k=20),data=mcycle,gamma=1.4)

Family: gaussian

Link function: identity

Formula:

rsd ˜ s(times, bs = "ps", k = 20)

Estimated degrees of freedom:

12.875 total = 13.87489

GCV score: 83.21058

This approach is not really needed for a single term model, but

is usefully efficient, relative to refitting with larger k, when there

are many terms present.

k fixed

m <- gam(accel˜s(times,bs="ps",k=20),data=mcycle,weights=w)
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◮ Further check now find no suggestion that k is too low.

◮ There are some differences in the k required with different

bases. The default ”tp” basis gives acceptable results with

k=10 (it is designed to be the optimal basis at a given k).



Concurvity

◮ Consider a model containing smooths f1 and f2.

◮ We can decompose f2 = f12 + f22 where f12 is the part of f2
representable in the space of f1, while f22 is the remaining

component, which lies exclusively in the space of f2.

◮ A measure of concurvity is α = ‖f12‖
2/‖f2‖

2, leading to 3
estimates

1. α̂ = ‖f̂12‖
2/‖f̂2‖

2.
2. The maximum value that α could take for any estimates,

using the given bases for f1 and f2.
3. The ratio of the ‘size’ of the basis for f12 relative to the basis

for f2, using some matrix norm.

◮ Function concurvity reports 1 as ’observed’, 2 as ’worst’

and 3 as ’estimated’. All are in [0,1].

◮ The measure generalizes to more components.

Concurvity consequences

◮ Concurvity can make interpretation difficult.

◮ Spatial confounding is a common example: you need a

spatial effect in the model, but all the other covariates are

somehow functions of space.

◮ A technical problem is that smoothing parameter estimates

may become highly correlated and variable, which

degrades the performance of inferential methods that are

conditional on those estimates (confidence intervals and

p-values).

◮ Under ML or REML smoothness selection sp.vcov and

gam.vcomp can help diagnose this problem.

◮ Model averaging over the sampling distribution of the

smoothing parameters can help in severe cases.



Concurvity/Spatial confounding example
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concurvity example

library(gamair)

data(mack)

gm <- gam(egg.count˜s(lon,lat,k=100)+s(I(b.depthˆ.5))+s(salinity)+s(temp.20m)

+offset(log.net.area),data=mack,family=quasipoisson,method="REML")

concurvity(gm)

para s(lon,lat) s(I(b.depthˆ0.5)) s(salinity) s(temp.20m)

worst 1.063513e-17 0.9899778 0.9874163 0.9300386 0.9621984

observed 1.063513e-17 0.8308139 0.9518048 0.9232639 0.8736039

estimate 1.063513e-17 0.5500618 0.9360886 0.8952500 0.9294740

◮ This output shows the concurvity of each term with all the other terms in the
model. Basically space is confounded with everything.

◮ With spatial confounding it sometimes helps to increase the smoothing
parameter for space, e.g. until the REML score is just significantly different to its
maximum.

gm1 <- gam(egg.count˜s(lon,lat,k=100,sp=0.05)+s(I(b.depthˆ.5)) +s(salinity)+s(temp.20m)

+offset(log.net.area),data=mack,family=quasipoisson,method="REML")



Model selection

◮ A large part of what would usually be thought of as model

selection is performed by smoothing parameter estimation,

but smoothing selection does not usually remove terms

altogether.

◮ There are three common approaches to deciding what
terms to include.

1. Get smoothing parameter estimation to do all the work, by

adding a penalty for the un-penalized space of each term.
2. Compute approximate p-values for testing terms for equality

to zero, and use conventional selection strategies
(backwards, forwards, backwards-forwards, etc).

3. Use similar strategies based on AIC, or on the GCV or ML

scores for the model.

Penalizing the penalty null space

◮ The penalty for a term is of the form βTSβ.

◮ Usually S is not full rank so some finite (M) dimensional

space of functions is un-penalized.

◮ In consequence penalization can not completely remove

the term from the model.

