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Stable and Efficient Multiple Smoothing Parameter
Estimation for Generalized Additive Models

Simon N. WOOD

Representation of generalized additive models (GAM’s) using penalized regression splines allows GAM’s to be employed in a straightfor-
ward manner using penalized regression methods. Not only is inference facilitated by this approach, but it is also possible to integrate model
selection in the form of smoothing parameter selection into model fitting in a computationally efficient manner using well founded criteria
such as generalized cross-validation. The current fitting and smoothing parameter selection methods for such models are usually effective,
but do not provide the level of numerical stability to which users of linear regression packages, for example, are accustomed. In particular
the existing methods cannot deal adequately with numerical rank deficiency of the GAM fitting problem, and it is not straightforward to
produce methods that can do so, given that the degree of rank deficiency can be smoothing parameter dependent. In addition, models with
the potential flexibility of GAM’s can also present practical fitting difficulties as a result of indeterminacy in the model likelihood: Data
with many zeros fitted by a model with a log link are a good example. In this article it is proposed that GAM’s with a ridge penalty provide
a practical solution in such circumstances, and a multiple smoothing parameter selection method suitable for use in the presence of such
a penalty is developed. The method is based on the pivoted QR decomposition and the singular value decomposition, so that with or without
a ridge penalty it has good error propagation properties and is capable of detecting and coping elegantly with numerical rank deficiency.
The method also allows mixtures of user specified and estimated smoothing parameters and the setting of lower bounds on smoothing pa-
rameters. In terms of computational efficiency, the method compares well with existing methods. A simulation study compares the method
to existing methods, including treating GAM’s as mixed models.

KEY WORDS: Generalized additive mixed model; Generalized cross-validation; Penalized quasi-likelihood; REML; Regularization;
Ridge regression; Smoothing spline analysis of variance; Spline; Stable computation.

A generalized additive model (GAM; Hastie and Tibshirani
1986, 1990) is a generalized linear model (GLM; McCullagh
and Nelder 1989) where the linear predictor is specified as
a sum of smooth functions of some or all of the covariates.
For example,

E(Yi) ≡ µi,

g(µi) = ηi ≡ X∗
i β

∗ + f1(x1i) + f2(x2i) + f3(x3i) + · · · ,
where response variable Yi ∼ an exponential family distribu-
tion, g is a monotonic link function, X∗

i is the ith row of X∗,
which is the model matrix for the strictly parametric part of the
model, with corresponding parameter vector β∗, and the fj are
smooth functions of the covariates xj (an fj may be a function
of more than one covariate). To avoid overfitting, such models
are estimated by penalized maximum likelihood estimation, for
example, by maximizing

l(η) − 1

2

∑

j

θj

∫
[f ′′

j (x)]2 dx,

where l is the log-likelihood of the linear predictor and the
terms in the summation are measures of the wiggliness of the
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component functions of the GAM, serving to penalize models
with overly complicated component functions (the particular
form of the penalty is just an example; there are numerous al-
ternative possibilities). The θi are smoothing parameters that
control the trade-off between fit and smoothness. In practice,
the penalized likelihood is maximized by penalized iteratively
reweighted least squares (P–IRLS). For example, given the
foregoing likelihood, at the kth P–IRLS iteration the follow-
ing penalized sum of squares would be minimized with respect
to η to find the (k + 1)th estimate of the linear predictor, η[k+1]:

∥∥W[k](z[k] − η
)∥∥2 +

∑

j

θj

∫
[f ′′

j (x)]2 dx. (1)

W[k] and z[k] are iterative weights and pseudodata, respec-

tively, and are given by W
[k]
ii = 1/

√
g′(µ[k]

i )2V
[k]
i and z

[k]
i =

η
[k]
i +g′(µ[k]

i )(yi −µ
[k]
i ), where V

[k]
i is proportional to the vari-

ance of Yi according to the current estimate µ
[k]
i . The obvious

extra difficulty introduced by the use of the penalized likeli-
hood approach is that the smoothing parameters, θi , have to
be estimated.

GAM’s have become popular due largely to the work of
Hastie and Tibshirani (1986, 1990) and the availability of well
designed software that implements their approach in S–PLUS.
Hastie and Tibshirani minimized (1) by modified backfitting
(Buja, Hastie, and Tibshirani 1989), in which the component
functions can be estimated using no more than simple linear
scatterplot smoothers and standard least squares methods. How-
ever, θi estimation and reliable confidence interval calculation
is difficult to integrate into this approach. Parallel to the GAM
work of Hastie and Tibshirani, the smoothing spline analysis
of variance (SS–ANOVA) work of Gu and Wahba (in particu-
lar, Gu and Wahba 1993; Wahba, Wang, Gu, Klein, and Klein
1995; Wahba 1990; Gu 2002) has provided a mathematically
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elegant theory for function estimation, including GAM’s. The
SS–ANOVA approach operates by finding the functions that
minimize (1) out of all reasonable candidate functions. Gu and
Wahba (1991) developed well founded smoothing parameter
selection methods for these models, as well as confidence inter-
vals with good coverage probabilities (see, e.g., Wahba 1990;
Gu 2002), but this appealing generality comes at high compu-
tational cost—the methods generally require the estimation of
one parameter per datum, so the computational cost scales as
the cube of the number of data (but see Gu and Kim 2002).

In response to the high computational cost of the SS–
ANOVA approach, the problems with inference and smoothing
parameter selection in the Hastie and Tibshirani GAM methods,
and following early work by, for example, Wahba (1980) and
Parker and Rice (1985), several authors have suggested repre-
senting GAM’s using penalized regression splines. Essentially
all that is required is to choose a relatively low rank basis to
represent each component function of the GAM, so that it be-
comes a parametric model with a single model matrix and one
quadratic penalty on the parameter vector for each wiggliness
penalty on the original likelihood. Hastie and Tibshirani (1990),
Hastie (1996), Marx and Eilers (1998), and Wood (2000, 2003)
have all discussed using penalized regression splines for GAM
modeling. Wood (2000) also provided an efficient smoothing
parameter selection method for these models, based on the ap-
proach used in Gu and Wahba’s (1991) SS–ANOVA specific
method. In the generalized case, the method applies generalized
cross validation (GCV; Craven and Wahba 1979) or similar cri-
teria to estimate the smoothing parameters for each problem (1)
of the P–IRLS, an approach termed performance iteration by
Gu (1992), who introduced it in the generalized spline smooth-
ing case.

Efficient smoothing parameter selection methods are impor-
tant for practical GAM modeling. It is possible, for example,
to perform smoothing parameter selection by direct grid search
optimization of criteria such as GCV or the Akaike information
criterion (AIC), but if the model has more than two or three
terms, this is usually so computationally expensive as to pre-
clude the kind of careful model building and checking required
in most applied contexts. Yet if GAM’s are to be used for more
than purely exploratory analysis, then smoothing parameter se-
lection is a key component of model selection.

Wood (2000) (and Gu and Wahba 1991, in the SS–ANOVA
context) provided an efficient method for smoothing parame-
ter selection, but left some significant practical problems un-
resolved. A key problem relates to the fitting of GAM’s by
P–IRLS. It is well known (e.g., McCullagh and Nelder 1989)
that IRLS can fail to converge in cases where the expected value
of a response does not correspond to a finite value of the linear
predictor in a GLM. Perhaps the simplest example is provided
by Poisson regression with a log link. Consider the case of a
response observation yi = 0 of a Poisson random variable with
mean µi and linear predictor Xiβ , where Xi is the ith row of a
model matrix and β is a parameter vector. Vector β is estimated
by IRLS, but at any iterate of this algorithm, we have that the
pseudodata for next iterate is

zi = Xiβ + 1

µi

(0 − µi) = Xiβ − 1,

that is, the target value for the linear predictor at the next iter-
ate is 1 less than its current value. This situation is not likely to
encourage convergence. In the GLM case, such inherently di-
vergent tendencies are usually countered by the need for a rel-
atively inflexible GLM model structure to fit the nonzero data
points as well, but with a model structure as flexible as a GAM,
such stabilization often fails to occur. In most such cases, while
the IRLS pseudodata suggest ever wider divergence of the lin-
ear predictor, the IRLS weights become progressively smaller.
This feature suggests that, for practical purposes, either a sim-
ple ridge penalty or lower bounds on the smoothing parame-
ters could stabilize the iteration. However, the inclusion of such
fixed penalties changes the GAM fitting problem so that the
Wood (2000) and Gu and Wahba (1991) approaches are no
longer applicable.

