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Abstract Models with structured additive predictor provide
a very broad and rich framework for complex regression
modeling. They can deal simultaneously with nonlinear co-
variate effects and time trends, unit- or cluster-specific het-
erogeneity, spatial heterogeneity and complex interactions
between covariates of different type. In this paper, we pro-
pose a hierarchical or multilevel version of regression mod-
els with structured additive predictor where the regression
coefficients of a particular nonlinear term may obey an-
other regression model with structured additive predictor. In
that sense, the model is composed of a hierarchy of com-
plex structured additive regression models. The proposed
model may be regarded as an extended version of a mul-
tilevel model with nonlinear covariate terms in every level
of the hierarchy. The model framework is also the basis for
generalized random slope modeling based on multiplicative
random effects. Inference is fully Bayesian and based on
Markov chain Monte Carlo simulation techniques. We pro-
vide an in depth description of several highly efficient sam-
pling schemes that allow to estimate complex models with
several hierarchy levels and a large number of observations
within a couple of minutes (often even seconds). We demon-
strate the practicability of the approach in a complex appli-
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cation on childhood undernutrition with large sample size
and three hierarchy levels.
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1 Introduction

The last years have seen enormous progress in Bayesian
semiparametric regression modeling based on Markov chain
Monte Carlo (MCMC) simulation for inference. Pioneer-
ing work has been done by Smith and Kohn (1996) and
Smith and Kohn (1997) who developed uni- and bivariate
smoothers based on adaptive knot selection. Related more
recent approaches can be found in Chan et al. (2006) and
Cottet et al. (2008). This paper is in the tradition of an-
other branch of the literature based on Bayesian roughness
penalty approaches, see e.g. Fahrmeir and Lang (2001), and
Lang and Brezger (2004) for early references, and more
recently Jullion and Lambert (2007) and Panagiotelis and
Smith (2008).

A particularly broad and rich framework is provided by
generalized structured additive regression (STAR) models
introduced in Fahrmeir et al. (2004) and Brezger and Lang
(2006). Models of similar complexity have been developed
in a mostly frequentist setting by Simon Wood (see e.g.
Wood 2003, 2006) and in Ruppert et al. (2003), Rigby and
Stasinopoulos (2005) or Rue et al. (2009). STAR models as-
sume that, given covariates, the distribution of response ob-
servations yi , i = 1, . . . , n, belongs to an exponential fam-
ily. The conditional mean μi = E(yi) is linked to a semi-
parametric additive predictor ηi by μi = h(ηi) where h is a
known response function. The predictor ηi is of the form

ηi = f1(zi1) + · · · + fq(ziq ) + x′
iγ , i = 1, . . . , n, (1)
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where f1, . . . , fq are nonlinear functions of the (possibly
multidimensional) covariates z1, . . . ,zq and x′γ is the usual
linear part of the model. The functions fj comprise usual
nonlinear effects of continuous covariates as well as time
trends and seasonal effects, two-dimensional surfaces, vary-
ing coefficient terms and cluster- or spatial effects. The non-
linear functions in (1) are modeled by a basis functions ap-
proach, i.e. a particular nonlinear function f of covariate z

is approximated by a linear combination of basis or indicator
functions:

f (z) =
K∑

k=1

βkBk(z). (2)

The Bk’s are known basis functions and β = (β1, . . . , βK)′
is a vector of unknown regression coefficients to be esti-
mated. Specific examples for the choice of basis functions
and priors for the regression coefficients will be given in
Sect. 2. Defining the n × K design matrix Z with ele-
ments Z[i, k] = Bk(zi ), the vector f = (f (z1), . . . , f (zn))

′
of function evaluations can be written in matrix notation as
f = Zβ . Accordingly, for the predictor (1) we obtain

η = Z1β1 + · · · + Zqβq + Xγ . (3)

In this paper, we propose a hierarchical or multilevel ver-
sion of regression models with structured additive predictor.
Multilevel STAR models assume that the regression coeffi-
cients βj of a term fj in (3) may themselves obey a regres-
sion model with structured additive predictor, i.e.

βj = ηj +εj = Zj1βj1 +· · ·+Zjqj
βjqj

+Xjγ j +εj . (4)

Here the terms Zj1βj1, . . . ,Zjqj
βjqj

correspond to addi-
tional nonlinear functions fj1, . . . , fjqj

, Xjγ j comprises
additional linear effects, and

εj ∼ N
(
0, τ 2

j I
)

(5)

is a vector of i.i.d. Gaussian random effects. See the case
study on childhood undernutrition below and particular
Sect. 2.5 for specific examples of multilevel STAR mod-
els. To keep the paper reasonable in length, we restrict our-
selves to i.i.d. Gaussian random effects although more so-
phisticated structures like the Bayesian LASSO (Park and
Casella 2008), Dirichlet process mixtures (Heinzl et al.
2012) or spike and slab priors (Frühwirth-Schnatter and
Wagner 2011) can be implemented in a straightforward way.
Moreover, a third level or even higher levels in the hierarchy
are possible by assuming that the second level regression
parameters βj l , l = 1, . . . , qj , obey again a STAR model. In
that sense, the model is composed of a hierarchy of complex
structured additive regression models.

The two main goals of this paper are

• to provide a rich Bayesian framework for multilevel addi-
tive modeling including generalizations of random slopes,

• to discuss several highly efficient MCMC sampling
schemes that utilize the hierarchical structure and allow
to estimate complex models with several hierarchy lev-
els and a large number of observations within a couple of
minutes (often even seconds).

We provide an implementation of the methodology within
the software package BayesX together with the full R in-
terface R2BayesX.

A typical application of the proposed models are mul-
tilevel data where a hierarchy of units or clusters grouped
at different levels is given. As an example, we will ana-
lyze survey data on child undernutrition in India. Undernu-
trition among children is usually measured in the form of a
Z-score (variable zscore) that determines the anthropomet-
ric status of the child relative to a reference population of
children known to have grown well. A child whose Z-score
is below −2 is typically regarded as undernourished. In our
analysis, we will distinguish three levels: Children (level-1)
are nested in districts (level-2) and districts are nested in
states (level-3). In Sect. 5, we will present results for a probit
model that models the probability that a child is undernour-
ished, i.e. zscore < −2. The following three level hierarchi-
cal predictor is used:

level-1: η = f 1(c_age) + f 2(c_age)c_sex + f 3(ageb)

+ f 4(ageb)c_sex + f 5(educy)

+ f 6(educy)c_sex + f 7(ai) + f 8(ai)c_sex

+ f 9(dist) + f 10(dist)c_sex + · · · + ε

= Z1β1 + · · · + Z9β9 + Z10β10 + · · · + ε

level-2: β9 = f 9,1(m_ai) + f 9,2(m_educy) + f 9,3(dist)

