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Summary. Recent work by Reiss and Ogden provides a theoretical basis for sometimes prefer-
ring restricted maximum likelihood (REML) to generalized cross-validation (GCV) for smoothing
parameter selection in semiparametric regression. However, existing REML or marginal likeli-
hood (ML) based methods for semiparametric generalized linear models (GLMs) use iterative
REML or ML estimation of the smoothing parameters of working linear approximations to the
GLM. Such indirect schemes need not converge and fail to do so in a non-negligible proportion
of practical analyses. By contrast, very reliable prediction error criteria smoothing parameter
selection methods are available, based on direct optimization of GCV, or related criteria, for the
GLM itself. Since such methods directly optimize properly defined functions of the smoothing
parameters, they have much more reliable convergence properties. The paper develops the
first such method for REML or ML estimation of smoothing parameters. A Laplace approxima-
tion is used to obtain an approximate REML or ML for any GLM, which is suitable for efficient
direct optimization. This REML or ML criterion requires that Newton–Raphson iteration, rather
than Fisher scoring, be used for GLM fitting, and a computationally stable approach to this is
proposed.The REML or ML criterion itself is optimized by a Newton method, with the derivatives
required obtained by a mixture of implicit differentiation and direct methods. The method will
cope with numerical rank deficiency in the fitted model and in fact provides a slight improve-
ment in numerical robustness on the earlier method of Wood for prediction error criteria based
smoothness selection. Simulation results suggest that the new REML and ML methods offer
some improvement in mean-square error performance relative to GCV or Akaike’s information
criterion in most cases, without the small number of severe undersmoothing failures to which
Akaike’s information criterion and GCV are prone. This is achieved at the same computational
cost as GCV or Akaike’s information criterion. The new approach also eliminates the conver-
gence failures of previous REML- or ML-based approaches for penalized GLMs and usually
has lower computational cost than these alternatives. Example applications are presented in
adaptive smoothing, scalar on function regression and generalized additive model selection.

Keywords: Adaptive smoothing; Generalized additive mixed model; Generalized additive
model; Generalized cross-validation; Marginal likelihood; Model selection; Penalized
generalized linear model; Penalized regression splines; Restricted maximum likelihood; Scalar
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1. Introduction

This paper is about reliable and efficient computation of likelihood-based smoothing parameter
estimates in penalized generalized linear models (GLMs). Consider a GLM in which n inde-
pendent univariate response variables yi, with mean μi, depend on predictors via the model
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g.μi/=XÅ
i βÅ+∑

j

Lijfj, yi∼an exponential family distribution, .1/

where g is a known monotonic link function, the fj are smooth but unknown functions of any
number of covariates, the Lij are known linear functionals (usually dependent on covariates) and
XÅ

i is the ith row of the model matrix for any strictly parametric model components, with corre-
sponding coefficients βÅ. Restriction to the exponential family implies that var.yi/=φV.μi/, for
some known ‘variance function’ V and known or unknown ‘scale parameter’ φ. Typical Lijfj-
terms are fj.xi/, fj.xi/zi or

∫
fj.x/ki.x/dx (where ki is known), corresponding to generalized

additive, varying coefficient and signal regression models respectively. For more on such models
see, for example, Hastie and Tibshirani (1986, 1990), Ruppert et al. (2003), Wood (2006), Hastie
and Tibshirani (1993), Marx and Eilers (1999), Ramsay and Silverman (2005), Reiss and Ogden
(2007), Wahba (1990), Eilers and Marx (2002) and Fahrmeir et al. (2004).

To estimate model (1) in practice, the fj can be represented by intermediate rank spline-type
basis expansions (as originally proposed by Wahba (1980) and Parker and Rice (1985), for
example), in which case the model becomes the GLM (Nelder and Wedderburn, 1972)

g.μi/=Xiβ, yi∼ an exponential family distribution, .2/

where β now includes βÅ and all the basis coefficients, and X is the corresponding n×q model
matrix, with q usually substantially less than n. If the spline bases dimensions are sufficiently
large to ensure reasonably low bias, then maximum likelihood estimation of model (2) will
almost certainly lead to overfitting. To avoid this, the model should be estimated by penal-
ized likelihood maximization, where the penalties suppress overly wiggly components fj. In
particular, the model is estimated by minimizing

D.β/+∑
j

λjβ
TSjβ .3/

with respect to β, where D is the model deviance, defined as the saturated log-likelihood minus
the log-likelihood, all multiplied by 2φ (D is a useful GLM analogue of the residual sum of
squares of a linear model, and working in terms of D will allow the direct use of some results
from Wood (2008)); the Sj are q× q positive semidefinite matrices and the λj are positive
smoothing parameters. Usually the βTSjβ measure the wiggliness of the fj. In fact there may
be several such penalties per fj, e.g. when using tensor product (e.g. Wood (2006)) or adaptive
(e.g. Krivobokova et al. (2008)) smoothing bases. The Sj may also be components of more
general random-effects precision matrices.

Given the λj, there is a unique minimizer of expression (3), β̂λ, which is straightforward to
compute by a penalized version of the iteratively reweighted least squares method that is used
for GLM estimation (penalized iteratively reweighted least squares (PIRLS)) (see for example
Wood (2006) or Section 3.2). To select values for the λj requires optimization of a separate
criterion, V.λ/, say, which must be chosen.

1.1. Smoothness selection: prediction error or likelihood?
The λi selection criteria that have been proposed fall into two main classes. The first group try to
minimize model prediction error, by optimizing criteria such as Akaike’s information criterion
(AIC), cross-validation or generalized cross-validation (GCV) (see for example Wahba and Wold
(1975) and Craven and Wahba (1979)). The second group treat the smooth functions as random
effects (Kimeldorf and Wahba, 1970), so that the λi are variance parameters which can be estim-
ated by maximum (marginal) likelihood (ML) (Anderssen and Bloomfield, 1974), or restricted
maximum likelihood (REML), which Wahba (1985) called ‘generalized maximum likelihood’.
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Asymptotically prediction error methods give better prediction error performance than
likelihood-based methods (e.g. Wahba (1985) and Kauermann (2005)) but also have slower
convergence of smoothing parameters to their optimal values (Härdle et al., 1988). Reflecting
this, published simulation studies (e.g. Wahba (1985), Gu (2002), Ruppert et al. (2003) and
Kohn et al. (1991)) differ about the relative performance of the two classes, although there is
agreement that prediction error criteria are prone to occasional severe undersmoothing. Reiss
and Ogden (2009) provided a theoretical comparison of REML and GCV at finite sample sizes,
showing that GCV is both more likely to develop multiple minima and to give more variable
λj-estimates. Fig. 1 illustrates the basic issue. GCV penalizes overfit only weakly, with a mini-
mum that tends to be very shallow on the undersmoothing side, relative to sampling variability.
This can lead to an overfit. By contrast, REML (and also ML) penalizes overfit more severely
and therefore tends to have a much more pronounced optimum, relative to sampling variability.
In principle, extreme undersmoothing can also be avoided by use of modified prediction error
criteria such as AICc (Hurvich et al., 1998), but in practice the use of low to intermediate rank
bases for the fj already suppresses severe overfit, and AICc then offers little additional benefit
relative to GCV, as Fig. 1 also illustrates.

Greater resistance to overfit, less smoothing parameter variability and a reduced tendency to
multiple minima suggest that REML or ML might be preferable to GCV for semiparametric
GLM estimation. But these benefits must be weighed against the fact that existing computational
methods for REML or ML estimation of semiparametric GLMs are substantially less reliable
than their prediction error equivalents, as the remainder of this section explains.
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Fig. 1. Example comparison of GCV, AICc and REML criteria: (a) some .x,y/-data modelled as yi D f .xi /C
"i , "i independent and identically distributed N.0,σ2/ where smooth function f was represented by using
a rank 20 thin plate regression spline (Wood, 2003); (b)–(d) various smoothness selection criteria plotted
against logarithmic smoothing parameters, for 10 replicates of the data (each generated from the same
‘truth’) (note how shallow the GCV and AICc minima are relative to the sampling variability, resulting in rather
variable optimal λ-values (which are shown as a rug plot), and a propensity to undersmooth; in contrast the
REML optima are much better defined, relative to the sampling variability, resulting in a smaller range of
λ-estimates); (e)–(h) are equivalent to (a)–(d), but for data with no signal, so that the appropriate smoothing
parameter should tend to 1 (note GCV’s and AICc’s occasional multiple minima and undersmoothing in
this case, compared with the excellent behaviour of REML; ML (which is not shown) has a similar shape to
REML)
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There are two main classes of computational method for λj-estimation: those based on single
iterations and those based on nested iterations. In the single-iteration case, each PIRLS step,
which is used to update β̂, is supplemented by a λ̂-update. The latter is based on improving a
λ selection criterion Vβ̂.λ/, which depends on the estimate of β̂ at the start of the step. Vβ̂.λ/

will be some sort of REML, GCV or similar criterion, but it is not a fixed function of λ, instead
changing with β̂ from iterate to iterate. Consequently single-iteration methods do not guarantee
convergence to a fixed λ̂, β̂λ̂ (see Gu (2002), page 154, Wood (2006), page 180, and Brezger et al.
(2007), reference manual section 8.1.2).

In nested iteration, the smoothness selection criterion V.λ/ depends on β only via β̂λ.
An outer iteration updates λ̂ to optimize V.λ/, with each iterative step requiring an inner
PIRLS iteration to find the current β̂λ. Because nested iteration optimizes a properly defined
function of λ, it is possible to guarantee convergence to a fixed optimum, provided that V
is bounded below, and expression (3) has a well-defined optimum (conditions which are rather
mild, in practice). The disadvantage of nested iteration is substantially increased computational
complexity.

To date only single-iteration methods have been proposed for REML or ML estimation of
semiparametric GLMs (e.g. Wood (2004), using Breslow and Clayton (1993), or Fahrmeir et al.
(2004), using Harville (1977)), and in practice convergence problems are not unusual: examples
are provided in Wood (2004, 2008), and in Appendix A. Early prediction-error-based methods
were also based on single iteration (e.g. Gu (1992) and Wood (2004)), and suffered similar
convergence problems, but these were overcome by Wood’s (2008) nested iteration method
for GCV, generalized approximate cross-validation, and AIC smoothness selection. Wood
(2008) cannot be extended to REML or ML while maintaining good numerical stability, so the
purpose of this paper is to provide an efficient and stable nested iteration method for REML
or ML smoothness selection, thereby removing the major practical obstacle to use of these
criteria.

