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Local Short and Middle Term Electricity Load
Forecasting with Semi-Parametric Additive Models

Yannig Goude, EDF R&D, Raphael Nedellec, EDF R&D, and Nicolas Kong, ERDF.

Abstract—Electricity load forecasting faces rising challenges
due to the advent of innovating technologies such as smart grids,
electric cars and renewable energy production. For distribution
network managers, a good knowledge of the future electricity
consumption stands as a central point for the reliability of the
network and investment strategies.
In this paper, we suggest a semi-parametric approach based
on generalized additive models theory to model electrical load
over more than 2200 substations of the French distribution
network, and this at both short and middle term horizons. These
generalized additive models estimate the relationship between
load and the explanatory variables : temperatures, calendar
variables, etc. This methodology has been applied with good
results on the French grid. In addition, we highlight the fact that
the estimated functions describing the relations between demand
and the driving variables are easily interpretable, and that a good
temperature prediction is important.

Index Terms—load forecasting, generalized additive model,
semi-parametric model, time series, electricity networks

I. INTRODUCTION

E lectricity load forecasting from short term (hourly and
daily), middle term (monthly to yearly) to long term

horizon (5 to 30 years) has received a lot of attention from
industrial and academics in the recent years. For electricity
providers, forecasting electricity demand is a key activity
as it is one of the most important entries for production
planning and trading on the electricity markets. For electricity
network managers a good knowledge of the future electricity
consumption stands as a central point for the reliability of the
network and investment strategies.

Recently, the advent of innovating technologies such as
smart grids, electric cars or renewable energy production
induced a lot of new perspectives for energy management
and consequently for electricity demand forecasting. In France,
ERDF (Électricité Réseau Distribution de France the French
manager of the public electricity distribution network) has
launched recently an AMM (Automated Metering Manage-
ment) project that aims to install 300000 individual smart
meters for experimenting real time individual data collection
and processing. There are many challenges, two of them
are local optimization of electricity production and real time
management of individual demand -see e.g. [1]-; this leads
to develop new methods to forecast a changing electricity
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demand at different scales -individual loads, a block, a region
etc...-.

The literature on load forecasting is rich and many works
have been done concerning forecasting electricity demand
at an ”aggregated” level -for an entire country, big towns
or regions-. Classical statistical methods have been applied
to electricity demand forecasting at a short term horizon
such as SARIMA models in [2] or [3] and exponential
smoothing in notably [4] and [5]. To deal with covariates -
mostly meteorological- high dimensional linear and non-linear
regression models have been successively proposed for short
term and middle term horizon in [6] [7], [8] and [9]. State-
space models presented in [10] and [11] show an interesting
ability to adapt to smooth changes in electricity data. Other
approaches based on machine learning methods also provide
good results, as in [12], [13] and [14].

In this paper we focus on forecasting local electricity
demand on the distribution network in France. More precisely,
we study electricity load collected every 10 minutes by ERDF
at 2260 substations located at the frontier between the high
voltage grid and the distribution network in France. To manage
the distribution grid, quantify the constraints on the network
and optimize the configuration on the grid consequently, ERDF
needs to produce short term -day ahead- and middle term -
year ahead- forecasts for each substations. Each of them is in
average linked to 40 big customers -industries, supermarkets
etc- and 16000 small ones -residential, small businesses etc-
but can have very different properties depending on their
location and the type of costumers connected to it. To deal with
the variability of the data, we propose to use semi-parametric
additive models which are popular statistical models that show
interesting capacity to adapt quite automatically to different
data sets as explained in [15] and [16]. This methodology
has already been applied for short term forecast on the french
electricity data at a national level in [17] and on regional data
in the National Electricity Market of Australia in [18]. We
also applied it during the GEFcom competition on US data
sets, see [19]. In both cases, semi-parametric models show an
interesting trade off between an ability to capture complex
relationships in the data and a quite automatic estimation
processes that do not require intensive human intervention. In
addition, the forecast performances obtained are really good
in comparison with other methods and these models can be
computed at a relatively low computational cost.

The purpose of this study is to suggest a methodology, based
on semi-parametric models, to forecast the 2260 time series
recorded on the distribution grid at a daily and yearly horizon.
We apply it to a data set provided by ERDF and validate our
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approach out-of-sample over the last year of the data set.