A second class of problems relate to the basic numerical sta-
bility of the GAM fitting and smoothing parameter estimation
method, even supposing that the IRLS method is convergent.
Very wide divergence in the magnitude of iterative weights,
near coincidence of covariate values, poor relative scaling of the
covariates of a multidimensional smooth, an unfortunate choice
of basis to represent a smooth term, or simple colinearity or
concurvity problems can all lead to numerical rank deficiency
of the model matrix of the GAM: The methods of Wood (2000)
and Gu and Wahba (1991), although functioning perfectly well
on “well behaved” fitting problems, do not deal well with these
rank deficient cases. However, in penalized regression contexts,
effective treatment of numerical rank deficiency, beyond simple
colinearity or concurvity, can be difficult when the smoothing
parameters are not known in advance. This is because the penal-
ties tend to act as regularization terms on the model fit, with the
result that the degree of ill conditioning (near rank deficiency)
can be smoothing parameter dependent: This presents obvious
difficulties when trying to produce an effective smoothing pa-
rameter estimation method.

Finally, during practical model building, it is often desirable
to be able either to put lower bounds on some smoothing para-
meters or to supply the values for some smoothing parameters
while estimating others. This is particularly important if fully
automatic smoothing parameter selection has resulted in one or
more model terms that clearly overfit: It is always important to
be able to override automatic model selection. Another quite
common reason for wanting to fix or bound smoothing para-
meters is when smooth terms are in some sense hierarchical:
some terms being present in the model only to explain variabil-
ity that cannot be explained by the covariates that are really of
interest (smooth functions of spatial location are the obvious ex-
ample). In such circumstances, it is often of interest to explore
model fits in which these nuisance terms are given a series of
fixed smoothing parameters, while the interesting terms are left
with free smoothing parameters. In this way, the interesting co-
variates can be forced to do as much of the explanatory work
as possible.

This article aims to address the foregoing issues by proposing
an improved multiple smoothing parameter estimation method
that can deal with fixed penalties (such as a ridge penalty or
the penalty that results from fixing some smoothing parame-
ters), which offer the maximum possible numerical stability and
which can deal with rank deficiency even when the numerical
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rank depends on the smoothing parameters. At the same time,
the method is only slightly more computationally costly than
the method of Wood (2000), and offers the benefit of requiring
only standard numerical linear algebra methods that are read-
ily available in public domain libraries (specifically LINPACK
and LAPACK).

An alternative approach to GAM estimation treats the model
as a generalized linear mixed model and treats the smooth-
ing parameters as the (reciprocals of ) variance components.
The Appendix provides more details. This mixed model ap-
proach is compared to the method developed in this article in
simulation comparisons, which also compare the new method
to the methods of Wood (2000) and Gu and Wahba (1991).

1. A METHOD FOR MULTIPLE SMOOTHING
PARAMETER ESTIMATION

As discussed in the introduction, GAM fitting is usually
based on penalized iteratively reweighted least squares, and
to fit a GAM and estimate its smoothing parameters requires
the solution of, and smoothing parameter estimation for, a se-
quence of weighted penalized least squares problems (see, e.g.,
Wahba 1990; Wood 2000; Gu 2002, for a fuller discussion, or
see the App. for a different approach). Usually some identifia-
bility constraints are applied to the fitting problem, but for clar-
ity of presentation I will neglect weights and constraints for the
moment, and return to them at the end of this section.

The basic GAM fitting problem (typically nested within a
P–IRLS loop in weighted, constrained form) is, therefore,

minimize ‖y − Xβ‖2 + βTHβ +
m∑

i=1

θiβ
TSiβ wrt β. (2)

Variable X is an n × q model matrix, β is a parameter vec-
tor, y is a response vector, Si is the ith (positive semidefinite)
penalty matrix with unknown smoothing parameter θi , and H is
a fixed positive semidefinite penalty matrix: It allows several
enhancements to existing GAM methods, for example, the im-
position of ridge penalties, the imposition of lower bounds on
smoothing parameters, and the employment of mixtures of pre-
specified and estimated smoothing parameters.

Given the smoothing parameters, this problem is easily
solved, but the smoothing parameters have to be estimated. Two
possible methods are GCV or minimization of an unbiased risk
estimator (UBRE) (see Craven and Wahba 1979; UBRE can be
viewed as an approximation to AIC for many GAM’s) where
the parameters are chosen to minimize

Vg = n‖y − Ay‖2

[tr(I − γ A)]2

or

Vu = 1

n
‖y − Ay‖2 − 2

n
σ 2tr(I − γ A) + σ 2,

respectively. A is the influence matrix or hat matrix of the
fitting problem, and it depends on the smoothing parameters;
γ ≥ 1 is a parameter sometimes used to enforce smoother mod-
els than would otherwise occur (see, e.g., the Chambers and
Hastie 1993, discussion of smooth.spline) and σ 2 is the
variance of the yi or, in a P–IRLS context, the scale parameter.

Neither criteria is easy to minimize with respect to multiple
smoothing parameters, because direct evaluation of the tr(A)

term involves at least nq2/2 operations plus O(q3) operations
for each new set of smoothing parameter values: Hence smooth-
ing parameter estimation by direct search of the smoothing
parameter space is often too computationally demanding for
routine use (and prohibitive in the full SS–ANOVA case for
which q = n). One pragmatic, but ad hoc, approach is simply to
estimate the smoothing parameters using GCV applied to each
of the single smoothing parameter problems that arise at each
step of a backfitting algorithm (as in SAS PROC GAM; see
Xiang 2001), but the theoretical properties of this method are
unclear: Some problems might be expected with correlated co-
variates. Hastie and Tibshirani (1990, sec. 9.4.3) took a differ-
ent approach in the context of backfit GAM’s, suggesting that a
computationally efficient approximation to the GCV score for
the whole model could be employed. However, a useful efficient
approach based on the exact GCV score for the whole model
was pioneered by Gu and Wahba (1991), who alternated effi-
cient direct searches for an “overall smoothing parameter” with
Newton updates of ηi = log(θi). Their method used the spe-
cial structure of the general spline smoothing problem in which
they were primarily interested (and in which X depends on the
smoothing parameters and there is no H). Wood (2000) adapted
their approach to problems with the structure considered here,
but without the fixed penalty. The Wood (2000) method pro-
vided an effective means of selecting the degree of smooth-
ness for terms in GAM models, but has two drawbacks (in part
shared with the Gu and Wahba 1991 method). First, because of
the way the direct search for the overall smoothing parameter
works, the method does not allow users to fix some smoothing
parameters and estimate others, bound smoothing parameters
from below, or regularize the fit with a ridge penalty (i.e., no
H term is possible). Second, the method is not optimally stable
numerically, and this can cause problems in practical applica-
tion of the method in the GAM context.

Here an alternative to the Wood (2000) method is developed
that allows the fixed penalty term, is particularly robust numer-
ically, and can deal elegantly with rank deficiency in the model,
whether it occurs over all or only part of the smoothing para-
meter space. The difference in numerical robustness is similar
to (actually slightly greater than) the difference between using
pivoted QR or singular value decomposition (SVD) methods in
ordinary least squares, as opposed to solving the normal equa-
tions via a Choleski decomposition (e.g., see Golub and van
Loan 1996), while the ability to impose ridge penalties is of
practical use in GAM contexts where the models would other-
wise be practically unidentifiable.