2. Approximate restricted maximum likelihood or marginal likelihood for
generalized linear model smoothing parameter estimation

Since the work of Kimeldorf and Wahba (1970), Wahba (1983) and Silverman (1985), it has
been recognized that the penalized likelihood estimates β̂ are also the posterior modes of the
distribution of β|y, if β∼N.0, S−φ/, where S=Σi λiSi, and S− is an appropriate generalized
inverse (see for example Wood (2006)). Once the elements of β are viewed as random effects in
this way, it is natural to try to estimate the λi, and possibly φ, by ML or REML (Wahba, 1985).

This preliminary section uses standard methods to obtain an approximate REML expres-
sion that is suitable for efficient direct optimization to estimate the smoothing parameters of a
semiparametric GLM. Rather than follow Patterson and Thompson (1971) directly, Laird and
Ware’s (1982) approach to REML is taken, in which fixed effects are viewed as random effects
with improper uniform priors and are integrated out. The key feature of the resulting expression
is that it is relatively efficient to compute with and is suitable for optimizing as a properly defined
function of the smoothing parameters, i.e., in contrast with previous single-iteration approaches
to this problem, there is no need to resort to optimizing the REML score of a working model.
Since a very similar approach obtains an approximate ML, this is also derived. ML can be useful
for comparing models with different smooth terms included, for example (REML cannot be
used for such a comparison because the alternative models will differ in fixed effect structure).

Consider a penalized GLM with log-likelihood l.β/= log{fy.y|β/}. Under the random-
effects formulation we have an improper ‘prior’ density for β,
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fβ.β/= |S=φ|0:5+√
.2π/nb−Mp

exp
(−βTSβ

2φ

)
,

where |B|+ denotes the product of the non-zero eigenvalues of B. nb is the dimension of β and
Mp is the dimension of the null space of S. To obtain the restricted likelihood for REML we
need to integrate β out of f.y, β/=fy.y|β/fβ.β/ (for ML we would need to integrate out the
part of β that is in the range space of S). In practice the integral can be approximated as follows.
Let H=−@2l=@β @βT, and β̂ be the maximizer of f.y, β/, i.e. the penalized likelihood estimates.
Then

f.y, β/� exp[log{fy.y|β̂/}+ log{fβ.β̂/}− .β− β̂/T.H+S=φ/.β− β̂/=2]

=fy.y|β̂/fβ.β̂/exp{−.β− β̂/T.H+S=φ/.β− β̂/=2}:

Integrating with respect to β, and denoting the likelihood by L, we obtain the Laplace approx-
imate REML criterion

LR.λ, φ/=L.β̂/fβ.β̂/

√
.2π/nb

|H+S=φ|0:5

(which is actually exact for Gaussian models with the identity link), i.e., defining lr= log.Lr/,

2lr=2 l.β̂/+ log.|S=φ|+/− β̂TSβ̂=φ− log|H+S=φ|+Mp log.2π/:

If the penalized GLM has its coefficients estimated by Newton-based PIRLS, as suggested
below, then H=XTWX=φ, where W is a diagonal weight matrix. To obtain ML, rather than
REML, we would need to reparameterize to separate the parameters into penalized and un-
penalized. Then H would be the negative Hessian for the penalized parameters only: further
details are provided below in Section 2.1.

For ease of computation it helps to separate out lr into φ-dependent and φ-independent
components. For this, let ls.φ/ denote the saturated log-likelihood and define

Dp=D.β̂/+ β̂TSβ̂

and (assuming Newton weights)

K={log |XTWX+S|− log.|S|+/}=2:

We then have that

−lr= Dp

2φ
− ls.φ/+K−Mp

2
log.2πφ/: .4/

There are two approaches to the estimation of φ:

(a) estimate φ as part of lr-maximization, or
(b) use the Pearson statistic over n−Mp as φ̂, and optimize the resulting criterion, taking

account of the derivatives of φ̂ with respect to the smoothing parameters.

The only advantage of approach (b) is that it may sometimes allow the resulting REML score
to be used as a heuristic method of smoothness selection with quasi-likelihood.

The simpler approach of using the expected Hessian in place of H was also investigated, but
in simulations it gave worse performance than GCV when non-canonical links were used.

2.1. Marginal likelihood details
For Laplace approximate ML, rather than REML, estimation, the only difference to the criterion
is that we now need H to be the negative Hessian with respect to the coefficients of any orthogonal
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basis for the range space of the penalty. The easiest way to separate out the range space is to form
the eigendecomposition ∑

j

Sj=‖Sj‖F=UΛUT,

where the scaling of each Sj by its Frobenius norm maintains good numerical conditioning.
The first q−Mp columns of U now form an orthogonal basis for the range space of S (see
for example Wood (2006), sections 4.8.2 and 6.6.1). In consequence, if we reparameterize by
setting β̄=UTβ then the first q−Mp elements of β̄ will be penalized and should be integrated
out of the joint density of y and β̄, whereas the last Mp elements are unpenalized, and hence
left alone. Let U1 be the first q−Mp columns of U. Applying the reparameterization we have
X̄=XU1 and S̄=UT

1 SU1, and some work establishes that the negative (Laplace approximate)
log-marginal-likelihood is

−l= Dp

2φ
− ls.φ/+ log |X̄TWX̄+ S̄|− log.|S|+/

2
: .5/

2.2. Accuracy of the Laplace approximation
For fixed dimension of β, the true REML or ML integral divided by its Laplace approximation
is 1+O.n−1/ (see for example Davison (2003), section 11.3.1). For consistency, it is usually
necessary for the dimension of β to grow with n, which reduces this rate somewhat. However,
for spline-type smoothers the dimension need only grow slowly with n (for example Gu and Kim
(2002) showed that the rate need only be O.n2=9/ for cubic-spline-like smooths), so convergence
is still rapid. Kauermann et al. (2009) showed in detail that the Laplace approximation is well
justified asymptotically for ML in the penalized regression spline setting.

Rapid convergence does not in itself guarantee that the approximation is sufficiently accurate
for any particular finite sample. Fortunately a simple and computationally efficient accuracy
check is readily implemented, since a rather precise unbiased estimator of the REML score can
be obtained by importance sampling with a ‘Laplace proposal’. In particular, if R is a square
factor such that

RTR= .XTWX+S/−1φ̂,

and zi are ns independent N.0, I/ random nb vectors, then

.2π/nb=2

ns|R|
ns∑

i=1
fy.y|β̂+RTzi/fβ.β̂+RTzi/ exp

(‖zi‖2
2

)

is an unbiased estimator of the exact REML score (see, for example, Monahan (2001), section
10.4C). In the work that is reported here ns in the range 1000–10000 was sufficient to ensure
that the Monte Carlo variability was at least an order of magnitude smaller than the mean
difference between the estimator and the deterministic Laplace approximation. This estimator
was used to estimate the Laplace approximation error, at the estimated smoothing parameters,
for all the examples that are presented subsequently in this paper. The worst error was for the
binary simulations in Section 4, where the magnitude of the error was up to 0.3. The other
examples had approximation errors that were an order of magnitude smaller. Hence the error
that is induced by the deterministic Laplace approximation is not significant relative to the
sampling uncertainty in the smoothing parameters, suggesting that the Laplace approximation
is adequate for the examples that are presented here.

Note that the Laplace approximation that is employed here does not suffer from the difficul-
ties that are common to most penalized quasi-likelihood (PQL) (Breslow and Clayton, 1993)
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implementations when used with binary data. Most PQL implementations must estimate φ for
the working model, even with binary data where this is not really satisfactory. In addition, PQL
uses the expected Hessian in place of the exact Hessian when non-canonical links are used,
which also reduces accuracy. That said, it should still be expected that the accuracy of equations
(4) and (5) will reduce for binary or Poisson data when the expectation of the response variable
is very low.

3. Optimizing the restricted maximum likelihood criterion

Equations (4) and (5) depend on the smoothing parameter vector λ via the dependence of S
and β̂ (and hence W) on λ. The proposal here is to optimize equation (4) or (5) with respect to
the ρi= log.λi/, by using Newton’s method, with the usual modifications that

(a) some step length control will be used and
(b) the Hessian will be perturbed to be positive definite, if it is not (see Nocedal and Wright

(2006) for an up-to-date treatment and computational details).

Each trial logarithmic smoothing parameter vector ρ, proposed as part of the Newton method
iteration, will require a PIRLS iteration to evaluate the corresponding β̂ (and hence W). So
the whole optimization consists of two nested iterations: an outer iteration to find ρ̂, and an
inner iteration to find the β̂ corresponding to any ρ. The outer iteration requires the gradient
and Hessian of equation (4) or (5) with respect to ρ, and this in turn requires first and second
derivatives of β̂ with respect to ρ.

Irrespective of the details of the optimization method, the major difficulty in minimizing
equation (4) or (5) is that, if some λj is sufficiently large, then the ‘numerical footprint’ of the
corresponding penalty term λjβ

TSjβ can extend well beyond the penalty’s range space, i.e.
numerically the penalty can have marked effects in the subspace of the model parameter space
for which, formally, βTSjβ= 0. For example if ‖λjSj‖�‖λkSk‖ then λjSj can have effects
which are ‘numerically zero’ when judged relatively to ‖λjSj‖ (and would be exactly zero in
infinite precision arithmetic), but which are larger than the strictly non-zero effects of λkSk. If
left uncorrected, this problem leads to serious errors in evaluation of β̂, |S|+ and |XTWX+S|
and their derivatives with respect to ρ (see Section 3.1). Because multiple penalties often have
overlapping range spaces (i.e. they penalize intersecting subspaces of the parameter space), no
single reparameterization can solve this problem for all λ-values, but an adaptive reparameter-
ization approach does work and is outlined in Section 3.1. Note that the Wood (2008) method,
for dealing with numerical ill conditioning for prediction error criteria, is hopeless here. That
method truncates the parameter space to deal with ill conditioning that is induced by changes
in λ, but such an approach would lead to large erroneous and discontinuous changes in |S|+
and |XTWX+S| as λ changes. We shall of course still need to truncate the parameter space if
some parameters would not be identifiable whatever the value of λ, but such a λ-independent
truncation is not problematic.

A second question, when minimizing equation (4) or (5), is what optimization method to
use to obtain the β̂λ corresponding to any trial λ. If a PIRLS scheme is employed based on
Newton (rather than Fisher) updates, then the Hessian that is required in equation (4) or (5) is
conveniently obtained as a by-product of fitting, which also means that the same method can
be used to stabilize both β̂ and REML or ML evaluation. Furthermore the required derivatives
of β̂ with respect to ρ can be obtained directly from the information that is available as part of
the PIRLS, using implicit differentiation, without the need for further iteration. Newton-based
PIRLS also leads to more rapid convergence with non-canonical links.
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As a result of the preceding considerations, this paper proposes that the following steps should
be taken for each trial ρ proposed by the outer Newton iteration.