+ f 9,4(state) + ε9

= Z9,1β9,1 + · · · + Z9,4β9,4 + ε9

level-2: β10 = f 10,1(m_ai) + f 10,2(m_educy)

+ f 10,3(dist) + f 10,4(state) + ε10

= Z10,1β10,1 + · · · + Z10,4β10,4 + ε10

level-3: β9,4 = f 9,4,1(gdp) + ε9,4 = Z9,4,1β9,4,1 + ε9,4

level-3: β10,4 = f 10,4,1(gdp) + ε10,4

= Z10,4,1β10,4,1 + ε10,4

(6)

The level-1 equation consists of possibly nonlinear smooth
effects of the child’s age (variable c_age), the mother’s age
at birth (ageb), the mother’s educational attainment mea-
sured through the years of education (educy) and an asset



Stat Comput (2014) 24:223–238 225

index (ai) measuring the household’s wealth. The asset in-
dex is derived using a principal components analysis based
on the possession of household assets and dwelling char-
acteristics. The latter two covariates are measured as dif-
ferences from the district mean education level and wealth
index. Since a main scientific question is on possible gen-
der differences we include interaction terms between the
covariates and gender (c_sex) given in effect coding and
with males as the reference category. District-specific spa-
tial heterogeneity is modeled through the two level-2 equa-
tions containing the average asset index per district (m_ai)
and the average education years per district (m_educy).
Spatial heterogeneity beyond the available district specific
covariates is modeled through spatially correlated (dis-
crete) effects f9,3(dist), f10,3(dist) and state-specific spa-
tial effects f9,4(state), f10,4(state) modeled through the
level-3 equations of the model. The spatially correlated ef-
fects f9,3(dist) and f10,3(dist) are analogous to a nonlinear
smooth time trend in time series modeling. The level-3 ef-
fects f9,4,1(gdp), f10,4,1(gdp) are nonlinear effects of the
gross domestic product per capita within states. The sec-
ond level-2 equation in combination with the second level-3
equation models a complex nonlinear random “slope” effect
of gender.

In principle the model (6) can be reexpressed in a reduced
form as a usual STAR model as in (1). Then the predictor
would contain the nonlinear covariate effects of all hierarchy
levels as well as an additive composition of the i.i.d district
and state specific random effects. However, the hierarchical
formulation provides several distinct advantages compared
to the reduced form:

• From an interpretational perspective, the hierarchical for-
mulation provides an interesting decomposition of the
random effects.

• Most importantly, Bayesian inference based on MCMC
simulations is almost revolutionized through the hierar-
chical formulation as it allows for well-behaved (in terms
of mixing) and very fast samplers that would be impossi-
ble in the reduced formulation.

• Finally, models going beyond the i.i.d. random effects (5)
(which is our goal for future research) circumvent a sim-
ple reexpression of model (6) in reduced form.

Note that the hierarchical formulation is in the spirit of hier-
archical centering as in Bayesian linear mixed models, see
Papaspiliopoulos et al. (2007) (and the references therein)
for a general framework.

Multilevel STAR models are also the basis for general-
ized random slopes or multiplicative random effects of the
form

(1 + αci
)f (zi) = f (zi) + αci

f (zi), (7)

where the possibly nonlinear function f of a covariate z is
scaled by a cluster specific factor (1 + αc) with respect to

clusters c ∈ {1, . . . ,C}. Treating such models in full details
is beyond the scope of this paper. An application of gener-
alized random slope modeling is given in a marketing pa-
per that analyzes the impact of price changes on a brand’s
sales using the technology presented here, see Lang et al.
(2012).

The rest of the paper is organized as follows: Sect. 2 dis-
cusses modeling of covariate effects and corresponding pri-
ors. Sections 3 and 4 are devoted to MCMC inference. Sec-
tion 5 presents the results for the case study on undernu-
trition in India. The final Sect. 6 concludes and points out
directions for future research.

2 Effect modeling and priors

Effect modeling and priors depend on the covariate or term
type. We distinguish two types of priors: “direct” or “basic”
priors for the regression coefficients βj (or βj l in a sec-
ond level equation) and compound priors (4). We first de-
scribe the general form of “basic” priors. Sections 2.2–2.4
give specific examples for effect modeling using specific de-
sign matrices and forms of the basic prior. Section 2.5 shows
how the basic priors can be used as building blocks for the
compound priors.

2.1 General form of basic priors

In a frequentist setting, overfitting of a particular function
f = Zβ is avoided by defining a roughness penalty on
the regression coefficients, see for instance Wood (2006) in
the context of structured additive regression. In a Bayesian
framework a standard smoothness prior is a (possibly im-
proper) Gaussian prior of the form

p
(
β | τ 2) ∝

(
1

τ 2

)rk(K)/2

exp

(
− 1

2τ 2
β ′Kβ

)
· I (Aβ = 0),

(8)

where I (·) is the indicator function. The key components of
the prior are the penalty matrix K , the variance parameter
τ 2
j and the constraint Aβ = 0.

The structure of the penalty or prior precision matrix
K depends on the covariate type and on prior assumptions
about smoothness of f , see Sects. 2.2–2.4 for specific ex-
amples. With one notable exception for Gaussian random
fields, the penalty matrix in our examples is rank deficient,
i.e. rk(K) < K , resulting in a partially improper prior.

The amount of smoothness is governed by the variance
parameter τ 2. A conjugate inverse Gamma prior is em-
ployed for τ 2 (as well as for the error variance parameter
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σ 2 in models with Gaussian responses), i.e. τ 2 ∼ IG(a, b)

with small values such as a = b = 0.001 for the hyperpa-
rameters a and b resulting in an uninformative prior on the
log scale. Alternative priors for τ 2 have been discussed in
Gelfand (2006).

The term I (Aβ = 0) imposes required identifiabil-
ity constraints on the parameter vector. A straightforward
choice is A = (1, . . . ,1), i.e. the regression coefficients are
centered around zero. A better choice in terms of inter-
pretability and mixing of the resulting Markov chains is to
use a weighted average of regression coefficients, i.e. A =
(a11, . . . , a1K). As a standard we use a1k = ∑n

i=1 Bk(zi),
k = 1, . . . ,K , resulting in the more natural constraint∑n

i=1 f (zi) = 0. Additional constraints such as sum to
zero constraints

∑n
i=1 f ′′(zi) = 0 on the derivatives can

be defined by adding a second row to A and by setting
a2k = ∑n

i=1 B ′
k(zi).

