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Abstract

This paper proposes an efficient online learning algorithm to track the smoothing
functions of Additive Models. The key idea is to combine the linear representa-
tion of Additive Models with a Recursive Least Squares (RLS) filter. In order to
quickly track changes in the model and put more weight on recent data, the RLS
filter uses a forgetting factor which exponentially weights down observations by
the order of their arrival. The tracking behaviour is further enhanced by using an
adaptive forgetting factor which is updated based on the gradient of the a priori
errors. Using results from Lyapunov stability theory, upper bounds for the learn-
ing rate are analyzed. The proposed algorithm is applied to 5 years of electricity
load data provided by the French utility company Electricité de France (EDF).
Compared to state-of-the-art methods, it achieves a superior performance in terms
of model tracking and prediction accuracy.

1 Introduction

Additive Models are a class of nonparametric regression methods which have been the subject of
intensive theoretical research and found widespread applications in practice (see [1]). This con-
siderable attention comes from the ability of Additive Models to represent non-linear associations
between covariates and response variables in an intuitive way, and the availability of efficient train-
ing methods. The fundamental assumption of Additive Models is that the effect of covariates on
the dependent variable follows an additive form. The separate effects are modeled by smoothing
splines, which can be learned using penalized least squares.

A particularly fruitful field for the application of Additive Models is the modeling and forecasting
of short term electricity load. There exists a vast body of literature on this subject, covering methods
from statistics (Seasonal ARIMA models [2, 3], Exponential Smoothing [4], regression models
[5, 6, 7]) and, more recently, also from machine learning [8, 9, 10]. Additive Models were applied,
with good results, to the nation-wide load in France [11] and to regional loads in Australia [12].
Besides electricity load, Additive Models have also been applied to natural gas demand [13].

Several methods have been proposed to track time-varying behaviour of the smoothing splines in
Additive Models. Hoover et al. [14] examine estimators based on locally weighted polynomials and
derive some of their asymptotic properties. In a similar vein, Eubank et al. [15] introduce a Bayesian
approach which can handle multiple responses. A componentwise smoothing spline is suggested by
Chiang et al. [16]. Fan and Zhang [17] propose a two-stage algorithm which first computes raw



estimates of the smoothing functions at different time points and then smoothes the estimates. A
comprehensive review can be found in [18]. A common feature of all these methods is that they
identify and estimate the time-varying behaviour a posteriori.

Adaptive learning of Additive Models in an online fashion is a relatively new topic. In [19], an
algorithm based on iterative QR decompositions is proposed, which yields promising results for the
French electricity load but also highlights the need for a forgetting factor to be more reactive, e.g., to
macroeconomic and meteorological changes, or varying consumer portfolios. Harvey and Koopman
[20] propose an adaptive learning method which is restricted to changing periodic patterns. Adaptive
methods of a similar type have been studied in the field of neural networks [21, 22].

The contributions of our paper are threefold: First, we introduce a new algorithm which combines
Additive Models with a Recursive Least Squares (RLS) filter to track time-varying behaviour of the
smoothing splines. Second, in order to enhance the tracking ability, we consider filters that include a
forgetting factor which can be either fixed, or updapted using a gradient descent approach [23]. The
basic idea is to decrease the forgetting factor (and hence increase the reactivity) in transient phases,
and increasing the forgetting factor (thus decreasing the variability) during stationary regimes. Using
results from Lyapunov stability theory [24], we provide a theoretical analysis of the learning rate in
the gradient descent approach. Third, we evaluate the proposed methodology on 5 years of electricity
load data provided by the French utility company Electricité de France (EDF). The results show that
the adaptive learning algorithm outperforms state-of-the-art methods in terms of model tracking
and prediction accuracy. Moreover, the experiments demonstrate that using an adaptive forgetting
factor stabilizes the algorithm and yields results comparable to those obtained by using the (a priori
unknown) optimal value for a fixed forgetting factor. Note that, in this paper, we do not compare our
proposed algorithm with existing online learning methods from the machine learning literature, such
as tracking of best experts (see [25] for an overview). The reason is that we are specifically interested
in adaptive versions of Additive Models, which have been shown to be particularly well-suited for
modeling and forecasting electricity load.

The remainder of the paper is organized as follows. Section 2 reviews the definition of Additive
Models and provides some background on the spline representation of smoothing functions. In Sec-
tion 3 we present our adaptive learning algorithms which combine Additive Models with a Recursive
Least Squares (RLS) filter. We discuss different approaches for including forgetting factors and an-
alyze the learning rate for the gradient descent method in the adaptive forgetting factor approach.
A case study with real electricity load data from EDF is presented in Section 4. An outlook on
problems for future research concludes the paper.