Step 1: reparameterize to avoid large norm λjSj-terms having effects outside their range
spaces, thereby ensuring accurate computation with the current ρ (Section 3.1).
Step 2: estimate β̂ by Newton-based PIRLS, setting to 0 any elements of β̂ which would be
unidentifiable irrespectively of the value of ρ (Sections 3.2 and 3.3).
Step 3: obtain first and second derivatives of β̂ with respect to ρ, using implicit differentiation
and the quantities that are calculated as part of step 2 (Section 3.4).
Step 4: using the results from steps 2 and 3, evaluate the REML or ML criterion and deriva-
tives with respect to ρ (Section 3.5).

After these four steps, all the ingredients are in place to propose a new ρ by using a further step
of Newton’s method.

3.1. Reparameterization, log jSjC and
p

S
log.|S|+/ (where S=Σj λjSj) is the most numerically troublesome term in the REML or ML
objective. Both λi→0 and λi→∞ can cause numerical problems when evaluating the determi-
nant. The problem is most easily seen by considering the simple example of evaluating |λ1S1+
λ2S2|when the q×q positive semidefinite dense matrices Sj are not full rank, but λ1S1+λ2S2 is.
In what follows let ‖·‖ denote the matrix 2-norm (although the 1-,∞- or Frobenius norms would
serve as well), and let x̂ denote the computed version of any quantity x. Consider a similarity
transform based on the eigendecomposition S1=UΛUT, with computed version S1= ÛΛ̂ÛT.
Let Λ+ denote the vector of strictly positive eigenvalues, and Λ0 the vector of zero eigenvalues,
and note that Λ̂0 will have elements of typical magnitude ‖S1‖"m where "m is the computational
machine precision (see for example Watkins (1991), section 5.5, or Golub and van Loan (1996),
chapter 8).

By standard properties of similarity transforms we have

|λ1S1+λ2S2|= |λ1Λ+λ2UTS2U|: .6/

Suppose that Sj has rank rj and rank deficiency dj=q− rj. As λ1=λ2→∞ it is routine that the
r1 largest eigenvalues of λ1S1+λ2S2→λ1Λ+, so

|λ1S1+λ2S2|→λ
r1
1

∏
i

Λ+i α,

where the factor α depends on λ2S2. However, as λ1=λ2→∞ all the computed eigenvalues of
λ1S1+λ2S2→λ1Λ̂, so

̂|λ1S1+λ2S2|→λ
r1
1

∏
i

Λ̂
+
i λ

d1
1

∏
i

Λ̂
0
i :

Hence the computed determinant is seriously in error because the factor λ
d1
1 Πi Λ̂0

i is essentially
arbitrary and is unrelated to the correct factor α. (Note that the problem vanishes for a full rank
S1.)

The difficulty arises because the computed version of the matrix λ1Λ+λ2UTS2U is perturbed
by the completely arbitrary error terms in λ1Λ̂

0
. In general the effect of a perturbation on the

determinant of a positive definite A, with eigenvalues ΛA, depends on the size of the perturba-
tion relative to min.ΛA/. This is easily seen by considering a simple additive perturbation "I
(where " is the size of perturbation). Then

|A+ "I|=|A|=∏
i

.ΛA
i + "/=ΛA

i ,
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where the largest contribution to the right-hand side is from the term {min.ΛA/+"}=min.ΛA/.
Hence we can expect problems when the perturbations λ1Λ̂

0
become non-negligible relative

to the smallest eigenvalue of λ1S1+ λ2S2, which is bounded below by the smallest positive
eigenvalue of λ2S2 as λ1=λ2→∞.

In short, we can expect this ‘numerical zero leakage’ issue to spoil determinant calcula-
tions whenever the ratio of the largest strictly positive eigenvalue of λ1S1 (which sets the scale of
the arbitrary perturbation, λ1Λ̂0) to the smallest strictly positive eigenvalue of λ2S2 is too great.
However, the example also suggests a simple way of suppressing the problem. Reparameterize
by using the computed eigenbasis of the dominant term S1, so that S1 becomes Λ̂ and S2
becomes ÛTS2Û. In the transformed space it is easy to ensure that the dominant term (now Λ̂)
acts only within its range space, by setting Λ̂0= 0 (if the rank of S1 is known then identifying
which eigenvalues should be 0 is trivial; if not, see step 3 in Appendix B).

Having reparameterized and truncated in this way, stable evaluation of |λ1Λ+λ2UTS2U| is
straightforward. Only the first r1 columns of λ1Λ̂+λ2ÛTS2Û now depend on λ1S1. Forming
a pivoted QR-decomposition λ1Λ̂+λ2ÛTS2Û= Q̂R̂ maintains this column separation in R̂
(the decomposition acts on columns, without mixing between columns), with the result that

̂|λ1S1+λ2S2|= |λ1Λ̂+λ2ÛTS2Û|=ΠiR̂ii can be accurately computed. Furthermore, pivoting
ensures that R̂−1 is computable, which is necessary for derivative calculations. See Golub and
van Loan (1996) for full discussion of QR-decomposition with pivoting.

The stable computation of β̂, which was discussed in Section 3.3, will also require that a
square root of S can be formed that maintains the required ‘column separation’ of the dominant
terms in S (i.e. we must not end up with large magnitude elements in some column j > r1, just
because λ1‖S1‖ is large). This is quite straightforward under the reparameterization that was
just discussed. For example, let Ŝ

′ =λ1Λ̂+λ2ÛTS2Û (with Λ̂s ‘machine zeros’ set to true zeros)
and P̂ be the diagonal matrix such that P̂ ii =√|Ŝ′ii|. Forming the Choleski decomposition
L̂L̂T= P̂−1Ŝ

′
P̂−1, then Ê= L̂T P̂ is a matrix square root such that ÊT̂E= Ŝ

′
. Furthermore, λ1S1

affects only the size of the elements in Ê’s first r1 columns (this is easily seen, since, from the
definition of Ê, the squared Euclidean norm of its jth column is given by Ŝ

′
jj, which does not

depend on λ1S1 if j>r1). The preconditioning (or ‘scaling’) matrix P̂−1 ensures that the Choleski
factor can be computed in finite precision, however divergent the sizes of the components of
S (see for example Watkins (1991), section 2.9). From now on no further purpose is served by
distinguishing between ‘true’ and computed quantities, so circumflexes will be omitted.

Of course S=ΣλiSi generally contains more than two terms and is not full rank, but Appendix
B generalizes the similarity-transform-based reparameterization, along with the (generalized)
determinant and square-root calculations, to any number of components of a rank deficient S.
It also provides the expressions for the derivatives of log.|S|+/ with respect to ρ. The operations
count for Appendix B is O.q3/.

The stable matrix square root E, produced by the Appendix B method, is only useful if the
rest of the model fitting adopts the Appendix B reparameterization, i.e. the transformed Si, S
and E, computed by Appendix B, must be used in place of the original untransformed versions,
along with a transformed version of the model matrix. To compute the latter, let Qs be the
orthogonal matrix describing the similarity transform applied by Appendix B, i.e., if S is the
transformed total penalty matrix, then formally QsSQT

s is the untransformed original. Then
the transformed model matrix should be XQs (obtained at O.nq2/ cost). In what follows it is
assumed that this reparameterization is always adopted, being recomputed for each new ρ-value.
So the model matrix and penalty matrices are taken to be the transformed versions, from now
on. If the coefficient estimates in this parameterization are β̂, then the estimates in the original
parameterization are Qsβ̂.
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Finally, reparameterization is preferable to simply limiting the working λ-range. To keep
the non-zero eigenvalues of all λiSi within limits that guarantee computational stability usually
entails unacceptably restrictive limits on the λi, i.e. limits that are sufficiently restrictive to ensure
numerical stability have statistically noticeable effects.

3.2. Estimating the regression coefficients given smoothing parameters
Minimizing expression (3) by Newton’s method or Fisher scoring both result in a PIRLS method,
as follows. Pseudodata and weights are defined first:

zi=ηi+ .yi−μi/g
′
i

αi
,

wi= ωiαi

Vig
′2
i

,

where ηi=g.μi/=Xiβ, Vi=V.μi/,

αi=
{

1+ .yi−μi/.V
′
i =Vi+g′′i =g′i/ for Newton’s method,

1 for Fisher scoring

and x′ denotes dx=dμi, whatever x. These quantities are always evaluated at the current μi-esti-
mates. The ωi are any prior weights and are usually 1. If a canonical link function is used then
αi=1,∀i, and Newton’s method and Fisher scoring coincide.

Estimation of the coefficients β is performed by the modified IRLS scheme of iterating the
following two steps to convergence (μ-estimates are initialized by using the previous β̂λ, or
directly from y).

Step 1: given the current estimate of μ (and hence η), evaluate z and w.
Step 2: solve the weighted penalized least squares problem of minimizing

n∑
i=1

wi.zi−Xiβ/2+∑
j

λjβ
TSjβ .7/

with respect to β, to obtain the updated estimate of β and hence μ (and η). See Section 3.3.

At convergence of the Newton-type iteration the Hessian of the deviance with respect to β
is given by 2XTWX, where W=diag.wi/. Under Fisher scoring 2XTWX is the expected Hes-
sian. See for example Green and Silverman (1994) or Wood (2006) for further information on
(Fisher-based) PIRLS.

Several points should be noted.

(a) Step halving will be needed in the event that the penalized deviance increases at any
iteration, but the Newton method should never require it at the end of the iteration.

(b) The Newton scheme tends to converge faster than Fisher scoring in non-canonical link
situations, an effect which can be particularly marked when using Tweedie (1984) distri-
butions.

(c) With non-canonical links, the wi need not all be positive for the Newton scheme, and in
practice negative weights are encountered for perfectly reasonable models: the next sec-
tion deals with this. Negative wi provide the second reason that the Wood (2008) method
cannot be extended to REML.

3.3. Stable least squares with negative weights
This section develops a method for stable computation of weighted least squares problems
when some weights are negative, as required by the Newton-based PIRLS that was described
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in Section 3.2. The method also deals with identifiability problems that do not depend on the
magnitude of λ.

The obvious approach to solving expression (7) in the presence of negative weights would be
to solve directly

.XTWX+S/β̂=XTWz .8/

for β̂, where W=diag.wi/, z is the vector of zi from Section 3.2 and S=ΣjλjSj. However, it is
well known that direct formation of XTWX results in a system with a condition number that is
the square of what is necessary (see for example Golub and van Loan (1996), sections 5.3.2 and
5.3.8). Given that penalized GLMs are frequently complex models in which concurvity effects
can easily lead to quite high condition numbers, this approach is not sensible.

