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a b s t r a c t

We sum up the methodology of the team tololo for the Global Energy Forecasting
Competition 2012: Load Forecasting. Our strategy consisted of a temporal multi-scale
model that combines three components. The first component was a long term trend
estimated by means of non-parametric smoothing. The second was a medium term
component describing the sensitivity of the electricity demand to the temperature at each
time step. We use a generalized additive model to fit this component, using calendar
information aswell. Finally, a short termcomponentmodels local behaviours. As the factors
that drive this component are unknown, we use a random forest model to estimate it.
© 2013 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

This document briefly presents themethodologywhich
our team, tololo, developed for the GEFCom2012 compe-
tition. Based on our experience of load forecasting and suc-
cessive experiments on this dataset, we introduce a model
that can be viewed as a temporal multi-scale model. Such
a multi-scale approach has already been studied by Cho,
Goude, Brossat, and Yao (2013) in the context of functional
regression. It has also been used with semi-parametric re-
gression, which is a popular statistical method (see the
seminal work of Hastie & Tibshirani, 1986, 1990) that
has proven to be efficient for aggregated (national or re-
gional) electric load forecasting (see Ba, Sinn, Goude, &
Pompey, 2012; Fan & Hyndman, 2012; Pierrot & Goude,
2011). Moreover, Goude, Nedellec, and Kong (2013) used
this strategy to model 2260 time series recorded at the
distribution grid level, and produced forecasts at daily
and yearly horizons in an automatic and non-human-
supervised way. We therefore model each electric load
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curve bymeans of three additive components that describe
the long, medium and short patterns. Each region will be
modeled using this approach, except for regions 9 and 10,
which behave differently andwill require somemanual in-
tervention.

We denote the electrical load of the region j at time t by
Z j
t , and the total consumption of the area by Zt =

20
j=1 Z

j
t .

T i
t is the temperature at station i at time t .

Zt = Z lt
t + Zmt

t + Z st
t , (1)

where Z lt
t is the long-term part of the load, correspond-

ing to low-frequency variations such as trends, economic
effects, and slow changes in electricity usages (due to the
increase of electrical heating, heat pumps, etc.). Zmt

t is the
medium-termpart, being daily toweekly effects. Typically,
Zmt
t incorporates all of themeteorological effects (here, the

temperature effects) and the calendar effects. The short
term part, Z st

t , contains everything that could not be cap-
tured on a large temporal scale but could be captured lo-
cally in time (close to the date of the prediction). The
short-term part largely consists of special events: extreme
weather, network reconfigurations, holidays, and so on.
As we have three additive components, our approach is
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divided into three estimation steps plus the final forecast-
ing step:

1. fit a simple model on monthly data to estimate the
trend;

2. fit a detailed middle-term model on the de-trended
data;

3. fit a short-term correction model on the residuals;
4. produce a final forecast which is the sum of the forecast

trend (extrapolation), the de-trended forecast and the
short term correction.

The first step consists of modeling a smooth transforma-
tion of the electric load as a function of time and smooth
meteorological data, to estimate Z lt

t . In the second step, we
model the de-trended electric load Zt −Z lt

t as a function of
all of the covariates which are available in our dataset that
typically drive the electric load at a daily level. We then es-
timate a local model on the residual signal Zt −Z lt

t −Zmt
t

using only the observations in the neighborhood of the pre-
diction time window.

In Section 2, we briefly recall the different statistical
methods which we use to estimate the various compo-
nents. A full description of our procedure is provided in
Section 3. Finally, Section 4 is devoted to the presentation
of all of the components that contribute to reducing the
values of the error criterion which is used in the compe-
tition, using numerical experiments over a validation test.

2. Materials and methods

In this section, we briefly discuss the three statistical
methods we use: the long-term forecast uses generalised
additive models and kernel regression, the medium-term
forecast uses generalised additive models, and the short-
term forecast uses random forests.

2.1. Kernel regression

Kernel regression (see for example Hastie, Tibshirani, &
Friedman, 2009, Chapter 6) is a non-parametric technique
for estimating the functionM for the non-linear regression
model

y = M(x) + ε. (2)

The estimated function Mη is warranted to be smooth and
depends on a kernel function K (e.g., a probability density)
and the smoothing parameter η, known as the bandwidth.
One popular choice is to use Nadaraya–Watson estimators.
Then, the estimation over the observations {yi, xi; i =

1, . . . , n} of M is obtained locally on each point x of the
definition domain using only the observations yi, with
a corresponding xi in the neighbourhood of x. It can be
written as

Mη(y)(x) =

n
i=1

yiKη(xi, x)
 n

i=1

Kη(xi, x). (3)

We use the convention that the estimator is zero if the
denominator is not positive. Then, the estimator can be
seen as a weighted mean of the response variable, where
the weight associated with yi is bigger, the closer xi is to x.