◮ Consider eigen-decomposition S = UΛUT. The last M

eigenvalues will be zero. Let Ũ denote their corresponding

eigenvectors.

◮ βTŨŨTβ can be used as an extra penalty on just the

component of the term that is unpenalized by βTSβ.

◮ Adding such a penalty to all the smooth terms in the model

allows smoothing parameter selection to remove terms

from the model altogether.



Null space penalization in action

> gm <- gam(egg.count˜s(lon,lat,k=100)+s(I(b.depthˆ.5))+

+ s(c.dist) + s(temp.surf)

+ +s(salinity)+s(temp.20m)+offset(log.net.area),

+ data=mack,family=quasipoisson,method="REML",select=TRUE)

> gm

Family: quasipoisson

Link function: log

Formula:

egg.count ˜ s(lon, lat, k = 100) + s(I(b.depthˆ0.5)) + s(c.dist) +

s(temp.surf) + s(salinity) + s(temp.20m) + offset(log.net.area)

Estimated degrees of freedom:

60.60 2.17 0.42 0.00 1.83 5.17 total = 71.19

REML score: 515.0758

◮ So temp.surf is penalized out, and c.dist nearly so!

p-values and all that

◮ A p-values for smooth term, f , with a finite dimensional

un-penalized space can be computed by a rather involved

inversion of the Bayesian intervals for a smooth, which give

good frequentist performance.

◮ The test statistic is f̂TVτ−

f
f̂ where Vτ

′
−

f
is a generalized rank

τ ′ pseudoinverse of the Bayesian covariance matrix for f

the vector of f evaluated at the observed covariate values.

τ ′ is a version of the effective degrees of freedom of f̂ ,

based on 2F − FF in place of F.

◮ For random effects, and smooths with no un-penalized

space, another approach is needed.

◮ In both cases the p-values are conditional on the

smoothing parameter estimates (you have been warned!)

◮ Refitting the egg model without null space penalization and

calling summary(gm) gives. . .



summary(gm)

Family: quasipoisson

Link function: log

...

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.9506 0.1237 23.85 <2e-16 ***
---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Approximate significance of smooth terms:

edf Ref.df F p-value

s(lon,lat) 61.280 73.602 3.094 5.28e-13 ***
s(I(b.depthˆ0.5)) 2.593 3.164 3.154 0.02354 *
s(c.dist) 1.000 1.000 1.532 0.21688

s(temp.surf) 1.000 1.000 0.133 0.71597

s(salinity) 1.001 1.001 8.891 0.00313 **
s(temp.20m) 5.960 6.941 3.504 0.00136 **
---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

R-sq.(adj) = 0.825 Deviance explained = 90.2%

REML score = 510.79 Scale est. = 4.4062 n = 330

generalized AIC etc

◮ An approximate AIC is often used for model selection:

−2l(β̂) + 2τ

where β̂ are the maximum penalized likelihood estimates

and τ is the effective degrees of freedom of the whole

model, and the UBRE (Mallows Cp) score used for

smoothness selection for known scale parameter is directly

proportional to this.

◮ AIC usually gives very similar results to selecting models

on the basis of the GCV (or UBRE) score.

◮ The ML score can also be used in the same way, but not

REML (because of the usual lack of comparability between

models with different fixed effect structures).



GLRT via anova

◮ Approximate generalized likelihood ratio testing can also

be performed, again based on the maximum penalized

likelihood estimates and effective degrees of freedom, and

again, conditional on the smoothing parameter estimates.

◮ The anova function in R can be used for this purpose.

◮ The approximation has limited justification. If the model

terms can all be closely approximated by unpenalized

terms, then the approximation is often reasonable, but note

that random effects can not be approximated in this way,

and the approximation breaks down in this case.

◮ Unless your smooths are really frequentist random effects,

resampled from their prior/marginal with every replication

of the data, then a GLRT (or AIC) based on the ML or

REML score is a bad idea.

Additive versus Interaction

◮ f1(x) + f2(z), f3(x , z) or f1(x) + f2(z) + f3(x , z)?