When weights are non-negative, a stable solution of equation (8) is based on orthogonal
decomposition of

√
WX (e.g. Wood (2004)), but this does not work if some weights are neg-

ative. This section proposes a stable solution method, by starting with a ‘nearby’ penalized
least squares problem, for which all the weights are non-negative, applying a stable orthogonal
decomposition approach to this, but at the same time developing the correction terms that are
necessary to end up with the solution to equation (8) itself.

To make progress then, let W− denote the diagonal matrix such that W−ii equals 0 if wi � 0
and −wi otherwise. Also let W̄ be a diagonal matrix with W̄ ii=|wi|. In this case

XTWX=XTW̄X−2XTW−X:

So XTWX has been split into a component that is straightforward to compute with stably, and
a ‘correction’ term. Starting with the straightforward term, perform a QR-decomposition

√
W̄X=QR .9/

(either without pivoting, or reversing the pivoting of R after the decomposition). At this stage
it is necessary to test for any inherent lack of identifiability in the problem (i.e. lack of identifi-
ability which is λ independent). Section 3.3.1 describes how to do this. For the moment suppose
that the inherent rank of the problem is r, and we have a list of any unidentifiable parameters.
Then drop the columns of R and X and the rows and columns of the Si corresponding to any
unidentifiable parameters.

R is now a square root of XTW̄X, but we really need a square root of XTW̄X+S, to move
towards solution of equation (8). For this, let E be a matrix such that ETE= S, computed
as described in Appendix B and Section 3.1. Drop the columns of E corresponding to any
unidentifiable parameters, and form a further pivoted QR-decomposition(R

E

)
=QR: .10/

R is the required pivoted square root of XTW̄X+S. Now define n× r matrix Q1=QQ[1 : q, ],
where q is the number of columns of X and Q[1 : q, ] denotes the first q rows of Q. Hence

√
W̄X=Q1R: .11/

For what follows, the pivoting that is used in the QR-step (10) will have to be applied to the
rows and columns of Sj and the columns of X.

Now we need to correct the matrix square root R to obtain what is actually needed to solve
equation (8):
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XTWX+S=RTR−2XTW−X

=RT.I−2R−TXTW−XR−1/R

=RT.I−2R−TRTQT
1 I−Q1RR−1/R

=RT.I−2QT
1 I−Q1/R,

where I− denotes the diagonal matrix such that I−ii equals 0 if wi > 0 and 1 otherwise, and
W− = I−W̄. The matrix I− 2QT

1 I−Q1 is not necessarily positive semidefinite and so requires
careful handling. Forming the singular value decomposition

I−Q1=UDVT .12/

(of course, in practice the zero rows of I−Q1 can be dropped before decomposition) then we
obtain

XTWX+S=RT.I−2VD2VT/R

=RTV.I−2D2/VTR .13/

(and additionally XTWX=RTR−2RTVD2VTR). Now define

P=R−1V.I−2D2/−1=2,

K=Q1V.I−2D2/−1=2: .14/

If z̄ is the vector such that z̄i= zi if wi �0 and z̄i=−zi otherwise, then substituting from equa-
tions (14), (13) and (11) into (8) and solving gives

β̂=PKT√W̄z̄:

The key point about this calculation is that its condition number will be dominated by that of
R, the matrix which must be inverted in the definition of P. This is approximately the square
root of the condition number for using XTWX+S directly, since the term to be inverted in this
latter case would be dominated by RTR (see Golub and van Loan (1996), sections 2.7.2 and
3.5.4 if this is unclear). The key computational steps that are involved in finding β̂ are equations
(9), (10), (12) and (14), plus the rank identification of Section 3.3.1.

Given equation (13), it is now possible to compute one of the REML log-determinant com-
ponents by using

|XTWX+S|= |R|2|I−2D2|,
and it is also worth noting, from equations (13) and (14), that .XTWX+S/−1=PPT (strictly
some sort of pseudoinverse if there is rank deficiency).

There is an important additional detail. At the penalized MLE, XTWX+S will be positive
semidefinite, so di � 1=

√
2 (reparameterize so that R is the identity to see this), but en route to

the optimum there is no guarantee that the penalized likelihood is positive semidefinite. So, if
di >1=

√
2, for any i, then a Fisher step should be substituted, i.e. set αi=1, so that wi �0,∀i. Then

P=R−1 and K=Q1

and the expression for β̂, above, simplifies to β̂=PKT√Wz, while |XTWX+S|= |R|2.
At the end of model fitting, β̂ will need to have the pivoting that was applied at equation

(10) reversed, and the elements of β̂ that were dropped by the truncation step after equation (9)
will have to be reinserted as 0s. Note that the leading order cost of the method that is described
here is the O.nq2/ of the first QR-decomposition. LAPACK can be used for all decompositions
(Anderson et al., 1999).
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3.3.1. λ-independent rank deficiency
As mentioned above, it is necessary to deal with any rank deficiency of the weighted penalized
least squares problem that is ‘structural’ to the problem, rather than being the numerical con-
sequence of some smoothing parameter tending to 0 or∞, i.e. we need to find which, if any,
parameters β would be unidentifiable, even if the penalties and models matrix were all evenly
scaled relative to each other.

To achieve this, first find Ē, a matrix such that

ĒTĒ=∑
i

Si=‖Si‖F:

The scaling of each component of S by its Frobenius norm is simply to achieve even scaling of
the components. The required square root can be obtained by symmetric eigendecomposition
or pivoted Choleski decomposition. Now, using the factor R, from equation (9), and scaling it
by its Frobenius norm, form a pivoted QR-decomposition

(R=‖R‖F
Ē=‖Ē‖F

)
= Q̄R̄

and determine the rank r of the problem from the pivoted triangular factor R̄ (see Cline et al.
(1979) and Golub and van Loan (1996)). The pivoting and rank determination indicates which
parameters are unidentifiable (e.g. Golub and van Loan (1996), section 5.5).

3.4. Derivatives of β̂ with respect to the logarithmic smoothing parameters
The preceding Newton-based computation of the coefficients, β̂, leads to some moderately
simple expressions for the derivatives of β̂ with respect to ρj = log.λj/, which will be needed
subsequently. Specifically

dβ̂

dρj
=−exp.ρj/PPTSjβ̂

and

d2β̂

dρj dρk
= δk

j

dβ̂

dρk
−PPT

{
XTfjk+ exp.ρj/Sj

dβ̂

dρk
+ exp.ρk/Sk

dβ̂

dρj

}

where δk
j =1 if j=k and δk

j =0 otherwise, and

f
jk
i =

1
2

dηi

dρj

dηi

dρk

dwi

dηi
,

dη

dρj
=X

dβ̂

dρj
:

Appendix C provides the derivation of these results, and Appendix D gives the expression for
dwi=dηi. The leading order cost of these calculations is O.M2nq/ where M is the number of
smoothing parameters.

3.5. The rest of the restricted maximum likelihood objective and its derivatives
Given dβ̂=dρj and d2 β̂=dρj dρk then the corresponding derivatives of μ and η follow imme-
diately. The derivatives of D with respect to ρ are then routine to calculate (see Wood (2008)
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for full details). The remaining quantities in the REML (or ML) calculation are |XTWX+S|,
β̂TSβ̂ and the log-saturated-likelihood. These are covered here.

3.5.1. Derivatives of log|XTWX+S|
Computation of log |XTWX+S| itself was covered in Section 3.3. It will be stable provided
that computations are conducted in the transformed space. The derivatives are also needed.
Defining (with reference to Appendix D)

Tj=diag
(

1
|wi|

@wi

@ρj

)
,

Tjk=diag
(

1
|wi|

@2wi

@ρj @ρk

)
,

then some calculations using equations (16) and (17) from Appendix B show that

@log |XTWX+S|
@ρk

= tr.KTTkK/+ exp.ρk/ tr.PTSkP/

and

@2log |XTWX+S|
@ρk @ρj

= tr.KTTkjK/+ δ
j
k exp.ρk/ tr.PTSkP/− tr.KTTkKKTTjK/

− exp.ρj/ tr.KTTkKPTSjP/− exp.ρk/tr.KTTjKPTSkP/

− exp.ρk+ρj/tr.PTSkPPTSjP/:

Although the K-, P- and the T-matrices all differ from those in Wood (2008), it is nonetheless
possible to employ the tricks that are laid out in appendix C of Wood (2008) to evaluate the var-
ious traces in these expressions efficiently. The equivalent term for ML is slightly more involved
and Appendix E provides details. Note that this step dominates the method’s computational
cost. The cost of second derivatives is O.Mnq2=2/, whereas the cost of first derivatives is O.nq2/

(the same as estimating β). For large M , these costs suggest that quasi-Newton optimization,
which only requires first derivatives, will sometimes be more efficient than full Newton optim-
ization for optimization with respect to ρ, although the fact that quasi-Newton optimization
converges more slowly than Newton optimization complicates the comparison.

3.5.2. Derivatives of β̂TSβ̂
To complete the derivatives of Dp requires the derivatives of β̂TSβ̂. These are readily seen to be

@β̂TSβ̂

@ρk
=2

@β̂T

@ρk
Sβ̂+ exp.ρk/β̂TSkβ̂

and

@2β̂TSβ̂

@ρk @ρj
=2

@2β̂T

@ρk @ρj
Sβ̂+2

@β̂T

@ρk
Sjβ̂ exp.ρj/+2

@β̂T

@ρj
Skβ̂ exp.ρk/+2

@β̂T

@ρk
S

@β̂

@ρj

+ δk
j exp.ρk/β̂TSkβ̂,

which have O.M2q2/ computational cost.
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3.5.3. Scale-parameter-related derivatives
For known scale parameter cases, all the derivatives that are required for direct Newton opti-
mization of the REML or ML criteria have now been obtained. However, when φ is unknown
some further work is still needed (the dependence on φ has none of the exploitable linearity of
the dependence on λi, which is why it must be treated separately).

If φ= exp.ρφ/ is estimated by direct REML then we need only

− @lr

@ρφ
=−Dp

2φ
− l′s.φ/φ−Mp

2
,

−@2lr

@ρ2
φ

= Dp

2φ
− l′′s .φ/φ2− l′s.φ/φ,

− @2lr

@ρφ @ρk
=− 1

2φ

@Dp

@ρk

and the derivatives of lr with respect to ρ. (These derivatives also serve to emphasize that direct
estimation works only with full likelihood, not quasi-likelihood.)