2.2 Continuous covariate effects

For a continuous covariate z, our basic approach for mod-
eling a smooth function f are P-splines introduced in a
frequentist setting by Eilers and Marx (1996) and in a
Bayesian version by Lang and Brezger (2004). P-splines
assume that the unknown functions can be approximated
by a polynomial spline which can be written in terms of a
linear combination of B-spline basis functions. Hence, the
columns of the design matrix Z are given by the B-spline
basis functions evaluated at the observations zi . Lang and
Brezger (2004) propose to use first or second order random
walks as smoothness priors for the regression coefficients,
i.e.

βk = βk−1 + uk, or βk = 2βk−1 − βk−2 + uk, (9)

with Gaussian errors uk ∼ N(0, τ 2) and diffuse priors
p(β1) ∝ const, or p(β1) and p(β2) ∝ const, for initial val-
ues. This prior is of the form (8) with penalty matrix given
by K = D′D, where D is a first or second order difference
matrix. Locally adaptive variants of the basic P-splines ap-
proach have been proposed e.g. in Yue et al. (2012). The
Bayesian P-splines approach can be generalized to two-
dimensional smoothing for modeling interactions by assum-
ing that the unknown surface is the tensor product of one-
dimensional B-splines, see Lang and Brezger (2004) for de-
tails.

2.3 Spatial effects

Assume now that z represents the location a particular ob-
servation pertains to. If exact locations are available, z =
(z(1), z(2))′ is two-dimensional and the components z(1) and
z(2) correspond to the coordinates of the location. In this

case the spatial effect f (z(1), z(2)) could be modeled by two-
dimensional extensions of P-splines as described in Lang
and Brezger (2004). An alternative approach widely used
in the geostatistics literature (e.g. Kamman and Wand 2003)
is to model the spatial effect by stationary Gaussian random
fields. Here f (z) = f (z(1), z(2)) = βz is assumed to follow
a zero mean stationary Gaussian field with variance τ 2 and
isotropic covariance function Cov(βz, β

′
z) = C(‖z − z′‖).

For a finite number of design points, the prior is of the form
(8) with penalty matrix K = C where C[k, s] = C(‖zk −
zs‖), 1 ≤ k, s ≤ n. The design matrix is given by Z = C.
A widespread choice for the covariance is the Matern family
of covariance functions. One of the practical problems with
Gaussian random fields is that the number of parameters is
equal or close to the number of observations n. For that rea-
son the random field is often approximated by defining a
representative subset of knots of the set of distinct locations,
see Kamman and Wand (2003) for details. The R function
cover.design in the package fields provides a con-
venient tool for obtaining the reduced design. However, as
pointed out by Hennerfeind et al. (2006), Bayesian infer-
ence based on MCMC simulations can be extremely slow
because the penalty matrix as well as the design matrix cross
product Z′Z are full matrices, i.e. the typical sparse matrix
structure can not be exploited for efficient computation. We
will circumvent the problem by using a reparametrization
of the regression coefficients such that the resulting penalty
and cross product matrix are diagonal, see Sect. 4 for details.

Another alternative for modeling smooth spatial effects
are Markov random fields (MRF) as described e.g. in
Brezger and Lang (2006). MRF’s are particularly useful if a
geographical map is given and exact locations are not avail-
able.

2.4 Modeling interactions through varying coefficients

In our case study on stunting in India we are particulary
interested in gender differences, which are modeled by in-
teractions with the covariate c_sex. Interactions as in (6)
are specific varying coefficient terms (Hastie and Tibshirani
1993). More generally, suppose that the effect of a covariate
z(2) is assumed to vary with respect to another covariate z(1).
The interaction between z(2) and z(1) can be modeled by a
predictor of the form

η = · · · + z(1)g
(
z(2)

) + · · · ,

where g is a function of z(2) which in turn is the effect mod-
ifier of z(1). If the effect modifier is the location either given
as the coordinates or as a spatial index we have a space vary-
ing effect of z(1) (for instance Gamerman et al. 2003).

Independent of the specific type of the effect modifier,
the interaction term z(1)g(z(2)) can be cast into the general
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framework by defining

f
(
z(1), z(2)

) = z(1)g
(
z(2)

)
. (10)

The overall design matrix Z is given by diag(z
(1)
1 , . . . ,

z
(1)
n )Z(2) where Z(2) is the usual design matrix for P-Splines,

tensor product P-splines, spatial effects etc.
Varying coefficient terms are also the key for MCMC

based inference in the generalized random slope terms (7).
It can be shown that for fixed scaling parameters or fixed re-
gression coefficients, the term (7) is technically identical to
a varying coefficients term and MCMC updating is done by
repeatedly obeying this varying coefficients structure. De-
tails can be found in Lang et al. (2012).

2.5 Compound priors

In many cases the compound prior (4) is used if a covari-
ate zj ∈ {1, . . . ,K} is a unit- or cluster index and zij indi-
cates the cluster observation i pertains to. Then the design
matrix Zj is a n × K incidence matrix with Zj [i, k] = 1 if
the i-th observation belongs to cluster k and zero otherwise.
The K × 1 parameter vector βj is the vector of regression
parameters, i.e. the k-th element in β corresponds to the re-
gression coefficient of the k-th cluster. Using the compound
prior (4) we obtain an additive decomposition of the cluster-
specific effect. The covariates zjl , l = 1, . . . , qj , in (4) are
cluster-specific covariates with possible nonlinear cluster ef-
fect. By allowing a full STAR predictor (as in the level-
1 equation) a rather complex decomposition of the cluster
effect βj including interactions is possible. A special case
arises if cluster-specific covariates are not available. Then
the prior for βj collapses to βj = εj ∼ N(0, τ 2

j I) and we
obtain a simple i.i.d. Gaussian cluster-specific random effect
with variance parameter τ 2

j .
Another special situation arises if the data are grouped

according to some discrete geographical grid and the clus-
ter index zij denotes the geographical region observation i

pertains to. For instance, in our application on child under-
nutrition in Sect. 5 for every observation the district of the
households residence is given. Then the compound prior (4)
models a complex spatial heterogeneity effect with possibly
nonlinear effects of region-specific covariates zjl .

In a number of applications, geographical information
and spatial covariates are given at different resolutions. For
instance, in our case study on child undernutrition, the dis-
tricts (level-2) are nested within states (level-3). This allows
to model a spatial effect over two levels in the form

βj = Zj1βj1 + Zj2βj2 + · · · + εj ,

βj1 = Zj11βj11 + Zj12βj12 + · · · + εj1.

Here, the first covariate zj1 in the district-specific effect is
another cluster indicator that indicates the state in which the

districts are nested. Hence, Zj1 is another incidence ma-
trix and βj1 is the vector of state-specific effects modeled
through the level-3 equation.