◮ Conceptually f1(x) + f2(z) appears nested in f3(x , z), but

unless you choose the smoothing penalties very carefully it

won’t be.

◮ The t2 tensor product construction in mgcv build smooths

with penalties that do nest f1(x) + f2(z) in f3(x , z) (basically

following a reduced rank version of the SS-ANOVA

approach of Gu and Wahba), but the price you pay is the

need to use penalties that are somewhat un-intuitive.

pen.edf and gam.vcomp are useful with such terms.

◮ A cruder approach simply identifies smooths that are

nested in a model, and supplies just enough constraints to

make them identifiable. mgcv does this.

◮ Nested terms estimates are often so highly correlated that

single term p-values must be treated with suspicion.



Summary
◮ Model checking is just like for a GLM + check that

smoothing basis dimensions are not too small.

◮ Concurvity is the generalization of co-linearity to worry

about in interpretation.

◮ A variety of model selection tools are available, including

full penalization, generalized AIC, term specific p-values

and approximate GLRT tests.
◮ Tests/p-values are approximate and conditional on

smoothing parameter estimates.
1. When smoothing parameter estimators are highly

correlated (see e.g.sp.vcov), single term p-values should

be treated with caution.
2. GLRT tests are a particularly crude approximation, and can

fail completely when random effects are involved.

◮ GAMs are statistical models and there are reasonable

statistical tools available to help in the process of model

building, but if you want machine learning, GAMs are

probably not the place to start.



Some more advanced topics

Simon Wood

Mathematical Sciences, University of Bath, U.K.

Posterior simulation

◮ Recall that for any fitted GAM we have the result

β|y ∼ N(β̂,Vβ)

(large sample approximation in the generalized case).

◮ This means that we can rapidly simulate from the posterior

of any quantity derived from the fitted model.

◮ Such simulation is made much easier, if we can obtain the

prediction matrix Xp, mapping the model coefficents to the

linear predictor, for any desired set of predictor variable

values.

◮ mgcv:predict.gam computes such an Xp using

predict(...,type="lpmatrix")



Posterior simulation example

◮ Here is an adaptive smooth fit to the motorcycle data.
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◮ Suppose we would like a 95% CI for the trough to peak

height.

Trough to peak CI

pd <- data.frame(times=seq(10,40,length=1000))

Xp <- predict(b,pd,type="lpmatrix") ## map coefs to fitted curves

beta <- coef(b);Vb <- vcov(b) ## posterior mean and cov of coefs

n <- 10000

br <- mvrnorm(n,beta,Vb) ## simulate n rep coef vectors from post.

a.range <- rep(NA,n)

for (i in 1:n) { ## loop to get trough to peak diff for each sim

pred.a <- Xp%*%br[i,] ## curve for this replicate

a.range[i] <- max(pred.a)-min(pred.a) ## range for this curve

}

quantile(a.range,c(.025,.975))

2.5% 97.5%

137.0796 174.5402

◮ This is very fast compared to boot-strapping, and less

problematic.

◮ The for loop is only for clarity, it can be eliminated.



Correlated data

◮ Correlated data can be modelled using high rank Gaussian

random fields (smoothers), or by GEE type assumption of

a covariance structure for the response.

◮ For Gaussian data it is straightforward to incorporate a

known correlation structure into the likelihood. If such a

structure is sparse (it’s Choleski factor, or inverse Choleski

factor is sparse) then efficient computation is sometimes

possible.

◮ An AR1 model is an example of such a sparse structure.

◮ Unknown correlation parameters can be optimized

numerically, or by simple profile likelihood grid search.

◮ Software for correlated data is a bit limited at the moment

(but if you don’t have too many smooth terms, check out

INLA).

GAM + AR1 example

◮ The Hadley Centre (UK) assembles monthly global mean

temperature datasets, going back to 1850 (e.g. hadcrut3

from their web site).

◮ The data appear quite noisy, so it is important to be able to

say, objectively, what the underlying smooth trend in the

data looks like.

