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ELECTRICITY LOAD FORECASTING

Electricity consumption is the main entry for optimising the production units and
managing the grid
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NEW INDUSTRIAL CHALLENGES IN ELECTRICITY

Smart grids

o More and more « real time » data (ex: linky, 1million meter in 2016)
o Demand response (new tariffs, real time pricing...)

o New communication tools with customers (webservice....)

Renewables energy development
o A more and more probabilistic context: need probabilistic forecasts as enter for risk optimisation tools

Opening of the electricity market:
o Losses/gains of customers

Sensors data:
o Production/consumption sites
o Smart home, internet of things

New usages/tariffs:

o Electric cars

o Heat pumps, smart phones, battery charge, computers, flat screens....
- Demand response
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STATISCAL CHALLENGES

= Big data
o Parallelizing statistical algorithms

O

O

Sequential data treatment (data flow, CEP)

O

Heterogenous data treatment
Functional data analysis

O

= Adaptivity
= Non-parametric models
o Model selection, data driven penalty...

= Sequential estimation
o Break detection, on-line update
o Aggregation of experts with on-line weights

= Spatio-temporal
o Spatial correlation modeling/simulation

= Multi-scale models
o Multi-horizon models
o Multi level data on the grid
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Complex data analysing: heteregonous spatial/temporal sampling, different sources/nature of data

= Data mining for time series
o Machine learning for time series

= Probabilistic forecasts
o Density forecast
o Quantile models

= Large scale simulations
o Simulation platform, parallel processing
o Complex systems dynamics



TOPIC OF THAT TALK

Probabilistic forecasts
o Quantile models

Adaptivity
o Non-parametric models

Sequential estimation
o Aggregation of experts with on-line weights

Spatio-temporal
o Spatial correlation modeling/simulation
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Probablistic load forecasting on the distribution grid
Probabilistic price forecasting
GEFCOM 14 data (similar than EDF ones)

Solar radiation modeling for PV production



PROBABILISTIC FORECAST: AHOT TOPIC

= A special issue of International Journal of Forecasting
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= GEFcom 2014 competition, sponsored by IEEE Power and Energy Society

Global Energy Forecasting Competition 2014

Proudly sponsored by |EEE Power & Energy Socief

GEFCOM GEFCOM GEFCOM GEFCOM
2014 2014 2014 2014

Load Forecasting Price Forecasting Wind Forecasting Solar Forecasting

= Participation (nb of teams): Load (333), Price (250), Wind (208), Solar (218)

q
& -
2~ EDF



PROBABILISTIC FORECAST: INDUSTRIAL MOTIVATION

= Renewables energy development

o A« probabilistic world »: wind power generation is a direct function of the meteorological conditions, which we humans have no
control of, and is hence highly fluctuating Pr. P.Pinson

= Opening of the electricity market:

o Losses/gains of customers:
« scenario based forecasts, adaptivity, time varying parameters
* Bottom up forecasts

= Local forecasting

o Low agregation level

o Wide variety of consumers
o Covariate selection

o Noisy data
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GAM MODELS FOR LOAD FORECASTING

= A good trade-off complexity/adaptivity

vi = i(x}) + H(x2) + ..+ FOC, xT) + .o+ &

ming f |y — fi(x1) — Hr(x0) — .| + A\ f;(x)2dx+)\2 f;(x)QdX—F...

= Publications

o Application on load forecasting

* A. Pierrot and Y. Goude, Short-Term Electricity Load Forecasting With Generalized Additive Models Proceedings of
ISAP power, pp 593-600, 2011.