1.1 Stable and Efficient Score Minimization

The basic approach is to perform Newton, or failing that,
steepest descent, updates of the log smoothing parameters.
Hence stable and computationally efficient formation of the
derivatives of the scores with respect to the log smoothing pa-
rameters is of primary concern. Working with log smoothing
parameters has the advantage of ensuring that the smoothing
parameter estimates are positive, and is also justified heuristi-
cally by the fact that plots of GCV and UBRE functions for one-
dimensional smooths appear to be more susceptible to quadratic
approximation than do equivalent plots on the original scale.
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Consider the influence matrix of the problem, because this is
the term in the GCV or UBRE scores that is expensive to obtain:

A = X

(
XTX + H +

m∑

i=1

θiSi

)−1

XT.

The first step is to form the QR decomposition of X,

X = QR,

where Q is made up of columns of an orthogonal matrix and
R is upper triangular. For maximum stability, a pivoted de-
composition should actually be used here (Golub and van Loan
1996; LAPACK provides a suitable routine), which has the con-
sequence that the parameter vector and Si matrices have to be
reordered before proceeding, and the estimated parameter vec-
tor and covariance matrix have to be put back into the original
ordering at the end of the estimation procedure.

Defining S = H+∑m
i=1 θiSi and B as any matrix square root

of S such that BTB = S, a singular value decomposition (Golub
and van Loan 1996 LAPACK version used) can be formed:

[
R
B

]
= UDVT.

B can be obtained efficiently by pivoted Choleski decomposi-
tion (e.g., available in LINPACK) or by eigendecomposition of
the symmetric matrix S (see, e.g., Golub and van Loan 1996).
The columns of U are columns of an orthogonal matrix, V is an
orthogonal matrix, and D is the diagonal matrix of singular val-
ues. Examination of these singular values is the most reliable
way to detect numerical rank deficiency of the fitting problem
(Golub and van Loan 1996; Watkins 1991). In particular, at this
stage any singular values that are too small should be removed
along with the corresponding columns of U and V. This dele-
tion has the effect of recasting the problem into a reduced space
in which the model parameters are identifiable. “Too small” is
usually judged with reference to the largest singular value. In
the work reported here, singular values less than the largest
singular value multiplied by the square root of the machine
precision were deleted. Note that, in addition to dealing with
colinearity and concurvity directly identifiable from X, this ap-
proach also deals effectively with the difficult problem of rank
deficiency that may occur only over part of the smoothing pa-
rameter space.

Now defining the submatrix U1 of U such that R = U1DVT,
we have that X = QU1DVT, while XTX + S = VD2VT.
Consequently

A = QU1DVTVD−2VTVDUT
1 QT

= QU1UT
1 QT.

Hence tr(A) = tr(U1UT
1 QTQ) = tr(U1UT

1 ), which is relatively
cheap to evaluate for new trial values of θ .

Turning to the derivatives, it is convenient to write the in-
fluence matrix as A = XG−1XT, where G = XTX + S =
VD2VT and hence G−1 = VD−2VT. Letting ηi = logθi , we
then have that

∂G−1

∂ηi

= −G−1 ∂G
∂ηi

G−1 = −θiVD−2VTSiVD−2VT

and so

∂A
∂ηi

= X
∂G−1

∂ηi

XT = −θiQU1D−1VTSiVD−1UT
1 QT.

For the second derivatives we have

∂2G−1

∂ηi ∂ηj

= G−1 ∂G
∂ηj

G−1 ∂G
∂ηi

G−1

− G−1 ∂2G
∂ηi ∂ηj

G−1 + G−1 ∂G
∂ηi

G−1 ∂G
∂ηj

G−1

and, of course,

∂2A
∂ηi ∂ηj

= X
∂2G−1

∂ηi ∂ηj

XT.

This becomes

∂2A
∂ηi ∂ηj

= θiθj QU1D−1VT[
Sj VD−2VTSi

]‡VD−1UT
1 QT + δi

j

∂A
∂ηi

,

where B‡ ≡ B + BT and δi
j = 1 if i = j and zero otherwise.

Writing α = ‖y − Ay‖2, we are in a position to obtain
the derivatives needed to find the derivatives of the scores.
Some rather tedious manipulation leads to the following: De-
fine y1 = UT

1 QTy, Mi = D−1VTSiVD−1, and Ki = MiUT
1 U1.

Then

tr

(
∂A
∂ηi

)
= −θi tr(Ki ),

tr

(
∂2A

∂ηi ∂ηj

)
= 2θiθj tr(Mj Ki ) − δi

j θi tr(Ki ),

while

∂α

∂ηi

= 2θi

[
yT

1 Miy1 − yT
1 Kiy1

]

and

∂2α

∂ηi ∂ηj

= 2θiθj yT
1

[
MiKj + Mj Ki

− MiMj − Mj Mi + KiMj

]
y1 + δi

j

∂α

∂ηi

.

The preceding derivatives can be used to find the derivatives
of Vg or Vu with respect to (wrt) the ηi . First let δ = n−γ tr(A),
so that

Vg = nα

δ2 and Vu = 1

n
α − 2

n
δσ 2 + σ 2.

Then

∂Vg

∂ηi

= n

δ2

∂α

∂ηi

− 2nα

δ3

∂δ

∂ηi

and

∂2Vg

∂ηi ∂ηj

= −2n

δ3

∂δ

∂ηj

∂α

∂ηi

+ n

δ2

∂2α

∂ηi ∂ηj

− 2n

δ3

∂α

∂ηj

∂δ

∂ηi

+ 6nα

δ4

∂δ

∂ηj

∂δ

∂ηi

− 2nα

δ3

∂2δ

∂ηi ∂ηj

.
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Similarly,

∂Vu

∂ηi

= 1

n

∂α

∂ηi

− 2
∂δ

∂ηi

σ 2

n

and

∂2Vu

∂ηi ∂ηj

= 1

n

∂2α

∂ηi ∂ηj

− 2
∂2δ

∂ηi ∂ηj

σ 2

n
.

These derivatives can be obtained quite efficiently for each
new θ , so that Newton’s method can be used to find the opti-
mum θ fairly efficiently. If the score is not locally concave (i.e.,
if some eigenvalues of the Hessian of the score with respect to
the smoothing parameters are not positive), then steepest de-
scent steps can be substituted for Newton steps. In either case,
if the direction fails to decrease the score, then repeated step
length halving can be applied until either the score decreases,
or the direction is deemed not to lead to decrease. Some care
is required to get good starting values for the θi . In iteratively
reweighted least squares contexts it is usual to carry forward the
previous θ estimate as the starting θ at the next iteration: If this
is done, it is important to reset to a default starting value any θi

for which ∂V·/∂ηi is of too small a magnitude; this avoids be-
coming stuck on flat portions of the score. In a similar vein,
optimal ηi at ±∞ can be problematic, because false early con-
vergence of the Newton method is quite easily triggered in such
cases. A sensible precaution is to check that a fairly large step
for each smoothing parameter (in the direction suggested by the
score gradient) would not improve the score once an apparent
optimum has been achieved.

The best fit GAM parameters are

β̂ = VD−1y1

with corresponding estimated Bayesian parameter covariance
matrix (see, e.g., Wood 2000)

Vβ = VD−2Vσ̂ 2, where σ̂ 2 = α/
(
n − tr(A)

)
.