II. METHODOLOGY

A. Statistical framework

Consider that we want to fit the following statistical model:

yi = f1(x1,i) + f2(x2,i) + ...+ fp(xp,i) + εi

where yi is a univariate response variable, xq,i are the covari-
ates that drive yi. In the following application, yi will be the
electricity demand, xq,i will be the meteorological predictors,
the calendar effects and etc. εi denotes the model error at
time i. The non-linear functions fq are supposed to be smooth,
which means here that it can be relatively well estimated by
penalized regression in a spline basis. Thus, each function is
expressed like this:

fq(x) =

kq∑
j=1

βq,jb
q
j(x)

where kq is the dimension of the spline basis to model the
effect fq and bqj(x) the corresponding spline functions, for
example B-splines or cubic regression splines. A classical way
to estimate this smooth effects is penalized regression, more
precisely ridge regression, where we minimize the following
criteria:

n∑
i=1

(yi −
p∑
q=1

fq(xi))
2 +

p∑
q=1

λq

∫
‖f

′′

q (x)‖2dx

where the penalty parameter Λ = (λ1, ..., λp) which controls
the degree of smoothness of each effect -the higher λq the
smoother fq is- has to be optimized. Denoting B the matrix
formed by concatenation of the bqj , we have to solve the
following problem:

min
β,λ
‖|Y −Bβ‖|2 +

p∑
q=1

λq β
TSqβ

where β is the vector of the unknown regression parameters,
Sq is a smoothing matrix depending on the spline basis. This
problem is solved using the methodology presented in [20]
and [21] which consists in minimizing the GCV -Generalized
Cross Validation- criteria proposed in [22]. We will use for
that the R package mgcv (see [23] and [16]) that implements
this method.

B. A semi-parametric model for electricity data

Our approach consists in designing a general semi-
parametric model that can then be applied to each of the
2260 substations to provide short and middle term forecast.
In other words, we suppose that a single equation model
can be declined locally and that the semi-parametric model
is sufficiently flexible to adapt to each time series. This hy-
pothesis is quite restrictive and should be relaxed, for example
using automatic model selection methods like grouped lasso
or any shrinkage method. One reason for our choice is that
our approach already gives good forecasting results at a lower

computational cost but we keep these ideas in mind for future
works.

It is well known -see [11], [4] and [17]- that the French
electricity demand exhibits a trend corresponding to economic
and demographic growth, different seasonalities as an intra-
day cycle, a weekly cycle and a yearly cycle and is driven
by meteorological data, mostly by temperature. As in [17]
and [18] we fit one model per instant of the day. The dates
are recorded each 10 minutes so that we fit 144 models
corresponding to the 144 instants per day. We also tried to
fit a single model instead of 144 models, to capture the
time structure of the data and the correlation between the
instants of the day but obtained better results in terms of
goodness of fit and computation time with one model per
instant. For simplicity, we don’t make the dependency on the
instant of the day apparent in the equations bellow, as each
time series composed by the data measured at one instant of
the day are treated independently. For example, y100t the tth

day of electrical consumption measured at the 100th instant
of the day will be denoted yt. Note also that we tried using
a log-transformation of load curves. We did not notice any
improvement and chose to use raw demand.

Based on that and successive experiments, we suggest the
following model for Middle term (MT) forecasting.

MT model

yt =
∑7
j=1mj IDayTypet=j +k ISpecialTarifft=1

+ g1(θt) + g2(Tt) + g3(Tt−1) + g4(Tt−2)

+
∑11
j=1 oj IOffSett=j +h(toyt)

+ εt

(1)

where:
• yt is the electric demand recorded at time t -for one

instant of the day-
• DayTypet is the type of day for the observation t: 1

for Sunday, 2 for Monday, 3 for Tuesday-Wednesday-
Thursday, 4 for Friday, 5 for Saturday, and 6 and 7 for
bank holidays

• SpecialTarifft is a factorial predictor, taking values 0
when there is no special tariff at time t and 1 otherwise

• θt is a smooth temperature which is an exponential
smoothing of the real temperature Tt: θt = (1−0.99)Tt+
0.99θt−1, Tt−1 is the lag 1 temperature -the temperature
of the day before- and Tt−2 is the lag 2 temperature

• OffSett is a categorical variable indicating the holidays
and daylight saving time

• toyt is the time of year which is the position of the
observation t within the year -from 0 January the 1st to 1
December the 31st-, h(toyt) corresponds to the smooth
variation of the yearly cycle of the load per instant of the
day

An important point is that this model realizes a good trade-
off between the fit and the complexity of the model -which is
one property of the models obtained by minimizing the GCV
criteria- and that is crucial to avoid computational issues.