2.2. Generalized additive models

Consider that we want to fit the following statistical
model:
yi = f1(x1,i) + f2(x2,i) + · · · + fp(xp,i) + εi,

i = 1, . . . , n, (4)
where yi is an univariate response variable and xq,i are the
covariates that drive it. In the following application, yi will
be the electricity demand and xq,i will be the meteorologi-
cal variable, the calendar effects, etc. εi denotes the model
error at time i. The non-linear functions fq are supposed to
be smooth; here, thismeans that they can be estimated rel-
atively well by penalized regression in a spline basis. Thus,
each function is expressed as

fq(x) =

kq
j=1

βq,jb
q
j (x), (5)

where kq is the dimension of the spline basis for modelling
the effect fq, and bqj (x) is the corresponding spline func-
tions, such as thin plate regression splines, B-splines, or
cubic regression splines. A classical way to estimate these
smooth effects is by penalized regression, and more pre-
cisely ridge regression, where we minimize the following
criterion:

n
i=1


yi −

p
q=1

fq(xi)

2

+

p
q=1

λq


∥f ′′

q (x)∥2dx, (6)

where the penalty parameter Λ = (λ1, . . . , λp) which
controls the degree of smoothness of each effect (the
higher λq is, the smoother fq is) has to be optimized. We
denote by B the matrix formed by the concatenation of the
discretized versions of the spline functions bqj , evaluated on
the observed data points (see Wood, 2006, p. 163). Then,
we have to solve the following problem:

min
β,λ

|∥Y − Bβ∥|
2
+

p
q=1

λq βT Sqβ, (7)

where β is a vector of the unknown regression parameters
and Sq is a smoothing matrix of known coefficients, deter-
mined by the spline basis (see for example Wood, 2006,
p. 156). This problem is solved using the methodology
presented by Wood (2004, 2011), which consists of min-
imizing the GCV (Generalized Cross Validation) criterion
proposed by Craven and Wahba (1979). For this purpose,
we will use the R package mgcv (seeWood, 2001) that im-
plements this method. The functions bqj are penalized thin
plate regression splines unless it is explicitly stated other-
wise.

2.3. Random forests

The random forest method (see Breiman, 2001) is a
machine learning method that allows one to estimate the
link function f on the following non-parametric model:
yi = f (x1,i, . . . , xp,i) + εi, (8)
using the data {yi, x1,i, . . . , xp,i; i = 1, . . . , n}. The re-
sponse variables and the covariates can be either continu-
ous or discrete. In this short presentation, we focus on the
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case where the response is continuous and the covariates
are both continuous and discrete. A detailed introduction
to the topic is provided by Hastie et al. (2009, Chapter 15).

The estimation is done by averaging many simple tree
models. Each of the tree models is a recursive partitioning
of the space of covariates, in order to obtain classes
of observations that maximize some purity criterion for
the response (e.g., reduce the intra-class variance). If the
tree models are built to be de-correlated, the averaging
step will reduce the variance of the random forest
estimator significantly. In order to build a de-correlated
treemodel, the random forest adds two layers of controlled
randomness to the data. The first layer is generated by a
bootstrap sampling of the observations, while the second
one is produced from a random draw from a subset of
covariates on each partitioning step.

For a new vector of covariates (x1,n+1, . . . , xp,n+1), we
can predict the value of the non-observed response yn+1

using the estimation f̂n of f , obtained using n data points.
To do this, each simple tree gives its prediction, and these
are then aggregated using the mean of the individual
predictions. Each tree model assigns a class to the new
vector of covariates, based on the recursive partitioning.
Then, the prediction is themean value of the responses that
correspond to this class.

From a computational point of view, the fit of each
independent simple tree model can be performed using
parallel computing, which reduces the computation time.
We use the randomForest package (Liaw & Wiener,
2002) to fit our random forest models.

3. Calculations

In this section, we give the details of our multi-scale
model, presenting the three components which corre-
spond to the long-, medium- and short-term models.

3.1. Long-term model

We begin by aggregating the data by month (monthly
electricity loads and temperature time series for every
region and weather station). Denoting these time series
by Zmonthly

t,j and Tmonthly
t,k , we estimate the following semi-

parametric additive model for each region j, using the
method presented in Section 2.2:

Zmonthly
t,j =

12
q=1

cqIMontht=q + f (Tmonthly
t,kj

) + εt , (9)

where:

• IMontht=q is an indicator variable which is equal to 1
when themonth of observation t is q (from 1 to 12), and
0 otherwise.