◮ There is an annual cycle in the data, essentially because

the Northern and Southern Hemispheres respond

differently to incoming solar radiation.

◮ A reasonable model, of temperature anomaly, ai , is

ai = f (ti) + g(mi) + ei

where the ei are AR1 gaussian errors, with unknown

correlation parameter. g(mi) is cyclic function of month.



bam(...,rho=.98) fit of AR1 GAM
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◮ Upper is fit with REML optimal correlation parameter, lower

is equivalent model without auto-correlation, but forced to

have same smoothing parameters.

Annual data
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◮ Top is what is currently done for IPCC presentation to

policy makers.



Spatial correlation

◮ Sometimes a relatively high rank smooth suffices (e.g. a

thin plate spline of space).

◮ Sometimes bam can be more efficient than gam for such

high rank terms, but much over rank 1000 and the methods

become impractically slow.

◮ A GEE type approach to correlation can be used with

gamm via nlme type correlation structures, but

convergence is not very reliable.

◮ Essentially the approach assumes a parameterized

correlation structure for the working data used at each

PQL iteration during fitting (of course this is just a

likelihood method if the response is Gaussian).

Spatial correlation example

◮ Revisiting the fish egg data, from earlier, we could try to

force more of the explanatory power onto the covariates by

replacing the spatial smooth with an assumption about

residual spatial autocorrelation. Let’s assume a simple

model in which correlation decays as a half Gaussian. . .

mack$lon <- mack$lon + (runif(n)-.5)/20 ## jitter location

gmm <- gamm(egg.count ˜ s(I(b.depthˆ.5)) + s(c.dist) +

s(temp.surf) + s(temp.20m)+offset(log.net.area),

data=mack,family=quasipoisson,

correlation=corGaus(.1,form=˜lon+lat))

◮ See nlme documentation for more on the correlation

structure.

◮ Fitting takes 10s of minutes. . .



CorGaus GAM effects
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◮ The sea bed depth effect is much stronger in this model.

◮ Spatial correlation in these models is an active area of

research.

Functional data

◮ Function on scalar, and scalar on function regressions can

readily be cast as GAMs/ penalized GLMs.

◮ Start with scalar on function and consider predicting

octane rating from near infrared spectrum of gasoline.
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scalar on function

◮ There are 60 such spectrum (ki (x)) - octane (yi ) pairs (x is

wavelength), and a model might be

yi = α+

∫
f (x)ki (x)dx + ǫi ≃ α+

1

h

p∑
k=1

ki(xk )f (xk ) + ǫi

where f (x) is a smooth function of wavelength, and the xk
are evenly spaced h apart.

◮ Let Xik = xk ∀ i and Lik = ki (xk )/h. In mgcv:gam

s(X,by=L)

evaluates
∑

k f (Xik)Lik = 1
h

∑p
k=1 ki(xk )f (xk ), by invoking a

summation convention for matrix arguments of smooths

(including te/2).

Octane fit

library(pls);data(gasoline);gas <- gasoline

nm <- seq(900,1700,by=2) ## create wavelength matrix...

gas$nm <- t(matrix(nm,length(nm),length(gas$octane)))

b <- gam(octane˜s(nm,by=NIR,bs="ad"),data=gas)

plot(b,rug=FALSE,shade=TRUE,main="Estimated function")

plot(fitted(b),gas$octane,...)
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function-on-scalar

◮ Annual temperature data from some Canadian locations.
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◮ Colour denotes region: blue is Arctic, black continental, red

Pacific, green Atlantic.

◮ Model: if profile from region j :

tempi = fj(ti) + f (ti)latitudei + ǫ(ti)

i.i.d error fit

b <- gam(T˜region+s(time,k=20,bs="cr",by=region)+

s(time,k=40,bs="cr",by=latitude),

data=dat,method="REML")
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AR1 error fit

b1 <- gamm(T˜region+s(time,k=20,bs="cr",by=region)+

s(time,k=40,bs="cr",by=latitude),

data=dat,correlation=corAR1(form=˜1|place))
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The end.