The weekly cycle of the electricity consumption is intro-
duced in the linear part of the model. For each instant of the
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day, each model as one coefficient per type of day, globally
resulting to one coefficient per instant and per type of day at
the end -considering the 144 models associated to each instant-
. The special tariff effect correspond to a tariff option for big
customers that can be activated by energy suppliers about 20
days a year to moderate peaks in electricity consumption -in
winter in France-. These tariffs are very attractive all the year
but customers have to pay big penalties for consuming when
this option is activated, resulting to a significant decrease of
the load during special tariff days. Other tariffs exist which
have an impact on the electricity load in France, but as we’ll
see bellow, these tariff depend on the hour of the day and are
embedded in the weekly and daily cycles.

The temperature Tt is associated to the substation consid-
ered, we will explain how in section III. To model the inertia
of the demand to the temperature -mainly due to the isolation
of the buildings- we add two lag temperatures and a smooth
temperature effect. We optimized the smoothing parameter to
0.99 using the GCV criteria on a sub-sample of 120 substations
chosen randomly among the 2260 substations but we noticed
that around this optimal value the results are quite insensitive
to this parameter.

At a short term horizon, the forecaster has access to recent
electricity load observations to produce a forecast and we
derive a short term model from (1) adding a lag load effect
l(yt−1) as presented in (2).

ST model

yt =
∑7
j=1mj IDayTypet=j +k ISpecialTarifft=1

+ g1(θt) + g2(Tt) + g3(Tt−1) + g4(Tt−2)

+
∑11
j=1 oj IOffSett=j +h(toyt)

+ l(yt−1)

+ εt

(2)

C. Modeling the trend

At a substation level, modeling the trend for middle term
horizon is a tricky issue since it is often driven by a lot
of unknown covariates. As an example, the building of a
commercial mall in a substation area will induce a big jump
in the electricity consumption and there is no way to predict it
without any information about it. For this study, no commercial
or sociological data useful to forecast the trend were provided
at this local scale but this concern will be addressed in future
work. In our experiments we tried to add into our MT model
a trend based on past observations -linear trend, non-linear
trends-. However, we did not observe any improvements,
because this trend is often hard to catch and hidden by the
other covariates. To analyze the impact of forecasting trends
we propose another approach based on two successive steps.
First, we detrend the data at a monthly scale -we explain it
below-, then we fit a model on the detrended data. Then, the
forecast are obtained summing the detrended forecasts and
the estimated monthly trend. In the following we will produce
some forecasting results of this approach supposing that the
trend is known in advance which is obviously not true. The
aim is to compare the performances of the model (1) with

an optimistic benchmark and to evaluate what could be the
gain induced by an improvement of the trend modeling. In the
following we will call this approach the detrending approach.

Detrending the data is a complex process as for the elec-
tricity data either the calendar effects and the meteorological
effects could have a low frequency behavior hard to distinguish
from a trend. For example, a very cold winter in a substation
area could induce an increase of the electrical heating in this
area and thus a change in the global level on the electricity
consumption. So, the impact of temperature and other co-
variates on the load is so important on most substations that
classical univariate detrending methods for time series can’t be
applied here. We suggest a two step semi-parametric model as
a natural and efficient way to solve that problem.
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Fig. 1. Monthly Load and Estimated Trend

As the objective is to estimate a trend which is a low
frequency effect independent of the meteorological effects, we
first estimate a very simple GAM model at a monthly scale -
monthly data-, retrieve some residuals, then estimate the trend
with a kernel smoothing method, then use this estimate to
detrend the data and finally estimate the final semi-parametric
model on the detrended data. We can see on Figure 1 the
trend estimated in red and the monthly data in black. Due to
temperature effects, we could not have seen the same trend on
original data.