• f is the effect of the monthly temperature of the station
kj associated with zone j (our procedure for choosing
that station will be explained in Section 3.4).

The monthly estimated residuals for zone j can then be
obtained as follows:εmonthly
t,j = zmonthly

t,j −zmonthly
t,j , (10)

where zmonthly
t,j is the estimated load from Eq. (9). This

represents the long term trend.
We then estimate the smoothed residuals Mη(εmonthly

j )

(t), where Mη is defined in Eq. (3), with K being the
classical Gaussian kernel, Kη(x, y) = exp(−η(x− y)2), and
ε
monthly
j = (ε

monthly
1,j , ε

monthly
2,j , . . . , ε

monthly
n,j ) being the vector

of monthly residuals. We test various different smoothing
methods: a Gaussian kernel, local polynomial regression,
and splines regression. We chose a Gaussian kernel and
set the bandwith to 12, such that the quartiles (viewed as
probability densities) are at ±0.25 ∗ η. As M12(εmonthly

j ) is
a monthly time series, we interpolate it linearly to obtainTrt , the trend estimated at a half-hourly frequency.

These smooth residuals are a good estimate of the
low frequency effects included in each zone. They contain
neither seasonality (annual seasonality) nor weather
effects. These residuals are smooth by construction, and
thus they are easy to forecast at a one-week horizon with
simple constant extrapolation.

3.2. Medium-term model

We apply Eq. (11) to the signal Zdet
t,j = Zt,j − Z lt

t,j (note
that Zdet

t,j is not exactly Zmt
t,j , as it also includes Z st

t,j, which is
in the residual part of the model presented in Eq. (3)). Like
Fan and Hyndman (2012) and Pierrot and Goude (2011),
we fit one model per instant of the day, so that we have
twenty-four models for each zone. We also considered a
single model approach like that of Wood (2011), but it
led to worse forecasting performances with our present
dataset. For the sake of simplicity, we do not make the
dependency on the instant of the day explicit, as each time
series is composed of the data measured at one instant
of the day, and the series are treated independently here.
For example, Z10

t,j , the tth day of electrical consumption
for zone j measured at the 10th hour of the day, will be
denoted Zt . The proposed medium-term model is:

Zdet
t,j =

11
q=1

mqIDayTypet=q + g1(θt,kj) + g2(Tt,kj)

+ g3(Tt−1,kj) + g4(Tt−2,kj) + h(toyt) + εt , (11)

where:

• Zdet
t,j is the de-trended electrical demand for zone j

recorded at time t (for one instant of the day).
• DayTypet is the type of day for observation t: 1 for

Sunday, 2 for Monday, 3 for Tuesday, 4 for Wednesday,
5 for Thursday, 6 for Friday, 7 for Saturday, 8 for
Christmas and New Year’s Day, 9 for Christmas Eve, 10
for Independence Day, and 11 for Thanksgiving.

• θt is the smoothed temperature, obtained via exponen-
tial smoothing of the real temperature Tt,kj : θt,kj =

(1− 0.85)Tt,kj + 0.85θt−1,kj; Tt−1,kj is the lag 1 temper-
ature (the temperature of the day before at the same
hour); and Tt−2,kj is the lag 2 temperature (the temper-
ature at the same hour two days before).

• toyt is the time of year, which is the position of the
observation t within the year (frommidnight of January
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the 1st to midnight December the 31st), while h(toyt)
corresponds to the smooth yearly cycle of the load. This
function is represented using cyclic cubic regression
splines.

Note that we introduce both smooth temperature and
lag temperature effects in order to model the inertia of
the demand to temperatures (which is due mainly to the
building inertia). We optimized the smoothing parameter
to 0.85 using the GCV criterion (see Section 2.2), but we
noticed that the prediction results are quite insensitive to
this parameter around this optimal value.

3.3. Short-term model

A simple visual inspection of the residuals from the
medium-term model confirms that there are still some lo-
cal patterns remaining. As we have already extracted the
long-term and medium-term behaviours, what remains
can be explained by very localized short-term factors
which were not provided for the competition (grid config-
uration, tariff option, other weather covariate effects, pro-
duction, etc.). We used a random forests approach to cap-
ture these hidden effects, whichwere due to local (in time)
observations. This component can be viewed as a local bias
correction of themedium-termmodel. A short-termmodel
was fitted to each series, and, unlike the medium-term
model, we did not build a different model for each hour.