If φ̂ is the Pearson statistic over n−Mp, where Mp is the penalty null space dimension (the
number of fixed effects), then an alternative version of the REML score and its derivatives is

− l̂r= Dp

2φ̂
− ls.φ̂/+K−Mp

2
log.2πφ̂/,

− @l̂r

@ρk
= @Dp

@ρk

1

2φ̂
−

{
Dp

2φ̂
2 + l′s.φ̂/+Mp

2φ̂

}
@φ̂

@ρk
+ @K

@ρk
,

and

− @2 l̂r

@ρk @ρj
= @2Dp

@ρk @ρj

1

2φ̂
−

(
@Dp

@ρk

@φ̂

@ρj
+ @Dp

@ρj

@φ̂

@ρk

)
1

2φ̂
2 +

{
Dp

φ̂
3 − l′′s .φ̂/+ Mp

2φ̂
2

}
@φ̂

@ρk

@φ̂

@ρj

−
{

Dp

2φ2 + l′s.φ̂/+Mp

2φ̂

}
@2φ̂

@ρk @ρj
+ @2K

@ρk @ρj
:

These require the derivatives of φ̂, which are easily obtained from the known derivatives of β̂
with respect to the smoothing parameters, combined with the derivatives of the Pearson statistic,
which are given in Appendix F.

The ML derivative expressions are identical to those given in this subsection, if we set Mp=0
(for ML, the fixed effects are not integrated out, and in consequence the direct dependence on
the number of fixed effects goes). Whichever version of REML or ML is used, derivatives of
the saturated log-likelihood with respect to φ are required: Appendix G gives some common
examples.

3.6. Other smoothness selection criteria
Although it was not possible to adapt the Wood (2008) method to optimize REML or ML reli-
ably, the method that is proposed here can readily optimize prediction error criteria of the sort
that were discussed in Wood (2008). In fact the new method has the advantage of eliminating a
potential difficulty with the Wood (2008) method, namely that, when using a non-canonical link
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in the presence of outliers, the Fisher-based PIRLS could (rarely) require step length reduction
at convergence, which could cause the subsequent derivative iterations to fail.

Prediction error criteria are based on the the deviance, Pearson statistic and effective degrees
of freedom of the model, formally defined as tr.F/ where

F= .XTWX+S/−1XTWX:

Clearly the methods that have been described so far deal with the deviance and Pearson statistic,
but the derivatives of tr.F/ require some more work. The results of this are provided in Appendix
H. There are good reasons for preferring W to be based on the Fisher weights in the compu-
tation of F. Doing so guarantees that both XTWX+S and XTWX are positive definite, which
ensures that the effective degrees of freedom are well defined. There are also robustness-to-out-
lier arguments (e.g. Demidenko (2004)) for using the Fisher weights for constructing variance
estimates, despite the general superiority of observed information over expected information
for this purpose (Efron and Hinkley, 1978).

4. Some simulation comparisons

The REML- and ML-based methods, which are proposed here, were compared with GCV (AIC
for known scale parameters) and PQL (based on the version that is implemented in R function
glmmPQL; Venables and Ripley (2002)), as means for selecting smoothing parameters. For each
replicate, 400 data yi were simulated (independently) from an exponential family distribution,
with mean μi where

g.μi/=k=f1.x1i/+f2.x2i/+f3.x3i/:

g is a known link function and the xji are independent identically distributed (IID) uniform on
.0, 1/. k is used to control the signal-to-noise ratio. The fj are plotted in Fig. 2(f). Five distri-
bution–link combinations were used, with 200 replicates performed for each: normal–identity,
gamma–log-, Tweedie–log- (variance power 1.5), binary–logit and Poisson–log-link. For each
case k was set to achieve a squared correlation coefficient between μi and yi of about 0.5. A
generalized additive model (GAM) with the correct link–error structure was fitted to each rep-
licate, but with the linear predictor given by a sum of smooth functions of the three actual
predictors plus a smooth function of a nuisance predictor, which was IID uniform, but did not
influence the true μi. The four-component smooth models were represented by rank 10 thin
plate regression splines (Wood, 2003), except for the third component, for which a rank of 30
was used. Smoothing parameters were chosen by each of REML, ML, PQL and GCV (or AIC
when the scale parameter was known), for each replicate.

Model performance was judged by calculating the mean-square error (MSE) in reconstruct-
ing the true linear predictor, at the observed covariate values. In the case of binary data, this
measure is rather unstable for fitted probabilities in the vicinity of 0 or 1, so the probability scale
was used in place of the linear predictor scale.

The results are summarized in Fig. 2. Boxplots show the distributions, over 200 replicates, of
differences in MSE between each alternative method and REML. Before plotting, the MSEs are
divided by the MSE for REML estimation, averaged over the the case being plotted. In all cases
a Wilcoxon signed rank test indicates that REML has lower MSE than the competing method
(p-value less than 10−3 except for the PQL–ML comparison for the Tweedie distribution where
p= 0:04). The Tweedie variance power was 1.5. PQL failed in 16, 10, 22 and seven replicates,
for the gamma, Tweedie, binary and Poisson data respectively. The other methods converged
successfully for every replicate. The most dramatic difference is between REML and PQL for
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binary data, where PQL has a substantial tail of poor fits, reflecting the well-known fact that
PQL is poor for binary data. Note also the skew in the GCV–REML comparisons: this seems
to result from a smallish proportion of GCV- or AIC-based replicates substantially overfitting.
The mean time per replicate for GCV or AIC, REML and ML was about 0.7 s on a 1.33-GHz
Intel U7700 computer running LINUX (on a mid-range laptop). PQL took between 10 and
20 times longer. All computations were performed with R 2.9.2 (R Development Core Team,
2008) and R package mgcv version 1.6-1 (which includes a Tweedie family based on Dunn and
Smith (2005)).

The experiment was repeated at lower noise levels: first for noise levels such that the r2-value
between μi and yi was about 0.7 and then for still lower noise levels so that the r2-value was
about 0.95. Fig. 3 shows the results for the lowest noise level. In this case ML gives the best
MSE performance, although REML is not much worse and still better than the prediction error
criteria. The intermediate noise level results are not shown, but indicate ML and REML to be
almost indistinguishable, and both better than prediction error criteria. It seems likely that the
superiority of ML over REML in the lowest noise case relates to Wahba’s (1985) demonstration
that REML undersmooths, asymptotically: ML will of course smooth more but is still consistent
(Kauermann et al., 2009). Similarly the failure of prediction error methods to show any appre-
ciable catch-up as noise levels were reduced, despite their asymptotic superiority in MSE terms,
presumably relates to the excruciatingly slow convergence rates for prediction-criteria-based
estimates, obtained in Härdle et al. (1988).

The two problematic examples from the introduction to Wood (2008), Figs 1 and 2, were also
repeated with the methods that are developed here: convergence was unproblematic and reason-
able fits were obtained. See Appendix A for some further comparisons with another alternative
method.

The simulation evidence supports the implication of Reiss and Ogden’s (2009) work, that
REML (and hence the structurally very similar ML) may have practical advantages over GCV
or AIC for smoothing parameter selection, and reinforces the message from Wood (2008), that
direct nested optimization is quicker and more reliable than selecting smoothing parameters on
the basis of approximate working models.

5. Examples

This section presents three example applications which, as special cases of penalized GLMs, are
straightforward given the general method that is proposed in this paper.

5.1. Simple P-spline adaptive smoothing
An important feature of the method proposed is that it is stable even when different penalties act
on intersecting sets of parameters. Tensor product smooths that are used for smooth interaction
terms are an obvious important case where this occurs (see for example Wood (2006), section
4.1.8), but adaptive smoothing provides a less-well-known example, as illustrated in this section,
using adaptive P-splines.

The ‘P-splines’ of Eilers and Marx (1996) combine B-spline basis functions and discrete pen-
alties on the basis coefficients, to obtain flexible spline-like smoothers. For example, if we let
bj.x/ denote B-spline basis functions, with evenly spaced knots, then an unknown function f
can be represented (approximately) as

f.x/=
K∑

i=1
βi bi.x/
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and the wiggliness of this function can be measured by using the discrete penalty

Pordinary=
K−1∑
i=2

.βi−1−2βi+βi+1/2,

or higher or lower order alternatives. The penalty can be used as a smoothing penalty in fit-
ting. One of the reasons that P-splines have proved so popular is the ease with which they
can be modified to perform non-standard smoothing tasks, at relatively little loss of perfor-
mance relative to more computationally complex smoothers. Adaptive smoothing illustrates
this.

An adaptive penalty is easily constructed by allowing the terms in the penalty to have different
weights, depending on i, and hence on x. For example:

P=
K−1∑
i=2

ci.βi−1−2βi+βi+1/2:

Now defining di=βi−1−2βi+βi+1, and D to be the matrix of coefficients such that d=Dβ, we
have

P=βTDT diag.c/Dβ:

The elements ci are unknown, but we could use a B-spline basis to model the ci as a smooth
function of i or x so that c=Cλ, where λ is a vector of unknown (positive) coefficients. In this
case

P=∑
j

λjβ
TDT diag.C·,j/Dβ

where C·,j is column j of C, i.e. the adaptive penalty has become a sum of penalties multiplied
by smoothing parameters λj. The same construction can be used for smooths of several covari-
ates, using tensor products of P-splines. See Krivobokova et al. (2008) for a more sophisticated
P-spline-based approach to this problem.

The obvious advantage of the approach that is given here is that it allows adaptive smoothers
to be used as components of penalized GLMs in the same way as any other smooth. As an
example consider smoothing the well-known motorcycle crash data that were used in Silverman
(1985). The response ai is acceleration of the head of a test dummy in a simulated motorcycle
crash, and it depends on time ti. A simple model is

ai=f.ti/+ "i

where the "i are IID N.0, σ2/ (although a better model would have σ2 depending on time as
well). Given that the data show a low acceleration phase followed by rapid changes in accel-
eration followed by a smooth return to zero, it is possible to make the case that the degree of
penalization of f should depend on t. A model was therefore fitted in which f was represented
by using a rank 40 cubic B-spline basis (even knot spacing), penalized by using the adaptive
penalty given above, λ having dimension 5 (although the results are rather insensitive to the
exact choice here). The smoothing parameters λ were chosen by REML.