1.2 The More General Problem

In the previous section, weights and constraints were ne-
glected for clarity. In general the problems of interest are in
fact of the form

minimize ‖W(y − Xβ)‖2 + βTHβ +
m∑

i=1

θiβ
TSiβ

wrt β subject to Cβ = 0,

where W is typically a square root of the inverse of the covari-
ance matrix of y (i.e., WTW = V−1

y ) or the iterative weights in
a GLM weighted least squares iteration. The linear constraints
typically impose identifiability constraints of some sort; in the
GAM context, usually that each smooth should sum to zero over
its covariate values.

The constraints can be found by forming the QR decomposi-
tion of CT. The final q − c columns of the resulting orthogonal
factor Q∗ (where c is number of constraints) give the null space
of C: Z, say. Writing β = Zβz ensures that the constraints are
met. Letting ỹ = Wy, X̃ = WXZ, H̃ = ZTHZ, and S̃i = ZTSiZ,
the problem becomes

minimize ‖ỹ − X̃βz‖2 + βT
z H̃βz +

m∑

i=1

θiβ
T
z S̃iβz wrt βz,

which is in exactly the form required for the method described
in Section 1.1.

Transforming the parameters and their variances back to the
original parameter space after fitting is straightforward:

β̂ = Zβ̂z, Vβ = ZVβz
ZT.

The degrees of freedom per parameter in the unconstrained
space are given by the leading diagonal of

VβXTWTWX/σ̂ 2.

1.3 Convergence Issues

This section discusses some convergence issues relating to
both the smoothing parameter estimation procedure itself and
the GAM fitting methods within which it is usually embed-
ded. First, consider the convergence conditions for the smooth-
ing parameter estimation algorithm. Writing V for the GCV or
UBRE score functions and writing θ̂k for the estimated smooth-
ing parameter values at iteration k, convergence is deemed to
have occurred if

V (θ̂k−1) − V (θ̂k) ≤ ε0
(
1 + |V (θ̂k)|

)

and
(

1

m

∑

i

∂V

∂θi

∣∣∣∣
2

θ̂k

)1/2

≤ ε
1/3
0

(
1 + |V (θ̂k)|

)

(where ε0 is a small constant) or (as a pragmatic fail-safe) there
is no decrease in V along the steepest descent direction after
a specified number of step-halvings. The former conditions are
taken from Gill, Murray, and Wright (1981). The conditions
do not involve the values of the smoothing parameter estimates
directly, because these may legitimately not converge if a “true”
value is at infinity.

When γ = 1, the asymptotic mean squared error (MSE) min-
imization properties of Vg and Vu (see, e.g., Gu 2002 for a clear
exposition) mean that as the sample size tends to infinity, we
expect the scores to have global minima increasingly close to
what is optimal in MSE terms. However, the scores may in
practice sometimes display local minima, and it is not possible
to guarantee that they will always be avoided by the optimiza-
tion method, although simple precautions such as examining
transects through the score functions can help to identify such
problems if they do occur.

In general contexts in which the penalized likelihood is max-
imized iteratively, convergence is not guaranteed theoretically.
Because iteratively reweighted least squares is not guaranteed
to converge in all circumstances, then neither is a penalized
version, particularly when smoothing parameters must also be
estimated. In fact, the smoothing parameter estimation makes
theoretical treatment of convergence a difficult and currently
open issue, at least when the computationally efficient per-
formance iteration (Gu 1992) is used, so that smoothing pa-
rameters are estimated by GCV or UBRE for each penalized
regression problem generated by the iteratively reweighted least
squares procedure. Gu (2002, sec. 5.2) provided a fuller discus-
sion of the issues. However, it is worth noting that this article
was motivated by investigation of a number of practical conver-
gence problems, which turned out to relate not to nonexistence
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of a stationary point in the performance iteration, but rather to
the stability issues addressed by the new method.

The final convergence issue concerns convergence of the
model parameter estimators β̂ as sample size n → ∞. The pres-
ence of the penalty terms in (2) ensures that they will gener-
ally be biased, but the fixed dimension of β ensures (slightly
artificially) that consistency is straightforward to demonstrate.
In the Gaussian case it helps to reparameterize a little so
that (2) becomes

minimize
1

n
‖y − Xβ‖2 + βTHβ +

m∑

i=1

θiβ
TSiβ wrt β.

If H → 0 and θi → 0 as n → ∞ for all θi (except possibly those
relating to penalties on subsets of β with true values in the null
space of the penalty concerned), then consistency of β̂ follows
from the fact that the fitting objective becomes entirely domi-
nated by its least squares component as n → ∞. Similarly, in
the generalized case the P–IRLS iterations maximize a penal-
ized likelihood, and again if H → 0 and θi → 0 as n → ∞,
the likelihood part dominates as sample size increases, yield-
ing consistency of β̂ from the consistency of maximum likeli-
hood estimation. H → 0 is entirely in the hands of the modeler.
As n → ∞, the shapes of Vg and Vu become dominated by
‖y − Ay‖2/n, which is minimized when θi → 0 (for all θi ex-
cepting those excepted previously) as required for consistency
of β̂ . Of course if the dimension of β increases with n, then
a much more careful argument is required.

2. COMPARISON OF THE NEW AND
OLDER METHODS

The proposed method improves in several ways on the
method of Wood (2000), which was in turn developed from
the method of Gu and Wahba (1991). In this (slightly tech-
nical) section, the new method is compared with the Wood
(2000) method.

To understand the differences between the methods, it is
helpful to consider the expression for the influence matrix A
used in the two methods and the calculation of the key
term tr(A). The Wood (2000) method used the expression

A = ρQ
(

Iρ +
∑

i

θiR−T
SiR−1

)−1

QT,

where ρ is an extra overall smoothing parameter included to al-
low use of existing single smoothing parameter methods as part
of smoothing parameter estimation (there is no H term possible
for this method). The method then forms the decomposition

∑

i

θiR−TSiR−1 = PTPT,

where P is orthogonal and T is tridiagonal, so that

A = ρQP(Iρ + T)−1PTQT.

There are three potential sources of numerical instability here.

1. X must be of full rank or R will be rank deficient and
the terms involving R−1 will not be identifiable. Near
rank deficiency of X (e.g., as a result of colinearity or
concurvity) will also cause numerical difficulties through
the resulting near rank deficiency (high condition number)
of R.

2. Because the Si are usually rank deficient, it is only the
Iρ term that gives Iρ + T the necessary full rank. Hence
as ρ → 0 or any θi → ∞, (Iρ + T) tends to singularity
(condition number tends to infinity) and (Iρ + T)−1 be-
comes numerically problematic.

3. The Wood (2000) method uses a Choleski decomposition
of Iρ + T to solve for terms involving (Iρ + T)−1, but
the Choleski method will not be reliable if the condition
number of Iρ + T is greater than approximately 1/

√
ε,

where ε is the machine precision (see Golub and van Loan
1996, sec. 6.3.4, p. 240). There is clearly scope for this to
happen either through near rank deficiency of X/R or if
smoothing parameters θi become very large.

By careful scaling of X and guarding the range of allowed
smoothing parameters (as in R package mgcv) it is possible
to avoid these issues leading to actual numerical problems for
most well behaved models, but they cannot be eliminated alto-
gether, particularly if the appropriate value for some smooth-
ing parameters approaches ∞ or if the model really is close to
unidentifiable, at least for some values of the smoothing pa-
rameters. (Note that pivoting the Choleski decomposition is
problematic for this method if the efficiency benefits accruing
from T being tridiagonal are to be maintained.)

None of these problems occurs with the new method for
which the expression for the influence matrix is A = QU1UT

1 QT.
Indeed it is difficult to see how this expression could be im-
proved with regard to numerical stability. The only potential
cause of difficulty is if rank deficiency of X is underestimated
so that U is insufficiently truncated. In this case the fitted values
are unaffected, but the trace of the influence matrix will be over-
estimated by an amount bounded above by the underestimation
of the rank of the problem. Since SVD is the most reliable way
to estimate problem rank, it is not easy to see how this minor po-
tential problem can be avoided; in any case, the new method is
doing much better than the Wood (2000) method, which simply
assumed X to be of full rank and could fail badly if it was not.