We finally point out that the compound priors are not nec-
essarily restricted to random effects modeling as described
above. For instance, Zjβj in (3) may comprise a smooth
spatial term modeled by radial basis functions centered at
the observed locations. The common assumption of a Gaus-
sian random field for the regression coefficients βj implies
that parameters in close proximity are more alike than oth-
ers. However, in many spatial applications the definition of
locational similarity may be given by a bunch of similar
locational characteristics (e.g. soil conditions) and less by
spatial proximity in the narrow sense. This could be mod-
eled using the compound prior (4) by regressing the coef-
ficients βj (nonparametrically) on location specific covari-
ates.

3 MCMC Inference based on the original
parametrization

We first discuss direct MCMC schemes based on the orig-
inal parametrization of the previous sections. In Sect. 4,
we provide an MCMC scheme which uses an alternative
parametrization that results in diagonal precision matrices.

3.1 Gaussian responses

We first describe a Gibbs sampler for models with Gaussian
errors. For the sake of simplicity, we restrict the presenta-
tion to a two level hierarchical model with one level-2 equa-
tion for the regression coefficients of the first term Z1β1.
That is, the level-1 equation is y = η + ε with predictor (3)
and errors ε ∼ N(0, σ 2W−1) with diagonal weight matrix
W = diag(w1, . . . ,wn). The level-2 equation is of the form
(4) with j = 1. Inference for models with more than two hi-
erarchy levels or more level-2 equations is straightforward
(and of course fully supported by our software), see also
Sect. 5 for applications of three level models.

Based on usual conditional independence assumptions,
the posterior is proportional to

L
(
y | β1, . . . ,βq,γ , σ 2)

q∏

j=1

[
p
(
βj |, τ 2

j

)
p
(
τ 2
j

)]
p(γ )p

(
σ 2)

q1∏

j=1

[
p
(
β1j | τ 2

1j

)
p
(
τ 2

1j

)]
p(γ 1)p

(
τ 2

1

)
,

(11)

where L(·) denotes the likelihood which is the product of
individual likelihood contributions.

The parameters are updated in blocks where each vector
of regression coefficients βj (β1l in a second level of the
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hierarchy) of a particular term is updated in one (possibly
large) block followed by updating the regression coefficients
γ , γ 1 of linear effects and the variance components τ 2

j , τ 2
1l ,

σ 2. Simultaneously updating the regression coefficients βj

(β1l) and the corresponding variance component τ 2
j (τ 2

1l) is
possible and sometimes useful, see Rue and Held (2005) or
Brezger and Lang (2006).

The full conditionals for the regression coefficients β1
with the compound prior (4) and the coefficients βj , j =
2, . . . , q , β1l , l = 1, . . . , q1 with the basic prior (8) are all
multivariate Gaussian. The respective posterior precision
�−1 and mean μ is given by

�−1 = 1

σ 2

(
Z′

1WZ1 + σ 2

τ 2
1

I

)
,

�−1μ = 1

σ 2
Z′

1Wr + 1

τ 2
1

η1 (β1 compound prior),

�−1 = 1

σ 2

(
Z′

jWZj + σ 2

τ 2
j

Kj

)
,

�−1μ = 1

σ 2
Z′

jWr (βj level-1 equation),

�−1 = 1

τ 2
1

(
Z′

1lZ1l + τ 2
1

τ 2
1l

K1l

)
,

�−1μ = 1

τ 2
1

Z′
1lr1 (β1l level-2 equation),

(12)

where r is the current partial residual and r1 is the “par-
tial residual” of the level-2 equation. More precisely, r1 =
β1 − η̃1 and η̃1 is the predictor of the level-2 equation ex-
cluding the current effect of z1l .

MCMC updates of the regression coefficients take advan-
tage of the following key features:

Sparsity Design matrices Zj ,Z1l as well as their cross
products Z′

jWZj ,Z
′
1lZ1l and associated penalty matrices

Kj ,K1l and posterior precision matrices in (12) are often
sparse. The sparsity can be exploited for highly efficient
computation of cross products (Sect. 3.3), Cholesky decom-
positions of posterior precision matrices and for fast solving
of relevant linear equation systems. In some cases, appropri-
ate reordering of the parameters is required. The parameters
may be reordered according to the reverse Cuthill-McKee
algorithm or the (approximate) minimum degree algorithm,
see Davis (2006) for a recent reference.

Reduced complexity in the second or third stage of the
hierarchy Updating the regression coefficients β1l , l =
1, . . . , q1, in the second (or third level) is done conditionally
on the parameter vector β1. This facilitates updating the pa-
rameters for two reasons. First the number of “observations”

in the level-2 equation is equal to the length of the vector β1
and therefore much smaller than the actual number of obser-
vations n. Second the full conditionals for β1l are Gaussian
regardless of the response distribution in the first level of the
hierarchy.

Number of different observations smaller than sample size
In most cases the number mj of different observations
z(1), . . . , z(mj ) in Zj (or m1l in Z1l in the level-2 equa-
tion) is much smaller than the total number n of observa-
tions. The fact that mj � n may be utilized to consider-
ably speed up computations of the cross products Z′

jWZj ,
Z′

1lZ1l , the vectors Z′
jWr , Z′

1lr1 and finally the updated
vectors of function evaluations f j = Zjβj , f 1l = Z1lβ1l .
Details will be given in Sect. 3.3. Note that efficient compu-
tation of cross products and function evaluations contributes
at least as much to computational efficiency as the sparse
matrix algorithms to solve relevant linear equation systems.

3.2 Non-Gaussian responses

The non-Gaussian case can often be traced back to Gaussian
regression models via data augmentation as has been pro-
posed for the first time in the seminal paper by Albert and
Chib (1993) for parametric probit models. Since then other
data augmentation schemes for logit models (Holmes and
Held 2006; Frühwirth-Schnatter and Frühwirth 2010), Pois-
son regression (Frühwirth-Schnatter et al. 2009) and certain
types of Gamma regression models (Frühwirth-Schnatter
et al. 2009) have been developed. We very briefly illustrate
the concept for probit models, i.e. yi ∼ B(1,Φ(ηi)) where
Φ is the cdf of a standard normal distribution. Introducing
latent variables Ui = ηi + εi with εi ∼ N(0,1), we obtain
yi = 1 if Ui > 0 and yi = 0 if Ui < 0. The posterior of the
model augmented by the latent variables depends now on
the extra parameters Ui and additional sampling steps for
updating the Ui ’s are required. Sampling the Ui ’s is rela-
tively easy and fast because the full conditionals are trun-
cated normal distributions, i.e. Ui | · ∼ N(ηi,1) truncated at
the left by 0 if yi = 1 and truncated at the right if yi = 0.
The advantage of defining a probit model through the latent
variables Ui is that the full conditionals for the regression
parameters are almost unchanged with the responses yi in
(12) replaced by the latent variables Ui . The other data aug-
mentation approaches mentioned above work similar and are
only slightly more complex.