The results are shown in Fig. 4, which also includes a fit in which a single-penalty rank 40
thin plate regression spline is used to represent f.t/. The single-penalty case must use the same
degree of penalization for all t, with the result that the curve at low and high times appears
underpenalized and too bumpy, presumably to accommodate the high degree of variability at
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Fig. 4. Two attempts to smooth the motorcycle crash data (all smoothing parameters were chosen by REML;
note that the adaptive smoother uses fewer effective degrees of freedom and produces a fit which appears
to show better adaptation to the data): (a) the smooth as a rank 40 penalized thin plate regression spline;
(b) a simple adaptive smoother of the type discussed in Section 5.1

intermediate times. The adaptive fit took 1.3 s, compared with 0.15 s for the single-penalty fit
(see Section 4, for computer details).

5.2. Generalized regression of scalars on functions
The fact that the method that is described in this paper has been developed for the rather
general model (1) means that it can be used for models that superficially appear to be rather
different from a GAM. To illustrate this, this section revisits an example from Reiss and Ogden
(2009) but makes use of the new method to employ a more general model than theirs, based on
non-Gaussian errors with multiple penalties.

Consider a response yi which is dependent on predictor function zi.x/, where x may be uni-
variate or multivariate. In this case an appropriate model might be

g.μi/=α+
∫

f.x/zi.x/dx, .15/

with yi an observation from some exponential family distribution, with mean μi. f.x/ is an
unknown ‘coefficient’ function and must be estimated. It is straightforward to extend the model
by adding other smooth terms to the linear predictor (the right-hand side). In practice the inte-
gral will be approximated by quadrature, with the midpoint rule being adequate in most cases.
Suppose that the domain of zi.x/ is finite and let xj denote points at which zi has been observed
(with even spacing h). The model becomes

g.μi/=α+h
∑
j

f.xj/zi.xj/:
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Any penalized regression spline basis can be used for f , and model estimation proceeds as for
any other penalized GLM. For more detail on such models see Marx and Eilers (1999), Escabias
et al. (2004), Ramsay and Silverman (2005) or Reiss and Ogden (2007) (and also Wahba (1990)).

As an example, consider trying to predict the octane rating of gasoline (or petrol) from
its near infrared spectrum. For internal combustion engines in which a fuel–air mixture is
compressed within the cylinders before combustion, it is important that the fuel–air mixture
does not spontaneously ignite owing to compressive heating. Such early combustion results in
‘knocking’ and poor engine performance. The octane rating of fuel measures its resistance to
knocking. It is a somewhat indirect measure: the lowest compression ratio at which the fuel
causes knocking is recorded. The octane rating is the percentage of iso-octane in the mixture of
n-heptane and iso-octane with the same lowest knocking compression ratio as the fuel sample.
Measuring octane rating requires special variable compression test engines, and it would be
rather simpler to measure the octane from spectral measurements on a fuel sample, if this were
possible.

Fig. 5(a) shows near infrared spectra for 60 gasoline samples (from Kalivas (1997), as pro-
vided by Wehrens and Mevik (2007)). The octane rating of each sample has also been measured.
Model (15) is a possibility for such data (where yi is octane rating, zi.x/ is the ith spectrum and
x is wavelength). The octane rating is positive and continuous (at least in theory), and there
is some indication of increasing variance with mean (see Fig. 5(c)), so a gamma distribution
with log-link is an appropriate initial model. The spectra themselves are rather spiky, with some
smooth regions interspersed with regions of very rapid variation. It seems sensible to allow
the coefficient function f.x/ the possibility of behaving in a similar way, so representing f by
using the same sort of adaptive smooth as was used in the previous section is appropriate.
Estimation of this model is then just a case of estimating a GLM subject to multiple penaliza-
tion. The remaining panels of Fig. 5 show the results of this fitting, with REML smoothness
selection.

Note that the coefficient function appears to be contrasting the two peak regions with the
trough between them, with the extreme ends of the spectra apparently adding little. The model
explains around 98% of the deviance in octane rating, and the residual plots look plausible
(including a QQ-plot of deviance residuals, which is not shown).

5.3. Generalized additive model term selection and null space penalties
Smoothing parameter selection does most of the work in selecting between models of differing
complexity, but it does not usually remove a term from the model altogether. If the smoothing
parameter for a term tends to ∞, this usually causes the term to tend towards some simple,
but non-zero, function of its covariate. For example, as its smoothing parameter tends to∞,
a cubic regression spline term will tend to a straight line. It seems logical to decide on whether
or not terms should be included in the model by using the same criterion as used for smooth-
ness selection, but how should this be achieved in practice? Tutz and Binder (2006) proposed
one solution to the model selection problem, by using a boosting approach to perform fitting,
smoothness selection and term selection simultaneously. They also provided evidence that in
very data poor settings, with many spurious covariates, this approach can be much better than
the alternatives. This section proposes a possible alternative to boosting, in which each smooth
term is given an extra penalty, which will shrink to zero any functions that are in the null space
of the usual penalty.

For example, consider a smooth with K coefficients β and penalty matrix S, with null space
dimension Ms, so that the wiggliness penalty is βTSβ. Now consider the eigendecomposition
S=UΛUT. The first K−Ms eigenvalues Λi will be positive, and the last Ms will be 0. Writing
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Fig. 5. (a) Near infrared spectra for 60 samples of gasoline (the y -axis is the logarithm of the inverse of
reflectance, which is measured every 2 nm; these spectra ought to be able to predict the octane rating of
the samples; the spectra actually reach 1.2 at the right-hand end but, since this region turns out to have little
predictive power, the y -axis has been truncated to show more detail at lower wavelengths); (b) estimated
coefficient function for the model given in Section 5.2, with factor h absorbed (the inner product of this with
the spectrum for a sample gives the predicted octane rating); (c) observed versus fitted ratings; (d) deviance
residuals for the model versus fitted octane rating

Λ+ for the .K−Ms/× .K−Ms/ diagonal matrix containing only the positive eigenvalues, and
U+ for the K× .K−Ms/ matrix of corresponding eigenvectors, then S=U+Λ+UT+. Now let
U− be the K×Ms matrix of the eigenvectors corresponding to zero eigenvalues. U+ forms
a basis for the space of coefficients corresponding to the ‘wiggly’ component of the smooth,
whereas U− is a basis for the components of zero wiggliness—the null space of the penalty.
The two bases are orthogonal. So, if we want to produce a penalty which penalizes only the
null space of the penalty, we could use βTSNβ where SN =U−UT−. If a smooth term is already
subject to multiple penalties (e.g. a tensor product smooth or an adaptive smooth), the same
basic construction holds, but the null space is obtained from the eigendecomposition of the
sum of the original penalty matrices. Note that this construction is general and completely
automatic.

This sort of construction could be used with any smoothing parameter selection method,
not just REML or ML, but it is less appealing if used with a method which is prone to under-
smoothing, as GCV seems to be.

As a small example, Poisson data were simulated assuming a log-link and a linear predictor
made up of the sum of the three functions shown in Fig. 2(f) applied to three sets of 200 IID
U.0, 1/ covariates. Six more IID U.0, 1/ nuisance covariates were simulated. A GAM was fitted
to the simulated data, assuming a Poisson distribution and log-link, and with a linear predictor
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consisting of a sum of nine smooth functions of the nine covariates. Each smooth function was
represented by using a rank 10 cubic regression spline (actually P-splines for GAM boosting).
The model was fitted by using four different methods: the GAM boosting method of Tutz and
Binder (2006), using version 1.1 of R package GAMBoost (with penalty set to 500 to ensure that
each fit used well over the 50 boosting steps that were suggested as the minimum by Tutz and
Binder (2006)); GCV smoothness selection, with the null space penalties that were suggested
here, REML with no null space penalties and REML with null space penalties. 200 replicates
of this experiment were run, and the MSE in the linear predictor at the covariate values was
recorded for each method for each replicate.

Fig. 6 shows the results. REML with null space penalties achieves lower MSE than REML
without null space penalties, and substantially better performance than GCV with null space
penalties or GAM boosting. The success of the methods in identifying which components should
be in the model at all was also recorded. For GAM boosting the methods given in the GAMBoost
package were employed, whereas, for the null space penalties, terms with effective degrees of
freedom greater than 0.2 were deemed to have been selected. On this basis the false negative
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Fig. 6. Model selection example (models were fitted to Poisson data simulated from a linear predictor made
up of the three terms shown in Fig. 2(f); the linear predictors of the fitted models also included smooth
functions of six additional nuisance predictors; four alternative fitting methods were used for each replicate
simulation): (a)–(c) typical estimates of the terms that actually made up the true linear predictor, using REML,
with selection penalties (partial Pearson residuals are shown for each smooth estimate); (d) distribution, over
200 replicates, of the MSE of the models fitted by each of the methods (‘GAMBoost’ is fitted by using Tutz and
Binder’s (2006) boosting method, ‘GCVselect’ is for models with selection penalties under GCV smoothness
selection, ‘REML’ is REML smoothness selection without selection penalties and ‘REMLselect’ is for REML
smoothness selection with selection penalties)
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selection rates (rates at which influential covariates were not selected) were 0.6% for boosting
and 0.16% for the other methods. The false positive selection rates (rates at which spurious terms
were selected) were 67%, 71% and 62% for boosting, GCV and REML respectively. REML with
null space penalties took just under 6 s per fit, on average, whereas boosting took about 2.5 min
per fit. Note that the example here has relatively high information content, relative to the sce-
narios that were investigated by Binder and Tutz (2006): with less information boosting is still
appealing.

6. Discussion

The method that was proposed in this paper offers a general computationally efficient way of
estimating the smoothing parameters of models of the form (1), when the fj are represented by
using penalized regression splines and the coefficients β are estimated by optimizing expression
(3). With this method, REML- or ML-based estimation of semiparametric GLMs can rival
the estimation of ordinary parametric GLMs for routine computational reliability. Previously
such efficiency and reliability were only available for prediction error criteria, such as GCV. This
means that the advantages of REML or ML estimation that were outlined in Section 1.1 need
no longer be balanced against the more reliable fitting methods that are available for GCV or
AIC. The cost of this enhancement is that the method proposed has a somewhat more complex
mathematical structure than the previous prediction-error-based methods (e.g. Wood (2008)),
but since the method is freely available in R package mgcv (from version 1.5) this is not an
obstacle to its use.

Given that REML or ML estimation requires that we view model (1) as a generalized linear
mixed model, then an obvious question is why should it be treated as a special case for estima-
tion purposes, rather than estimated by general generalized linear mixed model software? The
answer lies in the special nature of the λi. The fact that they enter the penalty or precision matrix
linearly, facilitates both the evaluation of derivatives to computational accuracy and the ability
to stabilize the computations via the method of Appendix B. In addition the λi are unusual
precision parameters in that their ‘true’ value is often infinite. This behaviour can cause prob-
lems for general purpose methods, which cannot exploit the advantages of the linear structure.
Conversely, the method that is proposed here can be used to fit any generalized linear mixed
model where the precision matrix is a linear combination of known matrices but, since it is not
designed to exploit the sparse structure that many random effects have, it may not be the most
efficient method for so doing.