2 Additive Models

In this section we review the Additive Models and provide background information on the spline
representation of smoothing functions. Additive Models have the following form:

I
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In this formulation, xy, is a vector of covariates which can be either categorical or continuous, and
yy, 1s the dependent variable, which is assumed to be continuous. The noise term ¢j is assumed
to be Gaussian, independent and identically distributed with mean zero and finite variance. The
functions f; are the transfer functions of the model, which can be of the following types: constant
(exactly one transfer function, representing the intercept of the model), categorical (evaluating to 0
or 1 depending on whether the covariates satisfy certain conditions), or continuous. The continuous
transfer functions can be either linear functions of covariates (representing simple linear trends), or
smoothing splines. Typically, smoothing splines depend on only 1-2 of the continuous covariates.
An interesting possibility is to combine smoothing splines with categorical conditions; in the context
of electricity load modeling this allows, e.g., for having different effects of the time of the day
depending on the day of the week.



In our experiments, we use 1- and 2-dimensional cubic B-splines, which allows us to write the
smoothing splines in the following form:

Ji
filw) = Blbize) = > Bisbij(xr), ()
j=1

where 3;; are the spline coefficients and b;; are the spline basis functions which depend on 1 or 2
components of xj. Note that the basis functions are defined by a (fixed) sequence of knot points,
while the coefficients are used to fit the spline to the data (see [1] for details). The quantity .J; in
equation (1) is the number of spline coefficients associated with the transfer function f;. Now, let 3
denote the stacked vector containing the spline coefficients, and b(z},) the stacked vector containing
the spline basis functions of all the transfer functions. This allows us to write the Additive Models
in the following linear form:

ye = BTb(ax) + e 2
2.1 Learning Additive Models

The linear representation of Additive Models in (2) is the starting point for efficient learning algo-
rithms. Consider K samples (zx,yx), k = 1,..., K of covariates and dependent variables. Then an
estimate of the model coefficients 3 can be obtained by solving the following weighted penalized
least squares problem:

Brc = min {(uxc ~ BiB)" U (wic ~ Br) + A7 SB}. ©)
Here y 5 = (y1,%2,.-.,yx)" is the K x 1 vector containing all the dependent variables, B is the
matrix with the rows b(z1)7, b(x2)7, ..., b(xx)? containing the evaluated spline basis functions.

The matrix € puts different weights on the samples. In this paper, we consider two scenarios:
is the identity matrix (putting equal weight on the K regressors), or a diagonal matrix which puts
exponentially decreasing weights on the samples, according to the order of their arrival (thus giving
rise to the notion of forgetting factors). The different weighting schemes are discussed in more detail
in Section 3. The matrix Sk in (3) introduces a penalizing term in order to avoid overfitting of the
smoothing splines. In this paper, we use diagonal penalizers not depending on the sample size K:

S = diag(v,7,---,7)s 4)

where v > (0. Note that this penalizer shrinks the smoothing splines towards zero functions, and
the strength of this effect is tuned by . As a well-known fact (see [1]), provided that the matrix

(BIT(Q k Bx + S) is non-singular, the above least squares problem has the closed-form solution
Bk = (BiQxBx +5) ' BifQxyx. 5)

3 Adaptive learning of smoothing functions

Equation (5) gives rise to an efficient batch learning algorithm for Additive Models. Next, we
propose an adaptive method which allows us to track changes in the smoothing functions in an
online fashion. The basic idea is to combine the linear representation of Additive Models in (2) with
classical Recursive Least Squares (RLS) filters. To improve the tracking behaviour, we introduce a
forgetting factor which puts more weight on recent samples. See Algorithm 1 for details. As starting

values, we choose 3 equal to an initial estimate of 3 (e.g., obtained in previous experiments), or
equal to a zero vector if no prior information is available. The initial precision matrix Py is set equal
to the inverse of the penalizer S in (4). Anytime while the algorithm is running, the current estimate

~

B3;, can be used to compute predictions for new given covariates.

Let us discuss the role of the forgetting factor w in the adaptive learning algorithm. First, note
that Algorithm 1 is equivalent to the solution of the weighted least squares problem in (5) with the
weighting matrix Qx = diag(w® 1, w&=2 ... w? w,1) and the penalizer S as defined in (4). If
w = 1, all samples are weighted equally. For w < 1, samples are discounted exponentially according
to the order of their arrival. In general, a smaller forgetting factor improves the tracking of temporal
changes in the model coefficients 3. This reduction of the bias typically comes at the cost of an
increase of the variance. Therefore, finding the right balance between the forgetting factor w and the
strength  of the penalizer in (4) is crucial for a good performance of the forecasting algorithm.