In cases where data augmentation is not possible the re-
gression parameters of the level-1 equation can be updated
using Metropolis-Hastings steps with IWLS proposals as
described for simple STAR models in Brezger and Lang
(2006). The tricks for computationally improved MCMC
sampling summarized in the previous subsection and de-
tailed in the following subsections can still be used with mi-
nor modifications.
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3.3 Efficient computation of Z′WZ and Z′Wr

We describe efficient computation for a particular varying
coefficient term

f (z) = f
(
z(1), z(2)

) = z(1)g
(
z(2)

)
(13)

in the level-1 or level-2 equation with design matrix

Z = diag
(
z
(1)
1 , . . . , z(1)

n

)
Z(2) = DZ(2)

where D = diag(z
(1)
1 , . . . , z

(1)
n ). Computation for a pure ad-

ditive term, i.e. D = I , arises as a special case.

Denote by z
(2)
(1) < z

(2)
(2) < · · · < z

(2)
(m) the m ordered differ-

ent observations of z(2). Compute the index vector ind with
elements ind[i] ∈ {1, . . . ,m} denoting the category of the
i-th observation, i.e. if z

(2)
i = z

(2)
(j) then ind[i] = j . The index

vector ind is required to match the sorted observations of
z(2) with the response observations which can not be sorted
directly because different model terms would result in dif-
ferent sorting.

We can now decompose the design matrix in Z = DPZ̃,
where

• Z̃ is the m×K reduced design matrix for the different and
sorted observations z

(2)
(1), . . . , z

(2)
(m), i.e. Z̃[s, k] = Bk(z

(2)
(s) ),

s = 1, . . . ,m, k = 1, . . . ,K ,
• P is a n × m permutation matrix, which reverts the sort-

ing, i.e. P [i, s] = I (ind(i) = s). Note that P is defined
for presentation purposes and will not be computed ex-
plicitly.

For the vector of function evaluations we obtain f = Zβ =
DPZ̃β .

Computation of Z′WZ We get

Z′WZ = Z̃
′
P ′D′WDPZ̃ = Z̃

′
W̃ Z̃,

where W̃ = P ′D′WDP = diag(w̃1, . . . , w̃m) and the “re-
duced” weights w̃s , s = 1, . . . ,m, are given by

w̃s =
∑

i:ind[i]=s

(
z
(1)
i

)2
wi. (14)

The weights w̃s can be computed by first initializing w̃s = 0

followed by a simple loop: For i = 1, . . . , n add (z
(1)
i )2wi to

w̃ind[i]. Hence, the computation of the cross product Z′WZ

is reduced to the computation of the cross product Z̃
′
W̃ Z̃

where the dimension of Z̃ is much more favorable in terms
of computational costs than the dimension of the original
design matrix Z. Note that the reduced design matrix Z̃ is
still a sparse matrix. The sparsity can be exploited for effi-
cient computation by using standard algorithms for sparse
matrix multiplications as for example given in Davis (2006,
Chap. 2.8). However, since Z̃ usually remains constant dur-
ing the MCMC run an even faster algorithm is possible:

Efficient computation of Z̃
′
W̃ Z̃ We store Z̃

′
W̃ Z̃ in sparse

matrix format. Although the particular sparse matrix storage
format differs from implementation to implementation there
is always a vector, C say, that stores the nonzero entries of
Z̃

′
W̃ Z̃. Let nz be the number of nonzero entries of Z̃

′
W̃ Z̃,

i.e. the dimension of C. Suppose that the t-th entry C[t] of C

corresponds to the element in the r-th row and l-th column
of Z̃

′
W̃ Z̃. Then we have

C[t] =
m∑

s=1

w̃sZ̃[s, r]Z̃[s, l],

where most of the products Z̃[s, r]Z̃[s, l] are zero because
either Z[s, r] or Z[s, l] or both are zero. We now store the
nonzero products Z̃[s, r]Z̃[s, l] required to compute C[t] in
the auxiliary vector h1, the corresponding index s in the aux-
iliary vector h2 and the position of the first element in h1

corresponding to C[t] in the (nz + 1) × 1 index vector h3.
The last element h3[nz + 1] in h3 is the dimension of C.
Then C[t] is efficiently computed as

C[t] =
h3[t+1]−1∑

s=h3[t]
w̃h2[s]h1[s].

Computation of Z′Wr For Z′Wr we obtain

Z′Wr = Z̃
′
P ′D′Wr = Z̃

′
r̃,

where the m × 1 vector r̃ = (r̃1, . . . , r̃m)′ of “reduced” par-
tial residuals is given by

r̃s =
∑

i:ind[i]=s

z
(1)
i wiri . (15)

The r̃s are computed by first initializing r̃s = 0 followed by
the loop: For i = 1, . . . , n add z

(1)
i wiri to r̃ind[i]. Once the

reduced partial residual vector r̃ is computed, the product
Z̃

′
r̃ is obtained via sparse matrix-vector multiplications.

Remarks

1. Indicator functions: A particularly simple expression for
Z′WZ and Z′Wr is obtained if the Bk(z) are indicator
functions, i.e. Bk(z) ∈ {0,1} and for a particular value
z we have Bk(z) = 1 for exactly one k ∈ {1, . . . ,K}.
Typical examples are Markov random fields for model-
ing spatial heterogeneity or P-splines of degree 0 (simple
random walk priors). Another example arises if the ef-
fect Z1β1 with compound prior for β1 models cluster-
or individual-specific heterogeneity. In this case covari-
ate z1 ∈ {1, . . . ,K} corresponds to a cluster index and
Z1 is an incidence matrix with elements either 0 or 1.
In all examples the cross product Z′WZ reduces to the
diagonal matrix W̃ = diag(w̃1, . . . , w̃m) and the product
Z′Wr reduces to r̃ .
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2. Binning: The efficiency of the formulae for computing
Z′WZ and Z′Wr depends on the number m of differ-
ent observations in the covariate vector z(2). For large m,
a simple device for increasing computational efficiency
is to perform binning of the data. For continuous z(2)

a very simple solution is rounding the data to a certain
degree. Alternatively we may group the data according
to an equidistant grid. Suppose that the support of the
data is the interval [a, b] and that we want to replace the
observations z

(2)
1 , . . . , z

(2)
n by a grid of m equally spaced

design points

a + δ/2 = z
(2)
(1) < z

(2)
(2) < . . . < z

(2)
(m) = b − δ/2.