So, we first aggregate the data by month which result in
monthly electricity loads and temperatures time series for
every substations. Denoting ymt and Tmt these times series, we
estimate the following semi-parametric additive model (3):

ymt =
∑12
j=1 cj IMontht=j +f(Tmt ) + εt (3)

where:
• IMontht=j is an indicator variable equal to 1 the month of

the observation t is j from 0 to 12 and 0 otherwise
• f is the effect of the monthly temperature of the monthly

electricity load
Then we consider the monthly estimated residuals ε̂mt =

ymt − ŷmt where ŷmt is the estimated load from the model 3,
and estimate the smooth residuals Mη(ε̂m)(t), where Mη is

Mη(x)(t) =

n∑
i=1

xiKη(i, t)/

n∑
i=1

Kη(i, t) (4)
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Fig. 2. Location of the 1976 among 2260 substations.

with K the classical Gaussian kernel Kη(x, y) = exp(−η(x−
y)2) and εm = (εm1 , ε

m
2 , ..., ε

m
n ) the vector of the residuals

over the n month of the estimation-forecasting period.
The bandwidth parameter is set to η = 0.024 -corresponding

to a Gaussian law with standard deviation of 3 months- to
insure the regularity of the trend estimates based on ERDF
expert advises. As M0.024(ε̂m)(i), i = 1, .., n, is a monthly
time series, we interpolate it linearly to obtain T̂ rt the trend
estimated at a 10 minutes frequency. We finally apply the
model (1) on the signal yt − T̂ rt. The final forecasts are the
sum of the forecast of this model and the estimated trend T̂ rt.
We will call this model the MTD (Middle Term Detrending)
model in the following.

III. APPLICATION

In this section we apply the model of the section II-B
to real electricity data. We first describe the dataset and
the estimation procedure and then propose two forecasting
cases. In the first forecasting run, we test the capacity of our
model to adapt automatically -without human intervention-
to each substations. We proceed to the forecast of all the
substations assuming that the realization of the meteorological
covariates is known in advance which is of course not the
case in practice but allows us to quantify the performances of
our model without embedding the meteorological forecasting
errors. The second forecasting run simulates a real forecast
in real operational condition and show the feasibility of our
method in practice. The last part of this section is devoted to
the analysis of these models. We focus on a few particular
substations to illustrate the ability of our semi-parametric
models to capture and represent the different features of the
electricity consumption.

A. Model estimation

The data set used in this section is composed with electricity
demand provided by ERDF from 2260 substations in France
recorded every 10 minutes from January the 1st 2006 to
December the 31st 2011. We also have access to temperature
data recorded every 3 hours at 63 weather stations in France
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Fig. 3. One year of weekly electricity consumption for 6 substations.

provided by MeteoFrance. The locations of 1976 substations
among the 2260 are represented on the Fig. 2 -some depart-
ments have missing GPS data-. A weather station is affected
to each substation by a meteorologist, corresponding to the
closest weather station in terms of climate properties -it can
occur that the closest weather station is not relevant to explain
the climate in the area of a substation, particularly in mountain
regions-. The temperature data are interpolated linearly to fit
with the frequency of the electrical recording. We separate the
data between an estimation set, going from January the 1st

2006 to December the 31st 2010 and a forecasting set, the year
2011. We estimate on each substation the model summarized
in (1) and the corresponding short term forecasting model. As
presented on Fig. 3, the substations can have very different
properties and modeling it automatically is a challenging task.

We notice that a lot of outliers are present in the data.
These outliers can come from database errors but also can
be the consequence of network reconfigurations or physical
injuries on the grid. We exclude 360 time series among 2260 as
they contain too much outliers to estimate our model. Among
the 360 excluded series, a proper cleaning of the data would
make some of them predictable with ours models, but this
pre-processing step would be off-topic.