A limitation of the method that was presented here is that it is designed to be efficient when
the fj are represented by using penalized regression splines as described in Wahba (1980),
Parker and Rice (1985), Eilers and Marx (1996), Marx and Eilers (1998), Ruppert et al. (2003),
Wood (2003) etc. These ‘intermediate rank’ smoothers have become very popular over the last
decade, as researchers realized that many of the advantages of splines could be obtained with-
out the computational expense of full splines: an opinion which turns out to be well founded
theoretically (see Gu and Kim (2002), Hall and Opsomer (2005) and Kauermann et al. (2009)).
But, despite its wide applicability, the penalized regression spline approach has limitations.
The most obvious is that relatively low rank smooths are unsuitable for modelling short-range
auto-correlation (particularly spatial). Where this deficiency matters, Rue et al. (2009) offer an
attractive alternative approach, by directly estimating additive smooth components of the linear
predictor, with very sparse Sj-matrices directly penalizing these components. The required
sparsity can be obtained by modelling the smooth components as Markov random fields of some
sort. Provided that the number of smoothing parameters is quite low, then the methods offer very
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efficient computation for this class of problem, as well as better inferences about the smoothing
parameters themselves. When the model includes large numbers of random effects, but not
all components have the sparsity that is required by Rue et al. (2009), or when the num-
ber of smoothing parameters or variance parameters is moderate to large, then the simu-
lation-based Bayesian approach of Fahrmeir, Lang and co-workers (e.g. Lang and Brezger
(2004), Brezger and Lang (2006) and Fahrmeir and Lang (2001)) is likely to be more efficient
than the method that is proposed here, albeit applicable to a more restricted range of penal-
ized GLMs, because of restrictions on the Sj that are required to maintain computational
efficiency.

An interesting area for further work would be to establish relative convergence rates for the
f̂j under REML, ML and GCV smoothness selection. It is not difficult to arrange for f̂j to be
consistent under either approach, at least when spline-like bases are used for the fj in model
(1). Without penalization, all that we require is that the basis dimension grows with sample size
n sufficiently fast that the spline approximation error declines at a faster rate than the sam-
pling variance of f̂j, but sufficiently slow that dim.β/=n→ 0 (so that the observed likelihood
converges to its expectation). This is not difficult to achieve, given the good approximation
theoretic properties of splines. If smoothing parameters are chosen to be sufficiently small, then
penalization will reduce the MSE at any n, so consistency can be maintained under penalized
estimation. In fact, asymptotically, GCV minimizes the MSE (or a generalized equivalent), so the
f̂j will be consistent under GCV estimation. Since REML smooths less than GCV, asymptot-
ically (Wahba, 1985), then the same must hold for REML. However, establishing the relative
convergence rates that are actually achieved under the two alternatives appears to be more
involved.
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Appendix A: Convergence failures of previous restricted maximum likelihood
schemes

Wood (2008) provides some examples of convergence failure for the PQL approach, in which smoothing
parameters are estimated iteratively by REML or ML estimation of working linear mixed models. The
alternative scheme that is proposed in the literature has been implemented by Brezger et al. (2007) in the
BayesX package. Like PQL, this scheme need not converge (as Brezger et al. (2007) explicitly pointed out),
but Brezger et al. (2007) employed an ingenious heuristic stabilization trick which seems to lead to superior
performance to that of PQL in this regard. However, it is not difficult to find realistic examples that still
give convergence problems. For example the following code was used in R version 2.7.1 to generate data
with a relatively benign collinearity problem and a mild mean–variance relationship problem:



Estimation of Semiparametric Generalized Linear Models 29

set.seed(1);n<-1000;alpha<-.75
x0<-runif(n);x1<-x0 * alpha+(1-alpha)*runif(n)
x2<-runif(n);x3<-x2 * alpha+(1-alpha)*runif(n)
x4<-runif(n);x5<-runif(n)
f0<-function(x)2 * sin(pi * x)
f1<-function(x)exp(2 * x)
f2<-function(x)0.2 * x ˆ11 *(10*(1-x))ˆ6+10 *(10 * x)ˆ3 *(1-x)ˆ10
f<-f0(x0)+f1(x1)+f2(x2)
y<-rgamma(f,exp(f/4),scale=1.2)

Fitting the model

log{E.yi/}=f1.x1i/+f2.x2i/+f3.x3i/+f4.x4i/+f5.x5i/+f6.x6i/,

yi∼ gamma, in BayesX version 1.5.0, representing each f by a (default) rank 20 P-spline, resulted in
convergence failure, with the estimates zigzagging without ever converging. Nine subsequent replicates
of this experiment yielded two more convergence failures of the same sort, three catastrophic divergences
and four problem-free convergences (although one of these took more than 200 iterations). Fitting the
same model to these data sets by using the methods that are proposed in this paper gave no problems and
sensible function reconstructions in each case.

Appendix B: j∑i λiSi jC
As discussed in Section 3.1, a stable method for calculating log.|Σi λiSi|+/ and its derivatives with respect
to ρi= log.λi/ is required, when the λi may be wildly different in magnitude. This appendix provides such
a method by extending the simple approach that was described in Section 3.1.

Here it is assumed that q× q matrix S=Σi λiSi is formally of full rank. When this is not so then the
following initial transformation will be required. First form the symmetric eigendecomposition:

ŨΛ̃ŨT=∑
i

Si=‖Si‖F,

where ‖·‖F is the Frobenius norm. Now let U+ denote the columns of Ũ corresponding to positive eigen-
values. The transformation S̃i=UT

+SiU+ is then applied and the methods of this appendix are utilized on
the transformed matrices. It is easy to show that |S|+ = |Σi λiS̃i|, and that Σi λiS̃i has full rank. For the
rest of this appendix it is assumed that this transformation has been applied if necessary, and the tildes
are dropped.

Initialization: set K=0, Q=q and S̄i=Si,∀i. Set γ={1. . . M}, where M is the number of Si-matrices.
Similarity transformation: the following steps are iterated until the termination criterion is met (at step 4).

Step 1: set Ωi=‖S̄i‖Fλi,∀i∈γ.
Step 2: create α={i : Ωi � " max.Ωi/, i∈γ} and γ ′ ={i : Ωi < " max.Ωi/, i∈γ} where " is, for example,
the cube root of the machine precision. So α indexes the dominant terms out of those remaining.
Step 3: find the eigenvalues of Σi∈α S̄i=‖S̄i‖F and use these to determine the formal rank r of any sum-
mation of the form Σi∈α λiS̄i where the λi are positive. The rank is determined by counting the number
of eigenvalues that are larger than " times the dominant eigenvalue. " is typically the machine precision
raised to a power in [0.7,0.9].
Step 4: if r=Q then terminate. The current S is the S to use for determinant calculation.
Step 5: find the eigendecomposition UDUT=Σi∈α λiS̄i, where the eigenvalues are arranged in descending
order on the leading diagonal of D. Let Ur be the first r columns of U and Un the remaining columns.
Step 6: write S in partitioned form

S=
(

AK×K BK×Q

BT
Q×K CQ×Q

)

where the subscripts denote dimensions (rows × columns). Then set B′ =BU and

C′ =
(

Dr+UT
r Sγ′Ur UT

r Sγ′Un

UT
n Sγ′Ur UT

n Sγ′Un

)

where Sγ′ =Σi∈γ′λiS̄i. Then
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S′ =
(

IK 0
0 UT

)
S
(

IK 0
0 U

)
=

(
A B′

B′T C′

)

and |S|= |S′|. The key point here is that the effect of the terms that are indexed by α has been concen-
trated into an r× r block, with rows and columns to the lower right of that block uncontaminated by
‘large machine 0s’ from the terms indexed by α.
Step 7: define

Tα=
(

IK 0 0
0 Ur 0

)
,

Tγ′ =
(

IK 0
0 U

)
and transform

Si←TT
αSiTα ∀i∈α

and
Si←TT

γ′SiTγ′ ∀i∈γ ′:

These transformations facilitate derivative calculations using the transformed S.
Step 8: transform S̄i←UT

n S̄iUn,∀i∈γ ′.
Step 9: set K←K+ r, Q←Q− r, S←S′ and γ←γ ′. Return to step 1.

Note that the orthogonal matrix which similarity transforms the original S to the final transformed
version can be accumulated as the algorithm progresses, to produce the Qs of Section 3.1.

The effect of the preceding iteration is to concentrate the dominant terms in S into the smallest possible
block of leftmost columns, with these terms having no effect beyond those columns. Next the most domi-
nant terms in the remainder are concentrated in the smallest possible number of immediately succeeding
columns, again with no effect to the right of these columns. This pattern is repeated. Since QR-decom-
position operates on columns of S, without mixing columns, it can now be used to evaluate stably the
determinant of the transformed S. Alternative methods of determinant calculation (e.g. Choleski or sym-
metric eigendecomposition) would require an additional preconditioning step.

It is straightforward to obtain a stable matrix square root of the transformed S, which maintains the
column separation that is evident in S itself. Defining diagonal matrix Pii= |Sii|1=2, form the Choleski
factor of the diagonally preconditioned version of S, i.e.

LLT=P−1SP−1:

Then E=LTP is a matrix square root, such that ETE= S. Preconditioning is essential to ensure that
the square root is computable without ever requiring numerical truncation, since the latter would cause
spurious discontinuous changes in the numerical value of |XTWX+S|, which depends on E.

Finally, note that, on the basis of the general results,

@log |F|
@xj

= tr
(

F−1 @F
@xj

)
.16/

and
@2log |F|
@xi @xj

= tr
(

F−1 @2F
@xi @xj

)
− tr

(
F−1 @F

@xi

F−1 @F
@xj

)
.17/

(see Harville (1997)), the expressions for the derivatives are as follows (all right-hand side terms are trans-
formed versions):

@log |S|
@ρj

=λj tr.S−1Sj/

and
@2log |S|
@ρi @ρj

= δi
jλi tr.S−1Si/−λiλj tr.S−1SiS−1Sj/:

Appendix C: Derivatives of β̂ by using implicit differentiation

When full Newton optimization is used in place of Fisher scoring to obtain β̂, then there is no compu-
tational advantage in iterating for the derivatives of β̂ with respect to ρ (as in Wood (2008)), rather than
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exploiting the implicit function theorem to obtain them directly by implicit differentiation. This is because
Newton-based PIRLS requires exactly the same quantities as implicit differentiation. This appendix pro-
vides the details.