Here δ = (b − a)/m is the grid width. It is natural to
replace a value z(2) by the design point which is closest
in absolute value to z(2). Define for every value z(2) the
index h = floor((z(2) −a)/δ). Then we obtain z

(2)
new = a+

δ/2 + h · δ.
To give an example, computing time is reduced by ap-

proximately 40 to 70 percent (depending on the response
distribution) for a simple model with one nonlinear func-
tion modeled by P-splines and 1000 different covariate
observations.

3.4 Algorithm for updating regression parameters of
nonlinear effects

On the basis of the preceding subsections we are now ready
to describe an algorithm for updates of the regression pa-
rameters of nonlinear terms. We restrict the presentation
to Gaussian responses. Adapting the algorithm for non-
Gaussian responses using data augmentation or IWLS pro-
posals as sketched in Sect. 3.2 is straightforward.

We describe a generic algorithm for updating an arbitrary
vector of regression coefficients β regardless of the hierar-
chy level and its prior (compound prior (4) or basic prior
(8)). This means that we need to implement only one al-
gorithm for updating the regression coefficients of any hi-
erarchy level. The input of the algorithm is a (pseudo) “re-
sponse” vector ỹ, a diagonal matrix of weights W̃ , a pre-
dictor η̃, a vector of regression coefficients β , a vector of
function evaluations f , a (reduced) design matrix Z̃ and its
transpose Z̃

′
, an index vector ind, a cross product matrix

Z′WZ, a vector Z′Wr , a penalty matrix K and a precision
matrix �−1. The specific values passed to the algorithm de-
pend on the respective model term, the hierarchy level and
the prior. For instance, ỹ = y, η̃ = η, W̃ = W when updat-
ing a parameter vector of the level-1 equation and ỹ = β1,
η̃ = η1, W̃ = I when updating a level-2 parameter vector.
Some of the input vectors and matrices are modified by the
algorithm. The algorithm is implemented using the follow-
ing steps:

Algorithm (ỹ, W̃ , η̃, β , f , Z̃, Z̃
′
, ind, Z′WZ, Z′Wr ,

K , �−1)

1. Substract f from η̃: η̃ = η̃ − f and compute the partial
residual: r = y − η̃.

2. Compute the cross product matrix Z′WZ = Z̃
′
W̃ Z̃ and

the vector Z′Wr = Z̃
′
r̃ , based on the algorithms devel-

oped in Sect. 3.3. In models with Gaussian errors it is
sufficient to compute the cross product Z′WZ once at
the outset of the iterations because quantities involved re-
main constant. However, for non-Gaussian responses and
some extensions as generalized random slope modeling
defined in (7) the cross product has to be recomputed in
every iteration of the sampler.

3. Compute the posterior precision matrix �−1, see formula
(12), and its Cholesky decomposition: �−1 = LL′.

4. Sample β: First solve L′β∗ = u, where u is a vec-
tor of independent standard Gaussians. It follows that
β∗ ∼ N(0,�). Compute the mean μ by solving for μ in
(12) and add the mean μ to the previously simulated β∗.
Finally correct the unconstraint vector β∗ by

β = β∗ − �A′(A�A′)−1
Aβ.

This is done at negligible computational cost using steps
5–9 of algorithm 2.6 in Rue and Held (2005).

5. Update the vector of function evaluations f = Zβ =
PZ̃β (or f = DPZ̃β for varying coefficients terms).
The first step is to compute the product f̃ = Z̃β us-
ing sparse matrix - vector multiplications. Then the i-th
element of f is given by f [i] = f̃ [ind[i]] (or f [i] =
z
(1)
i f̃ [ind[i]] for varying coefficients terms) .

6. Update the predictor: η̃ = η̃ + f

The generic algorithm is typically implemented as a func-
tion that takes the input vectors and matrices of the algo-
rithm as arguments and modifies parts of these quantities.
Since the algorithm updates parameter vectors of arbitrary
hierarchy levels estimation of complex multilevel models is
easily obtained by subsequently calling the function that im-
plements the algorithm.

4 MCMC inference based on an alternative
parametrization

In this section we develop an alternative to the sampling
scheme outlined in Sect. 3. The new scheme is particularly
useful for situations where the design and penalty matrix is
not sparse as is for example the case for Gaussian random
fields. The alternative sampling scheme works with a trans-
formed parametrization such that the cross product of the de-
sign matrix and the penalty matrix of a nonlinear term are di-
agonal resulting in a diagonal posterior precision matrix. In
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the context of spline smoothing the resulting basis functions
are known as the Demmler-Reinsch basis. For pure additive
models based on P-splines the Demmler-Reinsch basis has
been used for (frequentist) inference in Ruppert (2002).

We describe the alternative parametrization for a partic-
ular nonlinear function f with design matrix Z = PZ̃ and
parameter vector β with general prior (8).

Let Z′WZ = Z̃
′
W̃ Z̃ = RR′ be the Cholesky decomposi-

tion of the cross product of the design matrix and let QSQ′
be the singular value decomposition of R−1KR−T . The di-
agonal matrix S = diag(s1, . . . , sK) contains the eigenval-
ues of R−1KR−T in ascending order. The columns of the
orthogonal matrix Q contain the corresponding eigenvec-
tors. Columns 1 through rk(K) form a basis for the vector
space spanned by the columns of R−1KR−T . The remain-
ing columns are a basis of the nullspace.

Then the decomposition β = R−T Qβ̄ yields

PZ̃β = PZ̃R−T Qβ̄ = Z̄β̄,

where the transformed design matrix Z̄ is defined by Z̄ =
PZ̃R−T Q. Note that Z̄ is a dense matrix in contrast to the
sparse original design matrix Z.

We now obtain for the cross product

Z̄
′
WZ̄ = Q′R−1Z̃

′
P ′WPZ̃R−T Q = Q′Q = I

and for the penalty

β ′Kβ = β̄
′
Q′R−1KR−T Qβ̄ = β̄

′
Sβ̄,

with the new diagonal penalty matrix S given by the singular
value decomposition of R−1KR−T , see above.

Summarizing, we obtain the equivalent formulation f =
Z̄β̄ for the vector of function evaluations based on the trans-
formed design matrix Z̄ and the transformed parameter vec-
tor β̄ with (possibly improper) Gaussian prior

β̄ | τ 2 ∼ N
(
0, τ 2S−)

.