We implement these models in R with the mgcv pack-
age develop and maintain by Simon Wood, see [16] for a
complete and friendly description of it. As each substation is
treated independently, we parallelize the calculation using the
multicore package doMC from Revolution Analytics. These
package can be found on CRAN http://cran.r-project.org/. For
this experiment we use a personal computer hp z600 -12Go
RAM, 8 proc. intel xeon E5620@2.4GHz- which is a powerful
machine but still a pc. The estimation of the 3 models -
MT, MTD and ST- for the 1900 substations takes 52 hours
-including the access to the data base and the saving of the
results on the hard drive-. All the data, results and models
correspond to 1.2 To of information.
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B. Forecasting
We measure the forecasting performances of our model

on the forecasting set (year 2011) with the Mean Absolute
Percentage Error (MAPE). This measure is a very classical
tool in time series and is particularly relevant here as we deal
with time series of different scales. We compare the MAPE
of our MT and ST models with three naive benchmarks:

• D1: the load of the day before.
• D7: the load of the week before.
• Y1: the electricity load of the year before translated so

that the days of the week corresponds. For instance, as
January the 3rd 2011 is a Monday, so we forecast it with
January the 4rd 2010 which is also a Monday.

The forecasting results we obtained are presented in detailed
on the Fig. 4 and Fig. 5 and summarize in Table I. The
median MAPE of the middle term forecast is 8% and the very
bad forecasts (more than 20% in MAPE, corresponding to 71
substations) are due to network reconfigurations or local trends
-construction or destruction of new buildings, installation of
new companies etc- that are impossible to predict without side
informations. Detrending the data has a large impact since it
reduces the median MAPE of the MTD model to 6% but also
the number of substations with a MAPE larger than 20% to 31.
At a short term horizon, adding the lag load effect is a good
way to capture those variations and the median is considerably
reduced to 5%.

quantile CT MT MTD D1 D7 Y1
10% 0.04 0.05 0.04 0.06 0.08 0.10
25% 0.04 0.06 0.05 0.07 0.09 0.12
50% 0.05 0.08 0.06 0.09 0.10 0.14
75% 0.06 0.11 0.08 0.11 0.12 0.18
90% 0.09 0.15 0.12 0.14 0.15 0.22

TABLE I
PERFORMANCES OF THE DIFFERENT MODELS.

On the Fig. 4, the solid thick line represents the ordered
MAPE for the MT model, the dashed thick line represents the
ordered MAPE for the MT model with the detrending step and
the dashed line -noisy signal- the MAPE of the Y1 benchmark.
We clearly see on this graph that for most of the substations
our models are far more better than the Y1 benchmark. A
more in depth analysis shows that the MT (resp. MTD) model
forecasts are more than 2 times better than the Y1 for 42%
(resp. 66%) of the substations and better for 93% (resp. 99%)
of them. The substations for which our models obtain the worst
results are mostly those where the trend is difficult to predict
as the MTD model is largely better than the MT model in
those cases.

The results for the short term horizon are presented on Fig.
5. The solid thick line represents the MAPE for the ST model
and the dashed line the the MAPE of the D1 benchmark -the
best benchmark in terms of median MAPE-.

As for the middle term horizon, the short term forecasts
of the ST model are largely better than the benchmark per-
formances for most of the substations. More precisely the ST
model obtained better MAPE than the benchmark on 96% of
the substations and for 66% of them it is 1.5 times better.
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Fig. 4. MAPE obtained on the forecasting set on the 1900 substations.
Black line: middle term model ordered from the best -left- to the worst -
right- MAPE. Black dashed line : corresponding middle term model with
detrending. Blue line : Naive benchmark Y1
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Fig. 5. MAPE obtained on the forecasting set on the 1900 substations with
the short term model. Red : Naive benchmark D1. Black : ST model

C. Forecasting in operational condition

We proceed here to the forecast of one day, January the
30th 2013 for a substation in the region of Lyon in France.
We use for that the ST model. The estimation is carried out
as described in section III-A. The one-day ahead forecast
temperature is provided by MeteoFrance and we generate two
forecasts: one with the real observed temperature and one with
the forecast temperature. We therefore compare two forecasts
with predicted temperatures -3 days ahead with approximately
30% error in MAPE- and real ones on the Fig. 6 -in red
prediction with forecast temperatures, in blue with real ones
and in black is the real curve-. The MAPE of this two forecasts
are in Table III-C.

The forecast we obtain are quite good -about 1.5% in
MAPE- and we can see that our model fit pretty well the real
load curve along the day. Clearly, the weather forecasts have
a significant impact on the electricity consumption forecast,
specially here for a winter day with a mean temperature
of about 7.8 ◦C where the electrical heating enters as a
major component of the load. More precisely, the temperature
forecast has a 30% MAPE on this day and it entails a 0.5 %
in MAPE of our forecast which is arround 30% of the MAPE
of the electricity forecast done with the real temperature. This
result is just for one day but give a good intuition of what can
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Real Temperatures vs Forecasted Temperature
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Fig. 6. Forecast with both real and predicted temperatures.

happen in practice using weather forecast. It also highlights
the importance of a good weather forecast.