Define

Dp=D.β/+∑
m

exp.ρm/βTSmβ,

and note that in this appendix some care must be taken to distinguish total derivatives of Dp, which
encompass all variability with respect to a variable, as opposed to partial derivatives of the expression
for Dp, which ignore dependence of β̂ on ρ.

C.1. Partial derivatives of Dp

@D

@βr

=−2
∑

i

ωi

y−μi

V.μi/g′.μi/
Xir,

dμi

dβr

= Xir

g′.μi/
,

from which it follows (after some calculation) that

@2D

@βr @βm

=∑
i

2wiXimXir

where wi is the Newton version. Consequently

@3D

@βr @βm @βl

=∑
i

dwi

dηi

XimXirXil:

Note that the partials of D with respect to ρ are 0.
Turning to P=Σm exp.ρm/βTSmβ (so Dp=D+P) we have

∇βP=2
∑
m

exp.ρm/Smβ,

∇2
βP=2

∑
m

exp.ρm/Sm:

Furthermore
@∇βP

@ρj

=2 exp.ρj/Sjβ,

@2∇βP

@ρj @ρk

=2δk
j exp.ρj/Sjβ,

@∇2
βP

@ρj

=2 exp.ρj/Sj:

C.2. Derivatives of β̂ with respect to ρ
β̂ is the solution to

dDp

dβr

=0:

Since this equation always holds at β̂, we have

d2Dp

dβr dρj

=∑
m

@2Dp

@βr @βm

dβm

dρj

+ @2Dp

@βr @ρj

=0,

at β̂, i.e.
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dβ̂

dρj

=−
(

@2Dp

@β @βT

)−1
@∇βDp

@ρj

:

Differentiating again we obtain

d3Dp

dβr dρj dρk

=∑
l

∑
m

@3Dp

@βr @βm @βl

dβm

dρj

dβl

dρk

+∑
m

@3Dp

@βr @βm @ρk

dβ̂

dρj

+∑
m

@2Dp

@βr @βm

d2βm

dρj dρk

+∑
m

@3Dp

@βr @βm @ρj

dβ̂

dρk

+ @3Dp

@βr @ρj @ρk

=0:

Now
dη

dρj

=X
dβ

dρj

,

so using the expression for the third partial of D=Dp with respect to ρ and rearranging we obtain

d2β̂

dρj dρk

=−
(

@2Dp

@β @βT

)−1
{

@2∇βDp

@ρj @ρk

+XTf jk+2 exp.ρj/Sj

dβ̂

dρk

+2 exp.ρk/Sk

dβ̂

dρj

}

= δk
j

dβ̂

dρk

−
(

@2Dp

@β @βT

)−1
{

XTf jk+2 exp.ρj/Sj

dβ̂

dρk

+2 exp.ρk/Sk

dβ̂

dρj

}

where

f
jk
i =

dηi

dρj

dηi

dρk

dwi

dηi

:

The inverse required is PPT=2 (with derivatives of dropped parameters set to 0 by this choice).

Appendix D: Derivatives of w

In this appendix primes denote differentiation with respect to μi. First the derivatives of αi are useful:

α′i=−
(

V ′i
Vi

+ g′′i
g′i

)
+ .yi−μi/

(
V ′′i
Vi

− V ′2i

V 2
i

+ g′′′i
g′i
− g′′2i

g′2i

)

and

α′′i =−2
(

V ′′i
Vi

− V ′2i

V 2
i

+ g′′′i
g′i
− g′′2i

g′2i

)
+ .yi−μi/

(
V ′′′i

Vi

− 3V ′i V
′′
i

V 2
i

+ 2V ′3i

V 3
i

+ g′′′′i

g′i
− 3g′′′i g′′i

g′2i
+ 2g′′3i

g′3i

)
:

The key derivatives of wi are then
dwi

dηi

= wi

g′i

(
α′i
αi

− V ′i
Vi

−2
g′′i
g′i

)

and

d2wi

dη2
i

= 1
wi

(
dwi

dηi

)2

− dwi

dηi

g′′i
g′2i
+ wi

g′2i

(
α′′i
αi

− α′2i
α2

i

− V ′′i
Vi

+ V ′2i

V 2
i

−2
g′′′

g′i
+2

g′′2i

g′2i

)
:

The derivatives of η with respect to ρ are obtained from the derivatives of β̂ with respect to ρ, so the
derivatives of wi with respect to ρ follow easily. Note that setting αi≡1, and its derivatives to 0, recovers
Fisher scoring.

Appendix E: Marginal likelihood determinant term and derivatives

ML requires computation of log |X̄TWX̄+ S̄| and its derivatives (see Section 2.1). This requires further
work. First note that explicit formation and decomposition of

√
W̄XU1 would be wasteful. All that is

needed is the (pivoted) QR-decomposition
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RU1= Q̄R̄

where R is from Section 3.3. R (and Q1) should not be truncated here, even if there is rank deficiency:
instead R̄ and Q̄ should be. It is then easy to show that

X̄TWX̄+ S̄= R̄T.I−2Q̄TQT
1 I−Q1Q̄/R̄:

Forming the singular value decomposition

I−Q1Q̄= ŪD̄V̄T,

define

P̄=
(

R̄
−1

V̄.I−2D̄
2
/−1=2

0

)
,

K̄=Q1Q̄V̄.I−2D̄
2
/−1=2:

Then |X̄TWX̄+ S̄| = |R̄|2|I− 2D̄
2| and the expressions for the derivatives of log |X̄TWX̄+ S̄| are as in

Section 3.5.1, but with P̄ and K̄ in place of P and K and the Sk replaced by S̄k=UT
1 SkU1 (pivoted in the

same way as the R̄).

Appendix F: Pearson statistic

The derivatives of the Pearson statistic with respect to the coefficients are required. Wood (2008) provided
these in a form which holds only under Fisher scoring. Here is the general form.

P=∑
i

Pi Pi= ωi.yi−μi/
2

Vi

:

So we need

dPi

dβj

= dPi

dηi

Xij ,

d2Pi

dβj dβk

= d2Pi

dη2
i

XijXik:

The requisite derivatives are
dPi

dηi

=− 1
g′i

{
2ωi.yi−μi/

Vi

+Pi

V ′i
Vi

}
and

d2Pi

dη2
i

= g′′i
g′3i

{
2ωi.yi−μi/

Vi

+Pi

V ′i
Vi

}
+ 1

g′2i

{
2ωi

Vi

+ 2ωi.yi−μi/

Vi

V ′i
Vi

−g′i
dPi

dηi

V ′i
Vi

−Pi

(
V ′′i
Vi

− V ′2i

V 2
i

)}
:

Appendix G: Derivatives of the saturated log-likelihood

When the scale parameter is fixed and known, as in the binomial and Poisson cases, then ls is irrelevant
and its derivative with respect to φ is 0. Otherwise ls and derivatives are needed. Here are three common
examples.

(a) Gaussian:
ls=− log.φ/=2− log.2π/=2,

l′s=−1=2φ,
l′′s =1=2φ2:

(b) Inverse Gaussian:
ls=− log.φ/=2− log.2πy3/=2,

l′s=−1=2φ,
l′′s =1=2φ2:
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(c) Gamma:

ls=− log Γ.1=φ/− log.φ/

φ
− 1

φ
− log.y/:

Writing log Γ to mean the log-gamma function (to be differentiated as a whole):

l′s=
log Γ′.1=φ/

φ2
+ log.φ/

φ2
,

l′′s =−
log Γ′′.1=φ/

φ4
− 2 log Γ′.1=φ/

φ3
+ 1−2 log.φ/

φ3
:

The lgamma, digamma and trigamma functions in R evaluate log Γ, log Γ′ and log Γ′′ respec-
tively.

Appendix H: Derivatives of tr(F)

Prediction error criteria, such as GCV, involve the effective degrees of freedom of a model defined as tr.F/
where

F= .XTWX+S/−1XTWX:

To optimize such criteria by using the method that was developed here requires differentiation of tr.F/ with
respect to the logarithmic smoothing parameters. Define G=XTWX+S. Note that G−1XT√W̄=PKT,√

W̄XG−1XT√W̄=KKT and G−1=PPT. Also define Tj and Tjk as in Section 3.5.1 (and not as in Wood
(2008)), and diagonal matrix I+ where I+ii =−1 if wi < 0 and I+ii =1 otherwise. Now F=PKTI+

√
W̄X and

@F
@ρj

=−G−1

(
XT @W

@ρj

X+ exp.ρj/Sj

)
G−1XTWX+G−1XT @W

@ρj

X,

so that
@tr.F/

@ρj

=−tr.KKTTjKKTI+/− exp.ρj/ tr.KPTSjPKTI+/+ tr.KKTTj/:

Second derivatives are more tedious:

@2F
@ρj @ρk

=
[

G−1

(
XT @W

@ρj

X+ exp.ρj/Sj

)
G−1

(
XT @W

@ρk

X+ exp.ρk/Sk

)
G−1

]‡

XTWX

−G−1

(
XT @2W

@ρj @ρk

X+ δk
j exp.ρj/Sj

)
G−1XTWX−G−1

(
XT @W

@ρj

X+ exp.ρj/Sj

)
G−1XT @W

@ρk

X

−G−1

(
XT @W

@ρk

X+ exp.ρk/Sk

)
G−1XT @W

@ρj

X+G−1XT @2W
@ρj@ρk

X,

where [A]‡=A+AT. It follows that

@2tr.F/

@ρj @ρk

=2 tr.KKTTkKKTTjKKTI+/+2 exp.ρj/ tr.KKTTkKPTSjPKTI+/

+2 exp.ρk/ tr.KPTSkPKTTjKKTI+/+2 exp.ρk+ρj/ tr.KPTSkPPTSjPKTI+/

− tr.KKTTjkKKTI+/− δk
j exp.ρj/ tr.KPTSjPKTI+/−2 tr.KKTTkKKTTj/

− exp.ρj/ tr.KPTSjPKTTk/− exp.ρk/ tr.KPTSkPKTTj/+ tr.KKTTjk/:

Although the K-, P- and T-matrices are all different from those in Wood (2008), and the I+-matrices did
not feature there at all, it is still possible to use the tricks that are listed in appendix C of Wood (2008) to
evaluate these terms efficiently, with only minor adjustment.

There is a strong argument for employing Fisher-scoring-based weights in place of Newton-based
weights in the definition of F. This requires redefining W, Tk and Tjk and setting I+ to I, but otherwise
the computations are identical. This change removes the possibility of XTWX having negative eigenvalues,
which can occasionally lead to nonsensical computed effective degrees of freedom.
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