For this purpose, we constructed a data matrix where
the responses are the fitted residuals ε̂t from Eq. (11)
and the covariates are temperature values from all
weather stations (both real temperatures and smoothed
temperatures), with the following additional covariates:
Yeart , Montht , Dayt , Hourt , Toyt , and DayTypet . We did
not select the optimal subset of covariates for each series,
but we did use a reasonable identical set of them for
every station.We chose to include exhaustive temperature
information in case the random forest could highlight
hidden local correlations.

Twodistinct estimation approacheswere used for back-
casting and forecasting. For backcasting, we used the four
weeks surrounding the missing week (two weeks before
and two weeks after) as a training set. For the forecast-
ing set, we used the four weeks before the unknown
week.

3.4. Weather station selection and temperature forecasting

The organizers of the competition chose not to provide
either the real temperatures or temperature forecasts for
the last week to be predicted; real temperatures were only
available for backcasting. In our applications at Electricité
de France, weather covariates have been identified as
capital information for predicting the future consumption.
As a consequence, weather forecasts are bought from
the French meteorological company MeteoFrance, and are
always provided for electric load forecasting. Thus, our
models are designed in suchway that weather information
is considered to be accurate. In reality, this means that we
fit themodels on observedmeteorological data rather than
on forecasts.

For this competition, we proceed in the same way.
We first fit our models using the observed temperature
data, then plug in forecast temperatures to produce our
final forecasts. We tried various different methods for
producing temperature forecasts:
• the normal temperature: the mean of the temperature

at the same period for the last 4 years.
• SARIMA models.
• semi-parametricmodelswith calendar information and

lag temperature as explanatory variables.
• semi-parametric models with SARIMA errors.
• a kernel wavelet functional forecast, which involves

finding similar patterns in the past temperature data,
based on a wavelet distance (see Antoniadis, Brossat,
Cugliari, & Poggi, 2010).

We calibrate these different approaches to the simu-
lation of forecasts on the last week of available data and
on the previous years at the same period. Then, each ap-
proach in turn is used to generate a new set of forecasts,
which are submitted with the same set of backcasts. Fi-
nally, we choose the temperature forecasts which mini-
mize the score on the public leaderboard (semi-parametric
models with SARIMA errors). Note that we do not claim
that this method is the best method for temperature fore-
casting, but it is the one that gives the best performance for
our load forecasting method on the public leaderboard set.
In fact, we even think that we overfitted during this pro-
cess, considering the public and private leaderboards.

In designing the models in Eqs. (9) and (11), we
attribute to each zone j only one meteorological station,
kj. The final choice of working with one station per zone
was driven by the fact that alternative strategies (e.g.,
combining the temperature zones by taking the mean, or
doing a principal components analysis on the temperature
trajectories, with the selection of an optimal number of
components) led to worse prediction performances. The
optimal temperature zone for each region was found by
using a step-wise procedure for Eq. (11) and selecting the
weather station by minimizing a V-fold cross validation
criterion.

3.5. Validation

In order to validate our different options, we mostly
used a kind of V-fold cross validation on the year 2007
(the last entire year), where V corresponds to one week
of observations. More precisely, we randomly chose one
week per month (so that most of the different properties
of the data during the year are captured), excluded it from
the estimation set, forecast it with the selected/estimated
model, and measured the prediction score using the
Root Mean Square Error (RMSE). This method has many
advantages. It allows us to conserve much of the data in
the estimation set relative to a basic validation set, and it
can mimic both backcasting and forecasting problems.

Note that the RMSE is relevant here because it is a
good indicator of a global error, and the competition scores
are based on (weighted) quadratic errors. We complete it
with a precise analysis of our forecasts. We pay particular
attention to diagnostic and validation tools of our cross
validation errors, such as graphical analysis, in order to
detect problems such as forecast biases.
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(a) Estimation of the long term trend on the monthly residuals.

(b) Sum of all temperature effects for Zone 3. (c) Temperature effects for all of the zones at 10 pm.

Fig. 1. Some of the effects of the LT & MT model.

3.6. Zones requiring special treatment

As has been mentioned, two zones were dealt with
following slightly different procedures: Zones 9 and 10.
This is because Zone 9 was found to be very insensitive to
temperature effects, and a huge break point occurs in Zone
10 between 2007 and 2008.

The proposed solution is to not include temperature
effects in the different estimation steps for Zone 9, and to
build two different models for Zone 10: one for the years
2004–2007, and another for the year 2008. Otherwise, we
use the approach described in Section 3 for the remaining
stations. This was the only special treatment of the data. In
particular, no data cleansing method was used.