R. Nédellec, J. Cugliari and Y. Goude, GEFCom2012: Electricity Load Forecasting and Backcasting with Semi-
Parametric Models, International Journal of Forecasting , 2014, 30, 375 - 381.

o GAM parallel for big datasets

S.N. Wood, Goude, Y. and S. Shaw, Generalized additive models for large datasets, to appear in Journal of Royal
Statistical Society-C.

o Adaptive GAM (forgeting factor)

* A. Ba, M. Sinn, Y. Goude and P. Pompey, Adaptive Learning of Smoothing Functions: Application to Electricity Load
Forecasting Advances in Neural Information Processing Systems 25, 2012, 2519-2527.
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GAM MODELS FOR LOAD FORECASTING

ve = f1(Ti) + fa(Ly) + fa(H) + &4
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GAM MODELS FOR LOCAL LOAD FORECASTING
APPLICATION ON ERDF SUBSTATIONS

Fit 2200 on 10 min electricity data models automatically

Goude, Y., Nédellec, R. and Kong, N., Local Short and Middle term Electricity Load Forecasting
with semi-parametric additive models to appear in IEEE transactions on smatrt grid, 2013, 5,

Issue: 1, 440 - 446
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GEFCOM 14 LOAD FORECASTING TRACK

hourly electricity load data (somewhere in US), 6 years from January 1, 2006 to December 31,
2011

Temperature data (25 stations) ,11 years

GEFcom 2014 competition: each week from september 2014 to december 2014 produce a
monthly forecast of each month of 2012 for the 0.01, 0.02, ...,0.99 quantile of the load.
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Our team:

Tololo: Pierre Gaillard, Raphael Nédellec, Yannig Goude
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GEFCOM 14 LOAD FORECASTING TRACK

competition GEFCOM 2014
Performance evaluation: pin-ball loss

1—a/100)(g, —vy). ify<q,:
L(ga.y) = (1 —a/100)(ga — y) ity <q
a/100(y — q,), if y > q,:
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GEFCOM 14 LOAD FORECASTING TRACK

Our original idea
Quantile non-linear regression: GAM for each quantile

goa(Y1X) = Fy/y(@) = inf {y € R, Fyjx(y) = o]

¢a(YIX) € arg min E[p, (Y —(2(X))|X]
! G

P (U,) — &(u — I(u < D)) H(Xe) + H(Xe2) + 5( X3, Xpa) + ..

Koenker, R., 2013. quantreg: Quantile Regression. R package version 5.05.
URL http://CRAN.R-project.org/package=quantreq

Koenker, R. W., Bassett, G. W., 1978. Regression quantiles. Econometrica
46 (1), 33-50.

Issue: numerical problems with non-linear effects, time consuming
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http://cran.r-project.org/package=quantreg
http://cran.r-project.org/package=quantreg
http://cran.r-project.org/package=quantreg

GEFCOM 14 LOAD FORECASTING TRACK

Our approach:
Fitting a GAM to model the conditional mean:

Y, = filToy,) + fo(t) + f3(T;) + h(DayT ype,) + &

Fitting a GAM to model the conditional variance:
— 2
(v, -7,) = &1(Toy) + g2(T)) + &,
Linear quantile regression on:
Yi =20+

Zr = (E(Tﬂyr)! E(I)a I :’;:;"](Tg}yr)s §2(Tr))

RK: this is conditional to temperature, same approach is conducted for the temperature (on Toy) to
model the meteorological randomness, then plug in

q
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GEFCOM 14 LOAD FORECASTING TRACK

T
Jun 06 Jun 07 Jun 08

Figure 4: Medium-term forecasted distribution of the load from June 6, 2011
to June 8, 2011 by using the real values of the temperature T;. As in all the
following plots of probabilistic distributions. we only plot the 50% confidence
interval in dark gray and the 90% confidence interval in light gray.
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Figure 6: 800 temperature scenarios (T') generated for June 1, 2011 to June 2,
2011. The line in black depicts the observed temperature.
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Figure 5: Medium-term forecasted distribution of the load from June 6, 2011
to June 8, 2011 obtained by averaging the forecasted distributions of the load
over the forecasted distribution of the temperature.
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Figure 3: Observed values of T; together with the smooth functions f; and
fi £g1 fitted by Models (8) and (9).
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PROB. ELECTRICITY PRICE FORECASTING

= competition GEFCOM 2014, sponsored by IEEE Power and Energy Society
o september 2014-december 2014

o Probabilistic forecast (quantile 1%, ...,99%) of hourly electricity prices in US based on:

« Zonal/total electricity load forecast
+ Past prices

o Online forecasting of 15 days
o Performance evaluation: pin-ball loss

Global Energy Forecasting Competition 2014

Proudly sponsored by |IEEE Power & Energy Societ

GEFCOM GEFCOM GEFCOM GEFCOM
2014 2014 2014 2014

Load Forecasting Price Forecasting Wind Forecasting Solar Forecasting

o Participation (nb of teams): Load (333), Price (250), Wind (208), Solar (218)

Focus on h+1, ..., h+24h forecasts
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ELECTRICITY PRICE DATA
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PROB. ELECTRICITY PRICE FORECASTING
GEFCOM14

= Aggregation of 13 experts:
J99red P log(P,) = a1 102(P, 24) + a2 102(P, 5) + @3 10g(P;_65)

o autoregressive model (AR) + a3 log(P.min,_52) + h(DayType,) + &
o An autoregressive model with forecasted electric loads as additional covariates (ARX).

o Athreshold autoregressive model TAR defined as an extension of AR to two regimes
depending of the variation of the mean price between a day and eight days ago.

o TARX the extension of ARX to the two regimes model.
o Spike pre-processed autoregressive model PAR
o PARX similar to PAR, but ARX is fitted with pre-processed prices.

inspire from Weron, R., Misiorek, A., 2008. Forecasting spot electricity prices: A comparison of parametric and
semiparametric time series models. International Journal of Forecasting 24 (4), 744 — 763

2 linear regressions

|

log(P;) = @ log(P,_24) + a2 log(P,_s3) + a3 log(P,_6z)

0 2 GAMS + a4 log(P.max,) + (I::,FZLED'%} + -:'.r_ag,F'TLE“";'S’H
o 2 random forests 4 &?FZLEU.EJ N agFTL'j“’ + h(DayType,) + &,
n GBM
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PROB. ELECTRICITY PRICE FORECASTING
GEFCOM14

(Convex) Aggregation with pin-ball loss:

—~ N - e_rl' E;;ll fs(-rk._s)
Yt = E Pi.tXi.t ﬁkr — —
i=1 1 }l(_] e—nzs=[fs(~"f.s}

p-(u)

le(Xk.c) = pr(¥e — Xk.t) —

Extension to linear aggregation:
substitute to original experts BX1, - - -»BXks —PX14s - - s —PXk;
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SEQUENTIAL AGGREGATION OF EXPERTS

Each instance t

- Each expert suggests a prediction x; ; of the consumption y;
- We assign weight to each expert and we predict

N
=1

Our goal is to minimize our cumulative loss

T T
(vt — y)° = min (q- xi —y)* + Rt
2 i, 2
Our loss Loss of the best Estimation error

convex combination

Good set of experts Good aggregating
As varied as possible algorithm

& TeDF
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EXPONENTIALLY WEIGHTED AVERAGE FORECASTER (EWA)

Each instance t

- Each expert suggests a prediction x; ; of the consumption y;

- We assign to expert i the weight

_ exp (=13 et (Xis — ¥6)°)

Pi,t =
- and we predict v; Zj-i. Di, 1 Xi.1

Our cumulated loss is upper bounded by

-
> G =) s _min > (it —y)
=1 T ’ t=1

Our loss Loss of the best expert

i =2
2~ EDF

> €xp (=1 e (X.s — ¥6)?)

[1\/Tlog N

-

Estimation error
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EXPONENTIATED GRADIENT FORECASTER (EG)

Each instance t

- Each expert suggests a prediction x; ; of the consumption y;
- We assign to expert i the weight

Pi.t X exp (—nz;lf,;s) where £is = 2(Ys — ¥s)Xi,s

- and we predict y; = Z,’i, DitXi.t

Our cumulated loss is then bounded as follow

T T
> G-y < min > (q-xe—n) + OyTlgN
Our loss Loss of the best Estimation error

convexe combination

Residuals

1] [ F3 i s nn LI
|
X,
ey
—
e
-

| 22



MULTIPLE LEARNING RATE-POLYNOMIAL, RIDGE

Algorithm 1 The polynomially weighted average fore-
caster with multiple learning rates (ML-Poly)
Input: h = 1, horizon of prediction
Initialize: Fort < h.p, = (1/K,...,1/K) and R; =
(0,....0)
for each instancet =1, 2, ....,n— hdo
0. pick the learning rates