The issues are very similar when it comes to comparison
of the derivative calculations. For example, the Wood (2000)
method uses the expression

∂2A
∂ηi ∂ηj

= ρθiθj

[
QP(Iρ + T)−1PTR−T

SiR−1P

× (Iρ + T)−1PTR−T
Sj R−1P(Iρ + T)−1PTQT]‡

+ δi
j

∂A
∂ηi

.

Clearly the same issues apply to this expression as applied to
the expression for A, only more so, given that the potentially
problematic terms now recur. In comparison, the expression
used in the new method is substantially better: Systems that in-
volve D−1 do have to be solved, but D will have been truncated
if rank deficiency was detected, so its condition number will al-
ways be safely bounded above. Again it is worth emphasizing
here that the method used to detect numerical rank deficiency
is the best known (Golub and van Loan 1996), and again it is
difficult to see how this calculation could be further improved
in terms of numerical stability.
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Wood: Stable Estimation of Generalized Additive Models 679

So, the new method eliminates the potential sources of poor
numerical performance in the Wood (2000) method, in addition
to extending the class of problems that can be addressed via the
introduction of H and removal of the full rank condition on X.
Furthermore, there are no other sources of numerical difficulty
evident in the new method, and although it is always possible
that more extensive experience will reveal unanticipated prob-
lems, I am fairly confident that further major improvements
in this direction are unlikely to be possible (several alternative
methods of intermediate stability were discarded en route to ob-
taining the method reported here).

The new method has two possible weaknesses relative to
Wood (2000). First, although the leading order QR decomposi-
tion of X is the same for both methods, the subleading order cal-
culations are slightly more costly for the new method. However,
this issue is complicated in poorly conditioned cases by the fact
that the more accurate calculations can lead to faster conver-
gence. The second potential weakness is that the new method
does not include the global search for an overall smoothing
parameter that was a feature of the Wood (2000) method. In
theory, such a search might help the algorithm to escape local
minima in the GCV score, but in practice it seems to lead to lo-
cal minima at infinite smoothing parameters as often as it helps
to escape from local minima. Hence careful choice of initial
values and step length guarding during optimization are usually
more helpful at avoiding spurious local minima in practice.

3. PERFORMANCE OF THE NEW METHOD

The development of the new method arose from attempts
to diagnose the cause of convergence and fitting problems
in a number of rather complex practical modeling problems.
Typically such failures have more than one cause, while the
models themselves are too complicated to serve as good il-
lustrations of the basic types of convergence problems. There-
fore, in this section I illustrate the effectiveness of the new
method using synthetic data designed to simply exemplify the
kinds of problems that can cause difficulty in real modeling
situations. In each case I compared the performance of Gu
and Wahba’s (1991) method as implemented in the R pack-
age gss (version 0.8-2) and Wood’s (2000) method as imple-
mented in R package mgcv (version 0.8-7) to the new method.
All tests were carried out on a Pentium IV 1.7 GHz PC run-
ning Windows XP and R 1.7.0 (R Core Development Team
2003). For the new method the convergence tolerance ε0 was
set to 1 × 10−6.

Another possibility for model and multiple smoothing para-
meter estimation is to write the model as a mixed model and
estimate using REML in the additive model case and penal-
ized quasi likelihood (PQL) in the generalized additive model
case. The Appendix gives details of how this can be done in
a straightforward manner suitable for use with the R routines
lme (nlme version 3.1-39) or glmmPQL (Venables and Ripley
2002); comparisons were also made with this mixed model ap-
proach. For both the mixed model and penalized regression
based GAM’s the number of parameters to use to represent
each term must be chosen in advance, although the actual ef-
fective degrees of freedom will be controled by the smoothing
parameters, which are estimated automatically. Provided that
an overly restrictive choice is not made, the decision should not

have much effect on the final estimates, but it will have some
effect and the choice is to some extent arbitrary.

It should be stressed that several of the comparisons have
been made on deliberately extreme cases: For most models of
most datasets the alternative methods are perfectly adequate,
but where the data–model combination shows some features of
the subsequent examples, the new method is expected to per-
form better (and certainly to be safer). The next section provides
one practical example for which the new method gives a useful
improvement on the alternatives.

3.1 Almost Coincident Covariates

Covariate values that are very close together can cause near
rank deficiency for spline based GAM’s because they can
lead to the occurrence of almost identical basis functions in
the GAM. As a fairly extreme example of the effect, covari-
ates x and z were simulated such that xi were iid U(0,1) for
i = 1, . . . ,25, and xi+25 = xi + wi for i = 1, . . . ,25, where
the wi are iid U(0, ε). The zi were generated independently in
the same way, so each set of covariates consists of 25 pairs of
covariate values, each pair separated by no more than ε.

Data were simulated from

yi = f1(xi) + f2(zi) + ei,

where the ei are iid N(0, σ 2), f1(x) = x11[10(1 − x)]6 +
10(10x)3(1 − x)10 − 1.396, and f2(z) = e2z − 3.75887.

The data were fitted by a two term GAM, using the R SS–
ANOVA package gss, the R GAM package mgcv, the R GAM
package mgcv modified by replacing the call to Wood’s (2000)
method in gam.fit() by a call to an implementation of
the new method, and finally by REML using lme as outlined
in the Appendix. For a range of σ values, the estimates of
f1 and f2 are in very close agreement for all the methods, pro-
vided ε > 10−6, but for smaller ε values the Gu and Wahba
(1991) and Wood (2000) methods start to display numerical
problems. As ε is reduced, the REML approach generates in-
creasingly frequent numerical warnings or failures from lme
and occasionally very poor or nonsensical estimates without
warning. However, it also continues to produce sensible esti-
mates for a substantial proportion of replicates. By contrast, the
new method performs well all the way down to ε = 0. Figure 1
shows a comparison of results when σ = .01 and ε = 10−6.
All computations were performed in double precision, with the
machine precision being ≈ 2.2 × 10−16. For the new method,
Wood (2000) method, and Gu and Wahba (1991) methods,
GCV was used. In the cases using mgcv style GAM’s the model
terms were each allowed a maximum of 24 degrees of freedom.

The reconstructions shown in the figures are unusually bad
for ε = 1 × 10−6 for all methods except the new one. How-
ever, they are typical of what is produced for ε ≤ 1 × 10−7 for
the Wood (2000) and Gu and Wahba (1991) methods (when the
methods produce results rather than failing). REML is less con-
sistent in that very good fits can be achieved for a substantial
(albeit declining) proportion of replicates as ε → 0. In no repli-
cate tried did the new method fail to perform well. Of the other
two methods, Gu and Wahba’s (1991) method tended to either
fail or produce very wide confidence intervals, which at least
means that the user is unlikely to be misled. The Wood (2000)
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Figure 1. Comparison of Reconstructions of f1 and f2 From Section 3.1 Using Different GAM Methods With Integrated Smoothing Parameter
Selection. The upper row comprises reconstructions of f1(x): For each plot, the horizontal axis is x and the vertical axis is f̂1. The lower row
comprises reconstructions of f2(z): The horizontal and vertical axes are z and f̂2, respectively. The first column (leftmost) shows reconstructions
using the new method—these are excellent reconstructions of the original functions. The second column contains reconstructions using the method
of Wood (2000). The third column uses the method of Gu and Wahba (1991) and the fourth column uses REML via lme. The methods have been
used on exactly the same data, which is deliberately constructed to have the potential to cause numerical difficulty. In each panel the solid line is
the estimate and the dashed lines are at plus and minus 2 standard errors, except for the final column where only point estimates are shown. The
rug plots show the covariate values.

method performed worst, in that it produced obviously poor re-
sults more often than Gu and Wahba’s (1991) method, and in
such cases invariably produced confidence intervals that were
too narrow.