The advantage of the scheme is that the prior precision or
penalty matrix S is diagonal resulting in a diagonal posterior
precision matrix. More specifically, the full conditional for
β̄ is Gaussian with k-th element μk , k = 1, . . . ,K , of the
mean vector μ given by

μk = 1

1 + λsk
· uk,

where λ = σ 2/τ 2 and uk is the k-th element of the vector
u = Z̄

′
Wr with r the partial residual. The covariance matrix

� is diagonal with diagonal elements

�[k, k] = σ 2

1 + λsk
.

For MCMC simulation the matrix products u = Z̄
′
Wr

and f = Z̄β̄ must be computed in every iteration of the sam-
pler. The n × K design matrix Z̄ is a dense matrix that con-
tains no zero elements. There is, however, a more efficient
way to compute the required quantities than by direct matrix
multiplication.

To compute u we first note that u = Z̄
′
Wr =

Q′R−1Z̃
′
P ′Wr . Since P ′Wr = r̃ is the reduced partial

residual defined in Sect. 3.3 we get u = Q′R−1Z̃
′
r̃ . Hence

u is obtained by first computing the product Z̃
′
r̃ using stan-

dard sparse matrix multiplications (or the even more effi-
cient algorithm described in Sect. 3.3) and by multiplying
the result with the K ×K matrix Q′R−1 which can be com-
puted offline.

For computing the second product f = Z̄β̄ we note that
f = Zβ and β = R−T Qβ̄ . Hence f is obtained by first
computing the untransformed β followed by step 5 of the
algorithm described in Sect. 3.4.

The main advantage of the alternative transformation is
that it provides fast MCMC inference even in situations
where the posterior precision is relatively dense as is the
case for many surface estimators. The prime example is a
Gaussian random field which is almost intractable in the
standard parametrization (see Hennerfeind et al. 2006). Us-
ing the approach described in this section MCMC inference
for Gaussian random fields is extremely fast.

The main disadvantage of the sampling scheme is that it
works only for fixed design, i.e. the design matrix Z and the
weights W must be constant during an MCMC run. Other-
wise the relatively costly singular value decomposition must
be recomputed in every iteration of the sampler. This ex-
cludes MH updates with IWLS proposals as proposed in
Brezger and Lang (2006).

5 Case study on child undernutrition in India

In this section we apply our methodology to data on the de-
terminants of child undernutrition in India. The analysis is
based on micro data from the second National Family Health
Survey (NFHS-2) from India which was conducted in the
years 1998 and 1999. The sample is representative of the
population and collectes detailed health and anthropometric
information on approximately 30000 children born in the 3
years preceding the survey.

Using the methodology of this paper we estimated the
probit model (6) described in the introduction. The presen-
tation is restricted to the most interesting covariates from
a statistical point of view. Note, however, that all relevant
covariates (e.g. the birth order or the household size) are in-
cluded in our models but not discussed in this methodologi-
cal paper.

For the nonlinear effects of continuous covariates, cu-
bic P-splines with 20 inner knots have been specified. The
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Fig. 1 Maximum autocorrelations for selected effects

smooth spatial effects f9,3(dist) and f10,3(dist) are modeled
either by Markov random fields or Gaussian random fields
with 50 representative knots (low rank approximation). The
latter is estimated via the alternative parametrization out-
lined in Sect. 4 while all other terms can be estimated in
the original parametrization. The results for both approaches
to spatial smoothing are similar although Gaussian random
fields shows a substantially lower deviance information cri-
terion (DIC) (Spiegelhalter et al. 2002) with a difference of
more than 50 points. Surprisingly the difference is due to a
reduced deviance for the model based on Gaussian random
fields while the equivalent degrees of freedom of both mod-
eling variants are almost identical. This means that Gaussian
random fields produce a better fit with less parameters.

5.1 Hierarchical versus non-hierarchical formulation

We first compare the hierarchical formulation of the model
as outlined in this paper with a non-hierarchical version.

In principle, a non-hierarchical reduced form could be es-
timated using the technology outlined primarily in Lang and
Brezger (2004) and Brezger and Lang (2006). However, es-
timation of the full model (6) turned out to be not feasible
because of very slow mixing and corresponding numerical
problems. The comparison is therefore restricted to a main
effects model with a reduced set of covariates. Estimation
of the hierarchical version of this reduced model takes be-
tween 25 % and 50 % (depending on the operating system
and the compiler used) of the non-hierarchical version (with
the same number of iterations). Even more important is the
by far superior mixing of sampled parameters as is demon-
strated through Fig. 1. The figure shows for selected model
terms the maximum autocorrelations of the corresponding
parameters for lag sizes between 1 and 50. While for the
hierarchical version the maximum autocorrelations decline
rather quickly, we observe persistent autocorrelation with
the non-hierarchical version. The autocorrelation functions
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of the hierarchical model suggest that 20000 to 30000 it-
erations after the burnin period should be sufficient to ob-
tain 1000 nearly uncorrelated samples if every 20th to 30th
sample is used. On the other hand the autocorrelation func-
tions for the non-hierarchical version show that estimation
of complex multilevel models using standard MCMC tech-
nology is not feasible.

To be on the safe side, the following results are based
on 50000 iterations after a burnin period of 3000 iterations.
On modern personal computers estimation takes between 10
and 20 minutes depending on the actual processor. Note that
we have not run parallel chains which would reduce comput-
ing time even further (approximately 30–35 % of the com-
puting time of a single chain on a usual quad core processor).
Note also that in the model building phase 10000 iterations
after the burnin period are enough to obtain sufficiently ac-
curate preliminary results.

5.2 Results for nonlinear covariate effects

Figures 2 and 3 show estimated nonlinear effects of all hier-
archy levels. The results rely on the modeling variant based
on Gaussian random fields for the smooth spatial effect.
Shown are the posterior means together with 95 % pointwise
and simultaneous credible bands. The simultaneous credi-
ble intervals are based on a proposal by Krivobokova et al.
(2010). Of the various interactions with gender, the varying
effects with the child’s age and mother’s age at first birth are
“significant” in the sense that at least the 95 % pointwise
credible intervals do not fully cover the zero line. Therefore
the presentation of interaction effects are restricted to c_age
and ageb. We also completely omitted results for the gross
national product per capita (gnp) in the level-3 equations as
the effects are practically zero. Although this result is quite
surprising, also other studies have failed to identify an ef-
fect of GDP per capita on child undernutrition in India us-
ing large scale household survey data (Subramanyam et al.
2011).