Mo =1/ (14 2y (6.3 = b))
where £, : z — z(ys — Us).
I. form the mixture p, ;, defined component-wise by
Pr.t+h = Mk.t (Rk,t)+ / [m ' (Rt)+}
where 4 denotes the vector of non-negative parts of
the components of x
2. predict Yeqp, = Pyyp, - Teqn and observe y, oy
3. for each expert k update the regret
Ry iv1= Rry +0(Yeg1) — be(The41)
end for

Gaillard, P., Stoltz, G., van Erven, T.: A second-order bound with excess
losses, COLT proceedings (2014).

Gaillard, P. & Goude, Y. Forecasting electricity consumption by
aggregating experts; how to design a good set of experts to appear in

Lecture Notes in Statistics: Modeling and Stochastic Learning for
Forecasting in High Dimension, 2014

Automatic calibration works well in practice

Fast tuning

Algorithm 2 The ridge regression forecaster (Ridge)

Input: A > 0, learning rate; h = 1, horizon
Initialize: fort < h. p, = (1/K,....1/K)
for eachinstancet =1. 2, ..., ndo

I. form the mixture p,,,, defined by

t
. . 2 —~ 2
p, = a:rglnln{ E (ys —u- =)+ Afju —pon}
S:l

wcki
2. output prediction Ji+p = Pyrp, - Tegh
end for

Stable weights

[
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OPERA: ONLINE PREDICTION BY EXPERTS AGGREGATION

mixture {opera} R Documentation
Compute an aggregation rule

Description

The function mixture performs an aggregation rule chosen by the user. it considers a sequence y of observations to be predicted seguentially with the help of experts advices x. The forms at each instance ¢ a prediction by assigning
weight to the experts advices and combining them.

Usage

mixture (y, experts, aggregationBule = "MLpol"™, wl = NULL, awake = NULL,
href = 1, pericd = 1, delay = 0, y.ETR = NULL)

Arguments
¥ A vector containing the cbservations to be predicted.
experts A matrix containing the experts forecasts. Each column correspends to the predictions proposed by an expert to predict ¥. It has as many columns as there are experts.

aggregationfule Either a character string specifying the aggregation rule to use or a list with a component name specifying the aggregation rule and any additional parameter needed. Currently available aggregation rules are:

"EVWA"

Exponentially weighted average aggregation rule. A positive learning rate eta can be chosen by the user. The bigger # is the faster the aggregation rule will learn from observations and experts performances.
However too hight values lead to unstable weight vectors and thus unstable predictions. If it is not specified, the learning rate is calibrated online.

“Fge
Fixed-share aggregation rule. Az for ewa, a learning rate eta can be chosen by the user or calibrated online. The main difference with ewsa aggregation rule rely in the mixing rate alphalin (0, 7] wich considers at

each instance a small probability 21pha to have a rupture in the seguence and that the best expert may change. Fixed-share aggregation rule can thus compete with the best sequence of experis that can
change a few times (8ee bestShifta), while ewa can only compete with the best fixed expert. The mixing rate is either chosen by the user either calibrated cnline.

"Ridge"
Ridge regression. t minimizes at each instance a penalized criterion. tt forms at each instance lingar combination of the experts’ forecasts and can assign negative weights that not necessarily sumto one. It is
useful if the experts are biazed or correlated. it cannot be used with specialized experts. A positive regularization coefficient lambda can either be chosen by the user or calibrated online.

"MLpol”

Polynomial Potential aggregation rule with different learning rates for each expert. The learning rates are calibrated using theoretical values. There are similar aggregation rules like "BOA" (Bernstein online
Aggregation see [Wintenberger, 2014] "MLewa", and "MLprod” (see [Gaillard, Erven, and Steliz, 2014])

“pinball

It performs a mixing aggregation rule for guantile regression. At each instance, it forms the mixture by performing a convex minimisation. t chooses the mixture that minimizes among the past a penalized criterion
based on cumulated pinkall loss.