Algorithm 1 Adaptive learning (fixed forgetting factor)

1: Input: Initial estimate BO, forgetting factor w € (0, 1], penalizer strength v > 0.
2: Compute the initial precision matrix Pg = diag(y~,v71,...,771)
3: fork=1,2,...do

4:  Obtain new covariates x; and dependent variable y.

5 Compute the spline basis functions by, = b(zy).
6:  Compute the a priori error and the Kalman gain:
&% = Yk — bgﬁkqa
B Pj_1b;
9r =

w + bngqbk'
7. Update the estimate and the precision matrix:
Br = Br-1+ 9re
P, = w ! [Pk—l - gkbgpk—l} .

8: end for

Algorithm 2 Adaptive learning (adaptive forgetting factor)

1: Input: Initial estimate 3, initial forgetting factor wy € (0, 1], lower bound for the forgetting
factor wy, € (0, 1], learning rate n > 0, penalizer strength v > 0.
Same as Step 2 in Algorithm 1.
Set 1), equal to a zero vector and ¥, to the identity matrix.
fork=1,2,...do
Same as Steps 4-6 in Algorithm 1, with w1 instead of w.
Update the forgetting factor:

AN AN A

T ~
W = Wi—1+nby Yy k.

If wg, > 1, then set wy equal to 1. If wy, < wnin, then set wy, equal to wpy,.
7:  Same as Step 7 in Algorithm 1, with wy, instead of w.
8:  Compute the updates (where I denotes the identity matrix):

U = wp ' (I—gxbi) %1 (I - brgl) — wi' Pr+w;'g9),
Py, (I - kag)ﬂﬁkq + Wby

9: end for

3.1 Adaptive forgetting factors

In this section we present a modification of Algorithm 1 which uses adaptive forgetting factors
in order to improve the stability and the tracking behaviour. The basic idea is to choose a large
forgetting factor during stationary regimes (when the a priori errors are small), and small forgetting
factors during transient phases (when the a priori error is large). In this paper we adopt the gradient
descent approach in [23] and update the forgetting factor according to the following formula:

OE[€?
 OELEL
Wk—1

W = Wg—1—

Searching in the direction of the partial derivative of E[€? | with respect to wy,—1 aims at minimizing
the expected value of the a priori errors. The learning rate 7 > 0 determines the reactivity of the
algorithm: if it is high, then the errors lead to large decreases of the forgetting factor, and vice versa.
The details of the adaptive forgetting factor approach are given in Algorithm 2.

Note that wy, is updated in an iterative fashion based on 1), (the gradient of the estimate @ ; With
respect to wy_1), and on Wy, (the gradient of the precision matrix P} with respect to wy_1).



3.2 Stability analysis

In the following, we apply results from Lyapunov stability theory to analyze the effect of the learning
rate . We show how to derive analytical bounds for 7 that guarantee stability of the algorithm.

Recall the definition of the a priori error, €, = yj, — bgﬁ k—1- As equilibrium point of our algorithm,
we consider the ideal situation €, = 0. We choose the candidate Lyapunov function V (€,) = €2/2.
Clearly, the following conditions are satisfied: if z = 0 then V() = 0; if = # 0 then V(x) > 0;
and V(z) — oo as ¢ — oo. Consider the discrete time derivative AV (€;) = V(€xy1) — V(€x)
of the candidate Lyapunov function. According to Lyapunov stability theory, if V' (¢;) > 0 and
AV (€x) < 0, then V (€;,) converges to zero as k tends to infinity.

Let us analyze AV (€;) more closely. Using the relation €, = A€, + € we arrive at

1
AV(E) = A%, (gAag + zk). ©6)
Next we approximate A€y, by its first order Taylor series expansion:
~ 0€;
NG = 2 Aw. ()
awk
Furthermore, note that
J€; .
s = bkt and Awyp = @b, . ®)
Wi

Substituting the expressions in (7) and (8) back into (6), we obtain the approximation
5 _ 1 . ~
AV@E) = (-l (vEblv) {2 (~bFwi) (miblwi,) + k] .
After some basic algebraic manipulations we arrive at the approximation

~ [P
AV@E) = gt (bl 1)’ (— 2+ n(bfwe)?). ©)

Now it is easy to see that an (approximate) equivalent condition for Lyapunov stability is given by

0<n< ———.
(b _1)?