3.2 A Poisson Model With a Log Link and Too
Many Zeros

In this example the single covariate x took the values 11/20,
21/20,31/20, . . . ,1001/20. The expectation of the response, y ,
was set to 0 for all except y45–y50, where the expectations were
given by the integers 1–6, and y51–y55, where the expectations
were set to 6. The actual data were then simulated from Poisson
distributions of the appropriate means (see Fig. 2). The purpose
of these data is to give a clear example of the problems that
can occur when using a log link and a flexible model for data
with large areas of zeroes. As before, the data were fitted us-
ing the methods of Wood (2000), Gu and Wahba (1991), the
new method, and via penalized quasi-likelihood with the model
treated as a mixed model. The new method employed a small
ridge penalty in the GAM fitting process (ridge parameter 10−3,
i.e., H = 10−3I). In each case the model was

log(µi) = f (xi),

where µi ≡ E(yi), yi has a Poisson distribution, and f is
a smooth function. For the Wood (2000), PQL, and new
methods, f was represented by a rank 10 (penalized) thin plate
regression spline (Wood 2003). The UBRE method was used
for smoothing parameter estimation in all cases except PQL, of

course. Using the Wood (2000) method, the GAM fitting iter-
ations failed to converge, although an estimate was produced.
The Gu and Wahba (1991) method failed altogether on this ex-
ample. By contrast, the new method with a small ridge penalty
produced a quite reasonable fit on the response scale and PQL
produced a good fit without difficulty.

This example illustrates the point that although the model is
not formally identifiable, regularization using a ridge penalty
does offer a pragmatic way to deal with indeterminacy if inter-
est lies primarily in prediction on the response scale.

3.3 Logistic Regression

This example is another case in which indeterminacy of the
model causes problems. In this case 500 covariates xi , zi were
simulated on the unit square. A response variable was created
that was zero for all except those points for which xi > .9
and zi > .9, for which the response was set to 1. These data
were modeled using a logistic regression (binomial errors and
logit link). The linear predictor was given by the sum of two
univariate smooth functions of xi and zi , respectively. The
smooth terms were represented by rank 20 thin plate regres-
sion splines (Wood 2003) in the Wood (2000), new method,
and PQL examples.

Gu and Wahba’s (1991) method failed on this example, while
Wood’s (2000) method converged to obvious nonsense (see
Fig. 3) and PQL failed to converge. Again using a small ridge
penalty with the new method gave a satisfactory fit on the re-
sponse scale (Fig. 4). In all cases, GCV was used as the fitting
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Wood: Stable Estimation of Generalized Additive Models 681

Figure 2. Comparison of Model Estimates and Fits for the Example in Section 3.2. The upper row shows estimates of the linear predictor (the
smooth): The rug plot shows the covariate values, the solid curves are the estimates of the smooth, and the dashed curves (where present) give
95% confidence limits. The figures given in the vertical axis caption are estimated degrees of freedom when they are available. The lower row
shows corresponding predictions on the response scale: Symbols are data; continuous lines are model predictions. The left column shows the
results using the new method, with a small ridge penalty on the GAM fit. The middle column shows the equivalent using the method of Wood (2000)
for which no ridge penalty is possible. The right column shows a fit using PQL.

criteria (although UBRE was also tried with Gu and Wahba’s
method in an attempt to get results for comparison).

Again the purpose of this example is not to encourage the fit-
ting of GAM’s to inappropriate data, but rather to illustrate how
difficult data can cause problems if methods are not carefully
stabilized. Although it is hoped that users of GAM’s would not
apply them to data as extreme as this example, the type of inde-

Figure 3. Logistic Regression Fit to Example in Section 3.3 Using
the Wood (2000) Method. The top left panel is the model fit on the scale
of the linear predictor, and the top right panel is the fitted model on
the response scale. The lower two panels show the estimates of the
model terms.

terminacy illustrated has the potential to cause problems in less
extreme situations if there are other contributing problems.

3.4 Comparisons on a Well Behaved Example

In the interests of consistency checking of the method, some
comparisons were also performed on a simulated example taken
from Wahba (1990) that does not have obvious numerical dif-
ficulties. Three hundred independent values for each of covari-

Figure 4. Logistic Regression Fit to the Example in Section 3.3 Using
the New Method and a Ridge Parameter of 10−9 (i.e., H = 10−9I). The
top left panel is the model fit on the scale of the linear predictor and
the top right panel is the fitted model on the response scale. The lower
two panels show the estimates of the model terms.
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ates x1–x4 were simulated from U(0,1). Response data yi were
simulated from the model

yi = f1(x1i) + f2(x2i) + f3(x3i) + f4(x4i) + εi ,

where the εi are iid N(0,22), f1(x) = 2 sin(πx), f2(x) = e2x −
3.75887, f3(x) = x11[10(1−x)]6+10(10x)3(1−x)10−1.396,
and f4(x) = 0. Five hundred replicate datasets were produced,
with new covariates and responses simulated for each repli-
cate. The model was estimated using the GAM approach im-
plemented in mgcv in which each smooth is represented by
a rank 10 thin plate regression spline (Wood 2003), using the
Wood (2000) method and the new method. The model was also
estimated using the SS–ANOVA approach and Gu and Wahba’s
(1991) method as implemented in gss, and GCV was used in
these three cases. As a final comparison, the model estimated by
mgcv and the new method was also estimated as a mixed model
by REML using lme (see Appendix for technical details).

The root mean square (RMS) error in reconstructing the true
simulated E(yi) was assessed for each method and for the com-
parison of the Wood (2000) method and the new method; the
mean absolute difference in fitted values between the fitted val-
ues was also assessed. In 75 of the 500 replicates the new
method and Wood’s (2000) method differed in mean absolute
fitted value by more than 10−3. Five of these 75 replicates were
investigated in detail and in each case it appears that the GCV
score is quite uninformative, in the sense of being almost flat
with respect to some smoothing parameters in the vicinity of
its minimum. However, in only 12 of the 75 cases in which
the two methods differed was the Wood (2000) fit closer to
the truth than the new method. In addition, the Wood (2000)
method improved on the new method only by small amounts
relative to the improvements of the new method on the Wood
(2000) method. In the substantial majority of replicates, the fits
were essentially indistinguishable.

The SS–ANOVA approach is faced with a much more dif-
ficult task than the penalized regression spline based meth-
ods, simply because it relies entirely on GCV to decide how
smooth the model terms should be, while the penalized re-
gression spline method has effectively restricted the amount
of flexibility allowed by using a low rank representation of the
model. Hence, improvements by the new method over the SS–
ANOVA approach are not based on an entirely fair comparison.
The results of this comparison are included only because if the
new method was worse than the SS–ANOVA approach for this
example, it would clearly indicate a serious deficiency in the
new method.

The REML method failed to report numerical difficulties in
18 of the 500 replicates. Further investigation showed that this
problem increased in frequency if the sample size was increased
and decreased in frequency at smaller sample sizes. In the suc-
cessful replicates, REML achieved a modest but consistent im-
provement on the GCV used by the new method. The difference
between REML and GCV can be reduced but not altogether
eliminated by increasing γ in the GCV score to around 1.2,
suggesting that part of the performance difference may result
from undersmoothing by GCV.