The age effect (left panel of Fig. 2) shows that the prob-
ability of being stunted in India rapidly increases between
age 0 and about 20 months after which it oscillates. This
is in line with findings from other studies and indicates
that children are not born chronically malnourished but de-
velop this as a result of disease and inadequate nutritional
intake. The sudden improvement of the nutritional status
around 24 months is an artifact of the reference standard as
at this age, children switch from being compared to the bet-
ter nourished reference children from the white, bottle-fed
Fels study (Ohio Fels Research Institute), to the worse nour-
ished reference children derived from a cross-section of the
US population, see WHO (2002, pp. 4–6). The interaction
with gender shows that females are less likely to be stunted
than males up to the age of 20 months. This is in agreement

with our expectations as male newborns are typically more
vulnerable than females. More surprising is the fact that af-
ter 20 months the situation is reverted and female children
are now more likely to be stunted than male children. This
suggests that males have better access to limited (food) re-
sources than females. This interesting finding supports the
hypotheses among development economists that male chil-
dren have a cultural advantage in South Asian countries be-
cause parents profit more from male offsprings (e.g. they are
more beneficial after retirement), see e.g. Klasen (1996) and
Somerfelt and Arnold (1999).

The effects of all other covariates in the study are much
weaker than the age effect. An example is the effect of
mother’s age at first birth. This effect shows a U-form, i.e.
children are most healthy if the mother’s age at first birth is
around 25 years. For younger and older mothers the proba-
bility of stunted children is increased (although the effect is
not strong). The interaction effect provides evidence that the
more problematic situation of old mother’s is more risky for
females than for males. The observation that “problematic
situations” are riskier for females than males is also sup-
ported by some of the other interaction effects. Albeit not
significant, they all point in the same direction that males
are less affected by problematic situations (e.g. regarding
the household wealth) than females.

For modeling the household’s wealth and education ef-
fect we have used the multilevel structure of the data and
estimated for both covariates external effects at district level
by including the average wealth index and education years
per district in the level-2 equation. At least for the wealth
index such an external effect can be observed (top left panel
of Fig. 3). Children who are born in a wealthier environment
(district) are less likely to be stunted than children living in
poor districts. There is, however, an additional household
effect, see the bottom left panel of Fig. 3. Children in house-
holds which are wealthier than the district mean are less
affected by stunting (and vice versa). Regarding education
an external district effect is not significant although there is
a tendency that children in districts with higher education
level are less likely to be stunted. The individual education
effect is comparably strong and shows that a higher educa-
tion status goes along with better nourished children.

5.3 Hierarchical spatial random effect

Figures 4 and 5 show results for the spatial random ef-
fects modeled through the level-2 and level-3 equations.
The kernel density estimates of Fig. 4 provide insight into
the strength and importance of the various random effects.
We first note that the interaction random effects are much
weaker than the main random effects. Moreover, the district
smooth effects and the uncorrelated district random effects
are roughly of equal size and dominate the state random
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Fig. 2 Effect of child’s age and mother’s age at first birth by gender. Shown is the posterior mean together with 95 % pointwise and simultaneous
credible intervals
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Fig. 3 Nonlinear effects of the wealth index and the education years. Shown is the posterior mean together with 95 % pointwise and simultaneous
credible intervals

effects which are almost negligible. Figure 5 shows maps
of the spatial heterogeneity not explained by covariates for
males and females, respectively. Unexplained spatial hetero-
geneity is additively composed of the district smooth and un-
correlated random effect and the state random effect. Over-
all, unexplained heterogeneity is higher for females (see also
in Fig. 4 the right bottom panel). Moreover, females exhibit
a more pronounced spatial pattern with higher probabilities
of stunting in the north-west and lower probabilities in the
south and the north-east. For males we observe a similar pat-
tern although the north-south patterns are less distinct.

5.4 Model choice

Some final remarks regarding model choice are in order.
General tools for model choice are pointwise and simulta-

neous credible intervals for the nonlinear effects as well as
Bayesian goodness of fit criteria, particularly the DIC. Also
beneficial for model choice is the detailed hierarchical mod-
eling of spatial heterogeneity. For instance, the kernel densi-
ties of Fig. 4 suggest that the interaction random effect can
be restricted to a level-2 equation with a smooth and/or un-
correlated district effect. The spatial main effect could possi-
bly be restricted to the level-2 equation omitting the level-3
states equation. To reduce the complexity of the full inter-
action model (6) we could in a first step exclude the smooth
nonsignificant interactions (in terms of 95 % pointwise cred-
ible intervals) which slightly reduces the DIC by approxi-
mately 15 points. A further reduction of the DIC is obtained
by more parsimonious random effects. The best model (in
terms of the DIC) is given by a full main effects spatial ran-
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Fig. 4 Kernel densities of the spatial random effects

dom effect including the level-3 equation and a reduced spa-
tial interaction with a simple i.i.d. Gaussian district random
effect. In this model the DIC reduces by approximately 25
points compared to the full interaction model. Further re-
duction of the main effects spatial random effect to a level-2
equation shows almost identical DIC.

6 Conclusion

This paper proposes a multilevel version of STAR models by
assuming that the regression coefficients of a particular non-
linear term obey another regression model with structured
additive predictor. The proposed model may be regarded as
an extended version of a multilevel model with nonlinear
covariate terms in every level of the hierarchy. Our model
framework also comprises proposals for generalizations of

random slopes by assuming a common functional form that
is scaled by cluster specific scaling factors. We have devel-
oped highly efficient MCMC schemes for simulation-based
inference. The algorithms utilize the hierarchical structure
of the models and rigorously exploit the sparsity of de-
sign matrices, cross products and penalty matrices. Thereby
a considerable gain in numerical efficiency, reduction in
computing time and improved mixing of Markov chains is
achieved compared to non-hierarchical versions of the mod-
els.

The methodology of this paper is the basis for a number
of extensions that we plan for future research:

• First of all, we plan to extend multilevel STAR models
to multivariate responses, in particular multicategorical
regression and seemingly unrelated regression.

• We also plan to model other parameters than the mean of
the distribution in the spirit of generalized additive mod-
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Fig. 5 Spatial heterogeneity not explained by covariates for males (left panel) and females (right panel)

els for location, scale and skewness (GAMLSS, Rigby
and Stasinopoulos 2005).

• Another interesting (albeit rather challenging) field is to
model hyperparameters in dependence of covariates, e.g.
the variance parameter τ 2 in the general prior (8) or the
weights in the penalty matrix of a Markov random field.
Preferably, the specification of a full STAR model should
be possible for these hyperparameters. This allows for
modeling locally adaptive functions or complex covariate
driven spatial neighborhood definitions.

• We finally want to develop methodology for automatic
model choice and variable selection in the spirit of Be-
litz and Lang (2008) in a frequentist setting and Scheipl
et al. (2012) in a Bayesian approach via spike and slab
priors.
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