L
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Frice

PROB. ELECTRICITY PRICE FORECASTING
GEFCOM14

Results
o Task Tororo quantGAM  quantMixt  quantGLM
Jun. 06 XX 0.72 0.85 1.87
Jun. 17 1.06 1.15 1.37 0.71
8- Jun. 24 1.91 1.31 1.58 3.05
/ Jul. 04 1.71 2.06 1.27 1.59
= Jul. 09 1.45 0.99 3.31 1.57
0] Jul. 13 1.10 2.23 1.20 [.18
Jul. 16 2.01 2.63 2.28 5.02
o Jul. 18 9.15 5.13 7.90 11.72
| Jul. 19 4.68 4.80 6.45 13.27
Jul. 20 1.59 1.90 2.35 2.80
Q- Jul. 24 0.75 0.75 1.78 1.42
Jul. 25 2.46 2.30 0.84 2.12
N/~ Dec. 06 | 2.96 0.82 1.03 0.86
Q- Dec. 07 1.35 3.63 3.23 3.22
Dec. 17 | 3.56 3.83 4.26 2.87
I Jun 16 : Jun 17 l

«'~epF
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PROB. ELECTRICITY PRICE & LOAD FORECASTING

GEFCOM14

Results: 1st rank of the competition for both tracks
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Load Price
Ranking |Team Rating  |Team
1 Tololo 50,0%  Tololo
2 Adada 49,0% Team Poland
3 lingrui (Rain) Xie 48,0% GMD
4 OxMath 476%  C3 Green Team
5 E.S. Mangalova 45,4% patl
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PROBLEM DEFINITION

Development of renewable energies

o Need for prediction of production
* Electric grid operation
* Local auto-consumption

o Very short / short / medium term prediction 0000
- Aggregated / local / individual prediction ud

i
i

- We focus on very-short term (10’ to 3h) individual prediction
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COLLABORATIVE INDIVIDUAL PREDICTIONS

QZCADGD

-

. Communication network
- EX. Internet

. Exchange of information
- Ex. P2P

. Collaborative statistical model
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COLLABORATIVE STATISTICAL MODEL

- W advection vector

(") - (p_;lw ({;’))

t

. Estimation of advection vector

ﬁr(‘tp) = argmin > Erreur (F* (pfihf )’F* (5))

. B P P'ev(p)
W(Ptev| w f st | HEV(E)

3
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Météo France

Satellite observation
43 * 33 pixels

1 pixel: 3.3km x 4.5 km
Cloud type: every 1%’

2011 - 2012
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EVALUATION ON CLOUD COVERAGE DATABASE

= Comparison with corrected persistence

= Slight improvement

erreur / production a 95%, par panneau erreur / production 95%, par panneau
persistance corrigée a 15 minutes, en hiver VAMP a 15 minutes, en hiver

1.0

0f

0.
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OPEN QUESTIONS

= Spatio-temporal data models
o Spatio-temporal dynamics for PV, Wind power forecasting

o Statistical meteorological forecasts (T°, solar radiation, wind), specially probabilistic
forecasts

= Other probabilistic approaches:
o Price forecasting: non-Gaussian GAMs (GAM Iss...)

= Non-linear quantile regression with additive models:
o A need for theoretical work on our 2 step procedure
o work on real quantile GAM, not only linear adjustement of the median model
o Adaptive (with time) forecasts to deal with breaks, data flow (related to BAM)

= Improvement are coming from agregation of experts (specially on short horizons)
o Derive experts from GAMs (bagging, covariate selection, focus on special periods...)
o machine learning method (Random forest, gradient boosting machine, deep learing)
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ANNEXES
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AGGREGATION

gain de 110MW

RMSE (MW)

Designing experts
gain de 90MW
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AGGREGATION
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WEATHER STATION SELECTION

Y, = fitToy,) + fo(t) + f[3(T,) + h(DayT ype,) + &
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Figure 2: GCV score obtained for each temperature station compared to the
one obtained by the average temperature T;.
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