Figure 5 shows the results of the comparisons, indicating that
the new method tends to perform better than the older GCV
methods. If the differences in fit are mostly caused by flatness

Figure 5. Differences in Root Mean Square Reconstruction Error Be-
tween Competing Methods and the New Method for the Example in Sec-
tion 3.4. Positive values indicate that the new method achieved a better
reconstruction than the competing method. The mean RMS error for the
new method was approximately .50. (a) The distribution of differences
between the new method and the Wood (2000) method for the 75 cases
in which the difference in fit was substantial. (b) The equivalent boxplot
for all replicates, showing that in a substantial majority of cases the dif-
ference in fit was very small. (c) The difference between the SS–ANOVA
method and the new method: The apparently poorer performance here
is the result of a tendancy to overfit, brought about by the fact that the
SS–ANOVA method relies entirely on GCV for smoothing parameter se-
lection, whereas the other approaches restrict model complexity a priori.
(d) The difference between the new method and REML estimation us-
ing lme excluding the 18 cases in which this method failed altogether.

of the GCV score, then it might be expected that the greater re-
liability of the derivatives of the new more stable method would
result in improved results in comparison to the less stable meth-
ods. However, although likely, it would be very difficult to prove
that this explanation is correct.

Figures 6 and 7 illustrate the ability of the GAM’s estimated
by the new method to recapture the true functions used in the
simulations. Figure 6 shows five estimates around the median
of the mean squared error distribution, whereas Figure 7 shows
five worse estimates, around the 90th percentile of the mean
squared error distribution.

Figure 6. The Estimated Component Functions of the Five Fits Sur-
rounding the Median of the RMS Reconstruction Error Distribution for
the Example From Section 3.4 Estimated by the New Method. Heavy
lines are the truth; dashed lines are the reconstructions.
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Figure 7. The Estimated Component Functions of the Five Fits Sur-
rounding the 90th Percentile of the RMS Reconstruction Error Distribu-
tion for the Example From Section 3.4, Estimated by the New Method.
Heavy lines are the truth; dashed lines are the reconstructions.

Timing comparisons between the new method, the Wood
(2000) method, and the REML method were also produced
from this simulation study (using the computational setup de-
scribed at the start of Section 4). The per replicate timings
were .11 s for the Wood (2000) method, .15 s for the new
method, and 2.24 s for the REML method. These timings ex-
clude .27 s per replicate to set up the model using thin plate
regression splines. The SS–ANOVA based models required, on
average, 7.43 s per replicate to set up and estimate (these mod-
els are much more parameter rich than the others).

4. A PRACTICAL EXAMPLE: SARDINE EGGS OFF
THE IBERIAN PENINSULA

Fish stock management is a pressing problem worldwide and
particularly so in the heavily overexploited coastal waters of
Europe. Management is complicated by the difficulty of obtain-
ing reliable estimates of abundance: Data gathered from com-
mercial fisheries operations are subject to a number of difficult
biasing factors, and attempts to survey adult fish directly by
fishing for them is subject to the obvious difficulty in converting
catches to abundance estimates when fish are avoiding the fish-
ing gear. One way to circumvent the problems with direct esti-
mation of adult abundance is to count fish eggs instead and then
convert from the abundance of eggs to the abundance (or more
likely mass) of adults required to produce this egg abundance.
The advantage of this approach is that eggs are comparatively
easy to sample—they do not actively avoid the sampling gear.

However, egg data can be difficult to model. Typically the
geographical distribution of eggs is not well known in advance
in any given year, and this tends to mean that a well designed
survey will yield a very high proportion of zero egg counts, at
least in some years. The difficulties are reasonably well exem-
plified by sardine egg survey data from the Iberian peninsula in
1997. Here I consider the total egg count in the first three iden-
tifiable egg stages at each of 888 survey stations. Egg counts
were obtained by drawing a fine meshed net through the water
column from a predetermined depth below the surface. For the

Figure 8. Stage I–III Sardine Eggs Surveyed off the Iberian Peninsula
in 1997. The circle areas are proportional to the number of eggs found.

analysis here, I used temperature Ti , depth di , longitude oi , and
latitude ai as covariates, and treated the egg counts yi as being
Poisson distributed with mean µi . One model of interest is then

log(µi) = f1(ai, oi) + f2(di) + f3(Ti),

where the fj are smooth functions. The data are shown in Fig-
ure 8. Note that in this survey there are only 91 stations with a
nonzero egg count. In addition, the arrangement of covariates
is not easy; many depth measurements are very close together
despite a wide depth range and there is a fairly unhelpful con-
figuration of points in the longitude—latitude plane.

Attempts were made to estimate the model, including smoo-
thing parameter estimation by the new method, the Wood
(2000) method, and penalized quasi-likelihood, in each case
representing the smooth functions using a rank 50 thin plate re-
gression spline for f1 and rank 10 thin plate regression splines
for f2 and f3. I also attempted to estimate the model using the
method of Gu and Wahba (1991). The UBRE was the estima-
tion criterion for all methods except PQL.

The Wood (2000) method failed to converge. In this case,
the failure appears to result from a loss of numerical stability
in the solution of the underlying penalized least squares prob-
lem as the weights and pseudodata of the P–IRLS become pro-
gressively more extreme. Similarly, the Gu and Wahba (1991)
method failed with an error message relating to a loss of nu-
merical rank in the underlying spline fitting method. The mixed
model–PQL method fared no better, also failing with an error
message relating to singularity. In this case, simply substitut-
ing the new algorithm in place of the Wood (2000) algorithm
leads to convergence without the need for extra regularization,
although it is to be expected that in many similar cases some
regularization would also be required.

Figure 9 shows the estimated effects and a residual plot for
the fit obtained by the new method. Clearly in this case there is
evidence for overdispersion, requiring further modeling work to
resolve, but because the purpose of this article is not the analysis
of these data, this will not be reported here.

Although not strictly comparable, since the smoothing pa-
rameters are not estimated, I also tried fitting the model us-
ing Hastie and Tibshirani’s (1990) method as implemented in
gam() in S–PLUS. In this case a loess smooth was employed
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Figure 9. The Sardine Egg Model Term Estimates and Residual Plot
With the Fit Performed by the New Method (without the need for a ridge
penalty in this case). The methods of Wood (2000), Gu and Wahba
(1991), and PQL all failed on this example. The top left plot shows the
estimated smooth of longitude and latitude (only in the immediate vicin-
ity of data). The top right panel and lower left panel are the estimated
smooths of depth and temperature, respectively. The lower right panel
is a residual plot, indicating some overdispersion, relative to Poisson.

to estimate the multidimensional smooth f1, and splines were
used for the other terms. Span (.08) and degrees of freedom
(4 and 9) were selected to give broadly similar flexibility to
the models fitted by the other methods. With convergence tol-
erances set to be similar to those used for the other methods,
convergence did not occur unless the span of the loess smooth
was increased so that the model was substantially less flexible
than the models fitted by the alternative approaches. Conver-
gence did occur if the convergence tolerances were increased
substantially (although whether this really constitutes conver-
gence is open to debate).

5. DISCUSSION

The methodology developed in this article offers some sub-
stantial advantages over existing GAM methods. The first ad-
vantage is enhanced numerical stability of the basic penalized
least squares method. By making use entirely of orthogonal
matrix factorizations, the method offers optimal numerical sta-
bility, while also allowing rank deficiency of the fitting prob-
lem to be identified reliably and dealt with effectively. In this
respect the difference between the new method and the previ-
ous GCV methods is similar to the difference between solving
ordinary least squares problems by pivoted QR or singular value
decomposition methods and solving such problems by Choleski
factorization based solution of the normal equations (see, e.g.,
Golub and van Loan 1996). Note also that the structure of the
method allows rank deficiency to be dealt with effectively even
when it occurs only over a portion of the smoothing parame-
ter space or when the degree of numerical rank deficiency de-
pends on the values of the smoothing parameters. On the basis
of the examples in Sections 3 and 4, the new method appears
to be somewhat more robust and faster than the mixed model
approach using standard mixed modeling software, but Sec-
tion 3.4 also suggests that REML consistently does a slightly
better job at estimating the models than GCV based methods.