4 Case study: Forecasting of electricity load

In this section, we apply our adaptive learning algorithms to real electricity load data provided by
the French utility company Electricité de France (EDF). Modeling and forecasting electricity load
is a challenging task due to the non-linear effects, e.g., of the temperature and the time of the day.
Moreover, the electricity load exhibits many non-stationary patterns, e.g., due to changing macroe-
conomic conditions (leading to an increase/decrease in electricity demand), or varying customer
portfolios resulting from the liberalization of European electricity markets. The performance on
these highly complex, non-linear and non-stationary learning tasks is a challenging benchmark for
our adaptive algorithms.

4.1 Experimental data

The dependent variables yy, in the data provided by EDF represent half-hourly electricity load mea-
surements between February 2, 2006 and April 6, 2011. The covariates xj, include the following
information:

_ DayType TimeOfDay TimeOfYear Temperature CloudCover LoadDecrease
T = (l‘k y Tp s Tp s Tp, y Tp s Tp )

Let us explain these components in more detail:
. xzaym’e is a categorical variable representing the day type: 1 for Sunday, 2 for Monday, 3
for Tuesday-Wednesday-Thursday, 4 for Friday, 5 for Saturday, and 6 for bank holidays.



e z,™%P¥ is the index (in half-hourly time steps) of the current time within the day. Its

values range from 0 for 0.00 am to 47 for 11.30 pm.

o g} meONer js the position of the current day within the year (taking values from O for January

1, to 1 for December 31).

Temperature CloudCover

o, and z; represent the temperature and the cloud cover (ranging from 0 for a
blue sky to 8 for overcast). These meteorological covariates have been provided by Météo
France; the raw data include temperature and cloud cover data recorded every 3 hours from
26 weather stations all over France. We interpolate these measurements to obtain half-
hourly data. A weighted average — the weights reflecting the importance of a region in
terms of the national electricity load — is computed to obtain the national temperature and
cloud cover covariates.

LoadDecrease

o I contains information about the activation of contracts between EDF and some
big customers to reduce the electricity load during peak days.

We partition the data into two sets: a fraining set from February 2, 2006 to August 31, 2010, and a
test set from September 1, 2010 to April 6, 2011.

4.2 Modeling the electricity load

We use the following Additive Model for the electricity load:

6
Y — Blmercept + fTrend(k) + fLagLoad (yk748) + Z 1 (miayT)’Pe — l) (B?HYTYPE + flTimeOfDay(xk))
=1

+ fCloudCover ( Tk ) + fTemperalure/TimeOtDay ( T ) + fLagTemperature ( xk748)
+ fTimeOtYear (xk ) + :L,Il;oadDecrease fLoadDecrease (xk) + €L

Let us explain the model in more detail:

e The intercept S™*?" models the base load, and f™"(k) captures non-linear trends, e.g.,
due to the economic crisis and changes in the customer portfolios of EDF.

o flastoad(y, ,¢) takes into account the electricity load of the previous day.

o 3% and f"™°¥ (z.) capture the day-type specific effects of the time of the day.

o fClondCover(p Y and fTemperatre/TimeOMay (4 ) represent respectively the effect of the cloud cover
and the bivariate effect of the temperature and the time of the day.

o The term fheeTemperawre(g, o) takes into account the temperature of the previous day, which
is important to capture the thermal inertia of buildings.

fTimeOerar(xk) represents yearly Cycle& and xkoadDecrease fLoadDecrease ($k) mOdelS the effect Of

contracts to reduce peak loads depending on the time of the day.

To fit the model we use the R package mgcv (see [26, 27]). For more information about the de-
sign of models for electricity data we refer to [19, 11]. Figure 1 shows the estimated joint effect
of the temperature and the time of the day, and the estimated yearly cycle. As to be expected,
low (resp. high) temperatures lead to an increase of the electricity load due to electrical heating
(resp. cooling), whereas temperatures between 10° and 20° Celsius have almost no effect on the
electricity load. Due to the widespread usage of electrical heating and relatively low usage of air
conditioning in France, the effect of heating is approximately four times higher than the effect of
cooling. The yearly cycle reveals a strong decrease of the electricity load during the summer and
Christmas holidays (around 0.6 and 1 of the time of the year). Note that the scales of the effects
have been normalized because of data confidentiality reasons.

The fitted model achieves a good performance on the training data set with an adjusted R-square of
0.993, a Mean Absolute Percentage Error (MAPE) of 1.4%, and a Root Mean Square Error (RMSE)
of 835 MW. All the incorporated effects yield significant improvements in terms of the Generalized
Cross Validation (GCV) score, so the model size cannot be reduced. The fitted model consists of
268 spline basis coefficients, which indicates the complexity of modeling electricity load data.
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Figure 1: Effect of the temperature and the time of the day (left), and yearly cycle (right).