The prediction for the whole system is obtained using
the bottom-up approach: we sum the predictions for the
twenty zones.

4. Results

We apply the approach described in Section 3 over the
twenty zones and report some of the results here.

4.1. Estimation of the long- and medium-term models

We show in Fig. 1(a) the residuals of Eq. (9) and the
fit for the long term trend. The curve corresponds to an
upward trend that is certainly non-linear.

Next, we estimate the 24 models described in Eq. (11)
for each zone. One interesting property of semi-parametric
models is that the estimated effects of the different covari-
ates are easy to represent and interpret. This is a major
point for industrials, who generallywant to understand the
factors that drive the electrical consumption.

As an example, we show the temperature effects for the
different hours of the day for zone 3 in Fig. 1(b). We clearly
see both heating and cooling effects, with their evolution
through the day, which may be explained by tariff options
or consumer habits. We also show the estimated temper-
ature effects for every single zone at 10 pm in Fig. 1(c). It
is interesting to observe the similar shapes for the differ-
ent zones: we can see both cooling and heating effects. We
also note that some zones are more sensitive to the tem-
perature than others (which can be explained by the zones
being more or less industrial regions), and that our model
captures that.

4.2. Estimation of the short-term part of the electric load

We now consider the residuals obtained after the
two previous steps, and estimate the short term effects
presented in Section 3.3.

As an example of short term corrections, Fig. 2 shows
a simulated short-term backcast for a week in September
2007. On the left are the real electricity consumption with
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(a) Fitted and original values. (b) Residuals.

Fig. 2. Short term correction effects for zone 8 over a week.

Table 1
Reduction in RMSE from the ST model as a proportion of that of the LT &
MT model.

Zone ST backcast ST forecast

1 0.95 1.02
2 0.96 0.97
3 0.97 0.95
4 0.95 1.02
5 0.96 0.98
6 0.95 0.93
7 0.96 0.97
8 0.93 0.95
9 1.17 1.07

10 0.88 0.90
11 0.90 0.88
12 0.94 0.90
13 0.94 1.00
14 0.91 0.95
15 0.93 0.99
16 0.93 0.96
17 0.98 0.96
18 0.89 0.92
19 0.93 0.97
20 0.93 0.95

themedium- and short-term forecasts. On the right are the
medium- and short-term forecast residuals. There is a clear
negative bias (overestimation) in both the medium-term
model on the backcastweek and the short-term correction.
The V-fold cross-validation gains on the prediction RMSE
for the short-term (ST)model relative to themedium-term
(MT)model are presented in Table 1.We see thatwe obtain
a consistent RMSE gain of about 5% from the inclusion of
the ST model component.

5. Conclusion

We have presented the multi-scale model we used
in the GEFCom competition. This model, which is based
mostly on semi-parametric modeling, is flexible and easy

Table 2
Prediction quality and computation time for one week prediction for the
20 time series (whole system), once each zone has been connected to a
weather station.

LT & MT ST

RMSE (in kW for whole system) 58164 53537
Estimation time (in seconds) 400 80

to use, and produces an accurate description of the elec-
tricity consumption. Thus, it has a good interpretability,
despite the fact that it includes a ‘‘black box’’ component.
Actually, this component represents a 5% gain on the pre-
diction performances, which is rather marginal for the full
model, but is necessary in order to obtain a better score in
the competition.

Globally, our model performs well on the test dataset, a
resultwhich is confirmed in the public competition results.
We note that if the weather covariates are provided (accu-
rate forecasts, real observations or backcasts), our method
provides low error predictions (the best in the competi-
tion). The sensitivity of the method to accurate weather
forecasts is the price that must be paid for this.

In relation to the computational aspects, only open
source software was used to generate our results. The
global estimation and prediction times for one series are
presented in Table 2. They are obtained using a common
laptop (2.4 GHz per core and 4 Gb of RAM running on a
32-bit operating system and using only one computation
core). Table 2 presents the prediction quality which the
operator can get for the whole system and the time
needed to obtain all of the predictions for each week once
a weather station has been assigned to each zone. The
estimation time of the LT &MT components includes the fit
of the long trend and the 24 (one per hour) GAM models.
The ST component is the fit of a random forest locally on the
2weeks (where available) around the prediction. Note also
that these times can be reduced considerably by means
of parallel computing, since the implementations of the
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random forest and GAMwhich we use allow it. In addition,
only the ST part of the model has to be re-estimated for
each forecast (most of time the LT–MT parameters can
remain the same for a few months).
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