Real Temperature Forecast Temperature
MAPE 0.014 0.019

TABLE II
PERFORMANCES WITH REAL AND PREDICTED TEMPERATURES.

D. Focus on one substation

Semi-parametric models produce an interesting interpreta-
tion of electricity consumption. Their additive structure allows
to separate and represent different features of the signal which
is a very important point for industrial applications. Thus the
operators can both have a good understanding of the models
and develop a practical expertise. As an example we represent
on Fig. 7 and on Fig. 8 the temperature effects of 5 instants
associated to one substation. Fig. 7 represents the effect of the
real temperature for different instants of the day, while Fig.
8 represents the effect of the smoothed temperature. One can
notice that temperature has different effects depending on the
instant. When temperature decreases, both effects tend globally
to increase electricity consumption (and so do the lagged
effects of the temperature). Nevertheless, during daytime, the
effect of the current temperature seems to be more important
than during the night when temperatures are cold, which makes
sense because people could less reactive to temperature’s
changes during the night. Note that we projected these effects
over a regular grid from −10 ◦Celsius to 30 ◦Celsius. On Fig.
7, one can observe the linear approximation of the splines at
the extremities to avoid border effects.

Other interesting features are the estimated daily shapes
provided by our models. As an example we represent those
shapes for 2 substations on the Fig.9. We can clearly see the
differences between the different days of the week. Obviously,
the level of week-ends is lower than week days but also the
shapes are different. As an example, the load increase in the
morning begins later for Saturdays and Sundays. Tariffs effects
are also visible. In France, residential customers can subscribe
to a special tariff with two regimes: peak and off-peak, to
encourage them to reduce their consumption during peaks.
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Fig. 7. Effect of Real Temperature (◦C) on demand.
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Fig. 8. Effect of Smoothed Temperature (◦C) on demand.
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Fig. 9. Estimated day shapes for different days for 2 substations

This peak and off-peak periods can be different for each area
but the off-peak tariffs often occur around midday and at night
-when the cost of electricity production is low-. We can see
for these two substations an increase of the load at midday and
after 10.P.M in the evening due to the automatic tripping of
some domestic devices -water heating, washing machine etc-.
It is also interesting to notice that our models capture two very
different tariff effects for the two stations which is a probably
due to a the different behaviours of the customers connected
to each substation.
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IV. CONCLUSION

In this paper we apply an existing and well known method,
semi-parametric additive models, to a new industrial problem:
the forecast of a huge number of electricity consumption series
on the distribution grid in France. We show the ability of
this approach to capture automatically, without any human
intervention, the variety of about 2000 consumption series
measured on the French grid. The performances for middle
term and short term horizons are good and sufficient for the
industrial perspectives at this stage. Furthermore, our models
are easily interpretable and it is easy to distinguish and
estimate the different features of electricity consumption: the
effect of special tariff, the electrical heating or cooling, the
different seasonality of the signal etc. Another interesting point
for applications is that the estimation of these models over big
datasets is feasible on a personal computer.

Nevertheless, these models should be improved in many
ways, and we identify a few perspectives listed below:

• automatic selection of covariates. Some work has to be
done to select automatically, for each substations the
covariate and the way to include it in the model. This is a
natural generalization of our work and it could be solved
using recent penalization methods like group lasso.

• introducing other covariates at a different resolutions.
For this study, we restricted the covariates to temperature
over 63 stations and simple calendar variable. This is a
good starting point but there is some work to identify
new covariates that drive electricity consumption at a
local scale. For example, other weather variables like
solar radiations, wind direction and speed, humidity could
have an impact on local consumption. Demographical and
tariff information could probably be pertinent also. All
this information could be provided at a fine granularity
to improve the models.

• multivariate analysis. We don’t exploit here the potential
dependency between two or more substations. Fitting
vectorial GAM models could be a solution to capture
and exploit such properties. In that case, we’ll probably
have to deal with a big data issue and need to develop
new estimation algorithms.
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