4.3 Adaptive learning and forecasting
We compare the performance of five different algorithms:

e The offline method (denoted by ofl) uses the model learned in R and applies it to the test
data without updating the model parameters.

e The fixed forgetting factor method (denoted by fff) updates the Additive Model using a
fixed forgetting factor (see Algorithm 1). The value of the fixed forgetting factor and the
strength of the penalizer are determined in the following way: We divide the test set into
two parts of equal length, a calibration set (September 1, 2010 - November 15, 2010)
and a validation set (November 16, 2010 - April 6, 2011). We choose the combination of
forgetting factor and penalizer strength which yields the best results on the calibration set
in terms of MAPE and RMSE, and evalute the performance on the validation set.

e The post-fixed forgetting factor method (denoted by post-fff) uses the fixed forgetting fac-
tor and strength of the penalizer which yield the best performance on the validation set. This
“ideal” parameterization gives us an upper bound for the performance of the fff method and
a benchmark for the adaptive forgetting factor approaches.

e The adaptive forgetting factor method (denoted by aff) uses Algorithm 2.

e Finally, we evaluate an adaptive approach that optimizes the values of the forgetting factor
and the penalizer strength on a grid (denoted by affg): For each combination on the grids
(0.995,0.996, ...,0.999) and (1000, 2000, ..., 10000), we run fixed forgetting factor algo-
rithms in parallel. At each time point, we choose the combination which so far has given
the best performance in terms of MAPE.

4.4 Results

The performance of all five algorithms is evaluted on the validation set from November 16, 2010 to
April 6,2011. Table 1 shows the results in terms of MAPE and RMSE. As can be seen, the adaptive
forgetting factor method (aff) achieves the best performance. It even outperforms the post-fff method
which uses the (a priori unknown) optimal combination of penalizer strength and fixed forgetting
factor. The improvements over the offline approach (which doesn’t update the model parameters)
are significant both in terms of the MAPE (about 0.2%) and the RMSE (about 100 MW). This
corresponds to an improvement of approximatively 10% in terms of the day-ahead forecasting error.

Figure 2 (left) shows the cumulative sum of the errors of the five forecasting algorithms. As can be
seen, the offline approach suffers from a strong positive bias and tends to overestimate the electricity
load over time. In fact, there was a decrease in the electricity demand over the considered time
horizon due to the economic crisis. The adaptive forgetting factor shows a much better tracking
behaviour and is able to adapt to the change in the demand patterns.



The graph on the right hand side of Figure 2 illustrates the roles of the forgetting factor and of
the strength of the penalizer. Values of the forgetting factor close to 1 result in reduced tracking be-
haviour and less improvement over the offline approach. Choosing too small values for the forgetting
factor can lead to loss of information and instabilities of the algorithm. Increasing the penalizer re-
duces the variability of the smoothing splines, however, it also introduces a bias as the splines are
shrinked towards zero.

Method ofl fff affg aff  post-fff
MAPE (%) 1.83 228 1.7 1.63 1.64
RMSE MW) 1185 1869 1124 1071 1073

Table 1: Performance of the five different forecasting methods
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Figure 2: Cumulative sum of the errors (left) and results for different choices of the forgetting factor
and the strength of the penalizer (right)

5 Conclusions and future work

We have presented an adaptive learning algorithm that updates the smoothing functions of Addi-
tive Models in an online fashion. We have introduced methods to improve the tracking behaviour
based on forgetting factors and analyzed theoretical properties using results from Lyapunov stability
theory. The significance of the proposed algorithms was demonstrated in the context of forecasting
electricity load data. Modeling and forecasting electricity load data is particularly challenging due
to the high complexity of the models (the Additive Models in our experiments included 268 spline
basis functions), the non-linear relation between the covariates and dependent variables, and the
non-stationary dynamics of the models. Experiments on 5 years of data from Electricité de France
have shown the superior performance of algorithms using an adaptive forgetting factor. As it turned
out, a crucial point is to find the right combination of forgetting factors and the strength of the pe-
nalizer. While forgetting factors tend to reduce the bias of models evolving over time, they typically
increase the variance, an effect which can be compensated by choosing stronger penalizer. Our fu-
ture research will follow two directions: first, we plan to consider dynamic penalizers which can
automatically adapt to changes in the model complexity. Second, we will develop methods for in-
corporating prior information on model components, e.g., by integrating beliefs for the initial values
of the adaptive algorithms.
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