The second advantage of the new method lies in the exten-
sions to existing GAM methodology facilitated by the ability to
incorporate a fixed penalty in the model. The fixed penalty al-
lows ridge regression type regularization of otherwise unidenti-
fiable GAM’s, an appealing solution in situations where in some
sense the model is perfectly identifiable on the response scale.
Furthermore, the ability to set lower bounds on smoothing pa-
rameters and to fix some penalties while estimating others is
also of considerable use in applications, both for basic model
checking and in situations where there are a priori reasons to
believe that some functions should be smoother than others and
it is useful to explore the consequences of forcing them to be so
(e.g., when a spatial term has been included simply to account
for otherwise unmodeled trend).

I believe that these benefits are important if GAM methods
are to achieve their full potential. The GAM’s offer the mod-
eler great flexibility, but such flexibility inevitably expands the
scope for difficulties with identifiability and numerical stability.
If models are fit using methods designed for maximum stability,
able to cope with rank deficiency and as a last resort allowing
direct regularization, then such problems can at least be mini-
mized and GAM methods can more nearly approach the relia-
bility of GLM’s or linear models.

A third advantage of the method suggested here is that it is
relatively simple and uses only matrix factorizations available
in public domain linear algebra libraries such as LAPACK and
LINPACK. Indeed the method could be implemented in a quite
straightforward manner entirely within a high level language
such as R or MATLAB, which give direct access to the required
linear algebra routines.

One possible criticism of the use of the type of methods de-
veloped in this article is that well specified models that are re-
ally appropriate for a set of data do not usually cause numerical
difficulty in fitting, so that the slight extra computational cost of
using orthogonal matrix factorizations is unjustified. Although
there is some truth in the assertion that convergence problems
are often caused by poor models, it is equally true that it is
much more satisfactory to reject flawed models on the basis of
their poor fit to the data, rather than on the basis that it was not
computationally possible to fit them.

If computational speed is really critical, then the method de-
veloped here could be made more computationally efficient by
using a second pivoted QR decomposition in place of the sin-
gular value decomposition (SVD). The broad outline of the
approach is unchanged by doing this, although the detail is of
course different. The pivoted QR decomposition is substantially
cheaper to obtain than the full SVD, but rank estimation with
the pivoted QR is not as straightforward or as reliable as it is
with the SVD (see Golub and van Loan 1996), and some extra
work is required if a minimum norm solution is required in rank
deficient cases. However, given that the first QR decomposition
is actually the leading order step in terms of cost [O(nq2) op-
erations], replacement of the SVD step [O(q3) operations] is
unlikely to offer great computational savings.

Another interesting issue relates to whether smoothing pa-
rameter estimation is inner or outer to the P–IRLS loop. For
maximal computational efficiency the “performance-iteration”
method of Gu (e.g., Gu 2002) is appealing: Smoothing para-
meter selection is performed on the weighted penalized least
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squares problem produced at each iteration of the P–IRLS algo-
rithm. This method is very fast and a perfectly legitimate way to
estimate smoothing parameters, but it is usually possible to find
smoothing parameters that yield slightly lower GCV or UBRE
scores than the smoothing parameters estimated using the per-
formance iteration. The reason for this is that the dependence of
the iterative weights on the smoothing parameters is effectively
neglected in the performance-iteration method. Hence it may
sometimes be desirable to use the approach originally suggested
by O’Sullivan, Yandell, and Raynor (1986) of only evaluat-
ing the GCV or UBRE score at convergence of the P–IRLS
method, and therefore making the minimization of the GCV
or UBRE score “outer” to the P–IRLS loop. This can easily
be done by using a quasi-Newton method with finite differenc-
ing of the GCV–UBRE score evaluated at P–IRLS convergence
(the default for the R general purpose minimizer routine nlm),
but of course such an approach is much slower than the per-
formance iteration and still requires the performance iteration
to find starting values. In the cases that I have looked at, such
an approach leads to only small reductions in score and small
changes in fit relative to the performance iteration, and hence
its statistical benefits are questionable.

A final interesting question is whether an approach like the
one developed here could be used in the case of low rank ap-
proximations to SS–ANOVA models in which the smoothing
parameters occur in both the overall penalty matrix and the
model matrix. In this case, the expressions for the derivatives
will be more complicated, but if the model matrix can be writ-
ten in the form X = ∑

j θj Xj , then an efficient method could
be developed on the basis of first forming a QR factorization of
the matrix [X1,X2, . . .].

The method reported in this article is available in the free
open source R package mgcv (versions 0.9 and above; see
cran.r-project.org).

APPENDIX: GAM’S VIA MIXED MODELS

The GAM’s admit a straightforward mixed model representation in
which components of the smooths in the null space of the penalties and
any strictly parametric model terms are treated as fixed effects, while
the “wiggly” components are treated as random effects. This allows
smoothing parameters to be estimated via REML (see, e.g., Wahba
1985; Wang 1998; Lin and Zhang 1999).

The approach is most easily explained with reference to a single
smooth of Gaussian data, but subject to the sort of centering condition
required of components of a GAM to ensure identifiability (e.g., that
the smooth should sum to zero over the covariate values). Note that to
keep it straightforward, the notation in this Appendix does not always
correspond to that used in the main body of the article.

Consider a smooth term with parameter vector β, model matrix X,
penalty matrix S, and constraint matrix C, which could be estimated
by minimization of the penalized regression objective

s(β) = ‖y − Xβ‖2 + λβTSβ subject to Cβ = 0

with respect to β. The constraint can easily be absorbed by forming
the QR decomposition QR = CT, setting Z to be Q less its first nc

columns, where nc is the number of rows of C, and writing β = Zβz

so the fitting objective becomes

s = ‖y − XZβz‖2 + λβT
z ZTSZβz.

Forming the eigendecomposition ZTSZ = UDUT, where U is ortho-
normal and D is diagonal (with eigenvalues arranged in order of de-
creasing magnitude down the leading diagonal), we can write

s = ‖y − XZUβu‖2 + λβT
uDβu,

where βu = UTβz .
Now S is generally rank deficient so that the last few elements on

the leading diagonal of D will be zero. Let D+ be the submatrix of D
with nonzero elements on the leading diagonal and partition βu so
that βT

u = [bT
u,βT

F] and βT
uDβu = bT

uD+bu. Partitioning the columns
of XZU into [Xu,XF] in a corresponding manner to the partitioning
of βu, while letting b = √

D+bu and XR = Xu(
√

D+ )−1, the objec-
tive becomes

s = ‖y − XFβF − XRb‖2 + λbTb.

It is easy to show that, given λ, the estimates of b and βF that result
from minimizing s correspond to the expected values of b and the
estimates of βF given y under the mixed model

y = XFβF + XRb + ε, ε ∼ N(0, Iσ 2),b ∼ N(0, Iτ),

where λ = 1/τ (by a simple generalization of Silverman’s (1985)
Bayesian model for cubic smoothing splines). This immediately sug-
gests estimating 1/λ by REML, which is straightforward using stan-
dard software such as lme in S.

In the additive model context, one produces an XF and XR for each
smooth term in the model. The columns of the XF’s are combined
into one fixed effects model matrix, X (usually with an additional
column for the model intercept and possibly some extra columns for
the strictly parametric part of the model), so that the model becomes
something like

y = Xβ + XR1b1 + XR2b2 + · · · + ε,

ε ∼ N(0, Iσ 2),b1 ∼ N(0, Iτ1),b2 ∼ N(0, Iτ2), . . . .

Simultaneous estimation of the variance components (smoothing para-
meters) is as straightforward in this case as in the single term case.

In the work reported in the body of this article the model terms were
represented as thin plate regression splines (Wood 2003) and estima-
tion was performed using lme (Pinheiro and Bates 2000) in R. For
the generalized case, the setup is identical except that the error model
for y|β,b1,b2, . . . is different and estimation can be performed by
penalized quasilikelihood (Breslow and Clayton 1993). The R routine
glmmPQL (Venables and Ripley 2002, sec. 10.4) was used in the work
reported here.

[Received June 2003. Revised December 2003.]
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