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Definitions

For τ ∈ (0, 1), the τ th quantile is a value x(τ) such that∫ x

−∞
f (u) du = τ,

where f (·) is a probability density function.

Equivalently,

P(X ≤ x) = τ for R.V.X

or F (x) = τ for c.d.f. F (·)
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Examples

τ = 1/2 gives the median x(1/2).

τ = 1/4 and τ = 3/4 give the lower and upper quartiles, respectively.

The inter-quartile range is x(3/4)− x(1/4).
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Motivational example

Figure: Engel’s 1857 data with median (black), quartiles for
τ = 0.05, 0.1, 0.25, 0.75, 0.9, 0.95 (grey) and linear least squares (dashed).
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Finding the median through minimisation

Univariate observations yi for i = 1, . . . , n.

Sample mean

µ̂ = argminµ∈R

n∑
i=1

(yi − µ)2.

The sample median ξ̂ is the ‘middle value’ of the observations.

ξ̂ = argminξ∈R

n∑
i=1

|yi − ξ|.
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Finding other quantiles

Adjust median minimisation problem.

Consider τ = 0.25, so ξ̂ is the lower quartile.

To ‘reduce’ ξ̂ from median to lower quartile, weight the data.

For yi < ξ̂, weight by more.

For yi > ξ̂, weight by less.

So have problem of the form

ξ̂ = argminξ∈R

n∑
i=1

wi |yi − ξ|

for given weights wi > 0.
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Figure: The red and blue dots are heavier and lighter dots, respectively.
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Formulation

Find that

ξ̂(τ) = argminξ∈R

(
(1− τ)

∑
i :yi≤ξ

|yi − ξ|+ τ
∑
i :yi>ξ

|yi − ξ|
)
.

Write compactly as

ξ̂(τ) = argminξ∈R

n∑
i=1

ρτ (yi − ξ),

where ρτ (u) ≡ u
(
τ − 1{u<0}

)
.

For τ = 1/2, have ρ1/2(u) = |u|/2.

Minimisation problem is unaffected by proportionality factor.
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Weighted function

Figure: Assymetric weighting function ρτ (·).
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Sketch proof (1)

Univariate case

For given τ , define the objective function

Rτ (ξ) =
n∑

i=1

ρτ (yi − ξ).

Rτ (·) is a sum of convex functions and so is convex.

At minimiser, want non-negative directional derivatives. Define

R ′(ξ+) ≡ lim
h→0+

(
R(ξ + h)− R(ξ)

h

)
R ′(ξ−) ≡ lim

h→0+

(
R(ξ − h)− R(ξ)

h

)
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Sketch proof (2)

After some tedious algebra. . .

R ′(ξ+) =
n∑

i=1

(
1{yi<ξ+} − τ

)
= N+(ξ)− τn,

R ′(ξ−) =
n∑

i=1

(
τ − 1{yi<ξ−}

)
= τn − N−(ξ),

where

N+(ξ) = |{yi : yi ≤ ξ}|,
N−(ξ) = |{yi : yi < ξ}|.
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Sketch proof (3)

At a minimiser, have

N−(ξ̂)

n
≤ τ ≤ N+(ξ̂)

n
.

For τn /∈ Z, N−(ξ̂) and N+(ξ̂) are unique.

For τn ∈ Z, ξ̂ lies between two data points.

Example: Find median of the data {1, 2}.
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Multivariate extension

Response observations yi and p-dimensional covariates xi .

Express the conditional mean as a linear combination of the
covariates µ(x) = xTβ, where β ∈ Rp.

For conditional sample mean, find

β̂ = argminβ∈Rp

n∑
i=1

(yi − xTi β)2.

Specifying the τ th conditional quantile function Qy (τ |x) = xTβ(τ),
find that

β̂(τ) = argminβ∈Rp

n∑
i=1

ρτ (yi − xTi β).

Can also parameterise quantile function by splines, for example.

Matthew Durey (University of Bath) An Introduction to Quantile Regression June 1, 2015 13 / 19



Example 2

Figure: Melbourne temperature data. Quantiles using spline basis function (solid
curves) and linear least squares fit (dashed line).
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Example 2 (cont.)

Figure: Associated probability density functions given Yesterday’s Temperature.
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Equivariance property

For h(·) a non-decreasing function on R,

Qh(Y )(τ) = h(QY (τ)).

This property follows from

P(Y ≤ y) = P(h(Y ) ≤ h(y)).

Compare to E[h(Y )] 6= h(E[Y ]) for general h(·).
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Linear programming

General problem: For given c ∈ Rk , A ∈ Rm×k and b ∈ Rm:

minimise cTz over z ∈ Rk

subject to Az ≥ b.

For canonical form, add in slack variables s ∈ Rm
+:

minimise cTz over z ∈ Rk and s ∈ Rm
+

subject to Az− s = b.

Can solve using Simplex Method (for example).
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Quantile Regression with Linear programming

Recall that we wish to find

β̂(τ) = argminβ∈Rp

( ∑
i :yi≥xTi β

τ(yi−xTi β)−
∑

i :yi≤xTi β

(1−τ)(yi−xTi β)

)
,

subject to

yi ≥ xTi β ∀i ∈ S ⊂ {1, . . . , n},
yi ≤ xTi β ∀i ∈ {1, . . . , n}\S .
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Quantile Regression with Linear programming (2)

Define the model matrix X ∈ Rn×p to be X = [x1| . . . |xn]T .

Introduce e ∈ Rn to be e = (1, . . . , 1).

Introduce slack variables u, v ∈ Rn
+.

Have linear programming problem

minimise [τeTu + (1− τ)eTv] over β ∈ Rn and u, v ∈ Rn
+

subject to Xβ + u− v = y,

uivi = 0 ∀i = 1, . . . , n.

The final condition means that slack can only be added for one of
yi ≥ xTi β and yi ≤ xTi β for each i .
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