Multilevel Monte Carlo

Robert Scheichl

Department of Mathematical Sciences

SAMBa ITT2, BRLSI Bath, June 1st 2015

Plain vanilla Monte Carlo for large scale problems

$$\mathbf{Z}(\omega) \in \mathbb{R}^{s} \xrightarrow{\text{Model}(M)} \mathbf{U}(\omega) \in \mathbb{R}^{M} \xrightarrow{\text{Output}} Q_{M,s}(\omega) \in \mathbb{R}$$

random input intermediate variables quantity of interest

s large, M very large; e.g. Z multivariate Gaussian; X numerical solution of a DE; Q_{M,J} a (non)linear functional of X

Plain vanilla Monte Carlo for large scale problems

$$\mathsf{Z}(\omega) \in \mathbb{R}^{s} \xrightarrow{\mathsf{Model}(M)} \mathsf{U}(\omega) \in \mathbb{R}^{M} \xrightarrow{\mathsf{Output}} Q_{M,s}(\omega) \in \mathbb{R}$$

random input intermediate variables quantity of interest

- s large, M very large; e.g. Z multivariate Gaussian; X numerical solution of a DE; Q_{M,J} a (non)linear functional of X
- Typically, problem above is already an approximation of the real problem (e.g. SDE or PDE with uncertain coefficient field):
 - Z approximation of an infinite dimensional (or v. large) object,
 e.g. W_t (Wiener process) or the s dominant modes in
 Karhunen-Loève expansion of (spatially) correlated random field
 - ► U FD or FE approximation of a time- or space dependent function u(t) or u(x) on a grid with M vertices.
 - ▶ $Q_{M,s}(\omega)$ approximation of an inaccessible random variable $Q(\omega)$

Monte Carlo for large scale problems (ctd.)

• Often we can assume something like $\mathbb{E}[Q_{M,s}] \xrightarrow{M,s \to \infty} \mathbb{E}[Q]$ and $|\mathbb{E}[Q_{M,s} - Q]| = \mathcal{O}(M^{-\alpha}) + \mathcal{O}(s^{-\alpha'})$

(but exact asymptotics irrelevant, provided there is some decay; ∞ can also be simply "unfeasibly huge")

Monte Carlo for large scale problems (ctd.)

• Often we can assume something like $\mathbb{E}[Q_{M,s}] \xrightarrow{M,s \to \infty} \mathbb{E}[Q]$ and $|\mathbb{E}[Q_{M,s} - Q]| = \mathcal{O}(M^{-\alpha}) + \mathcal{O}(s^{-\alpha'})$

(but exact asymptotics irrelevant, provided there is some decay; ∞ can also be simply "unfeasibly huge")

• Standard Monte Carlo estimator for $\mathbb{E}[Q]$: $\hat{Q}^{MC} := \frac{1}{N} \sum_{i=1}^{N} Q_{M,s}^{(i)}$ where $\{Q^{(i)}\}^N$ are i.i.d. samples computed with M

where $\{Q_{M,s}^{(i)}\}_{i=1}^{N}$ are i.i.d. samples computed with Model(M).

Monte Carlo for large scale problems (ctd.)

• Often we can assume something like $\mathbb{E}[Q_{M,s}] \xrightarrow{M,s \to \infty} \mathbb{E}[Q]$ and $|\mathbb{E}[Q_{M,s} - Q]| = \mathcal{O}(M^{-\alpha}) + \mathcal{O}(s^{-\alpha'})$

(but exact asymptotics irrelevant, provided there is some decay; ∞ can also be simply "unfeasibly huge")

• Standard Monte Carlo estimator for $\mathbb{E}[Q]$: $\hat{Q}^{MC} := \frac{1}{N} \sum_{i=1}^{N} Q_{M,s}^{(i)}$

where $\{Q_{M,s}^{(i)}\}_{i=1}^{N}$ are i.i.d. samples computed with Model(M).

• Convergence typically quantified via mean square error

$$\mathsf{MSE} := \mathbb{E}[(\hat{Q}^{\mathrm{MC}} - \mathbb{E}[Q])^2] = \underbrace{\mathbb{V}[Q_{M,s}]}_{N} + \underbrace{\left(\mathbb{E}[Q_{M,s} - Q]\right)^2}_{N}$$

model error ("bias")

• Hence, $MSE = \mathcal{O}(N^{-1}) + \mathcal{O}(M^{-\alpha})$

- Hence, $MSE = \mathcal{O}(N^{-1}) + \mathcal{O}(M^{-\alpha})$
- To achieve MSE < TOL², need $N \sim$ TOL⁻² & $M \sim$ TOL^{-1/ α}

- Hence, $MSE = \mathcal{O}(N^{-1}) + \mathcal{O}(M^{-\alpha})$
- To achieve MSE < TOL², need $N \sim$ TOL⁻² & $M \sim$ TOL^{-1/ α}
- Also, if Cost of Model(M) \sim *M*, then we have simply

 $\mathsf{Cost}(\hat{Q}^{\mathrm{MC}}) = \mathcal{O}(MN).$

- Hence, $MSE = \mathcal{O}(N^{-1}) + \mathcal{O}(M^{-\alpha})$
- To achieve MSE < TOL², need $N \sim$ TOL⁻² & $M \sim$ TOL^{-1/ α}
- Also, if Cost of Model(M) \sim *M*, then we have simply

 $\operatorname{Cost}(\hat{Q}^{\mathrm{MC}}) = \mathcal{O}(MN).$

Complexity Theorem for (plain vanilla) Monte Carlo Assume that $Q_{M,s} \rightarrow Q$ with $\mathcal{O}(M^{-\alpha})$ and cost per sample is $\mathcal{O}(M)$. Then $\operatorname{Cost}(\hat{Q}^{\mathrm{MC}}) = \mathcal{O}(\operatorname{TOL}^{-2-\frac{1}{\alpha}})$ to obtain MSE < TOL².

- Hence, $MSE = \mathcal{O}(N^{-1}) + \mathcal{O}(M^{-\alpha})$
- To achieve MSE < TOL 2 , need $N \sim$ TOL $^{-2}$ & $M \sim$ TOL $^{-1/lpha}$
- Also, if Cost of Model(M) \sim *M*, then we have simply

 $\operatorname{Cost}(\hat{Q}^{\mathrm{MC}}) = \mathcal{O}(MN).$

Complexity Theorem for (plain vanilla) Monte Carlo Assume that $Q_{M,s} \rightarrow Q$ with $\mathcal{O}(M^{-\alpha})$ and cost per sample is $\mathcal{O}(M)$. Then $\operatorname{Cost}(\hat{Q}^{\mathrm{MC}}) = \mathcal{O}(\operatorname{TOL}^{-2-\frac{1}{\alpha}})$ to obtain MSE < TOL².

- SDEs for atmos. dispersion: typically $\alpha = 1 \Rightarrow \text{Cost}(\hat{Q}^{MC}) = \mathcal{O}(\text{TOL}^{-3})$
- UQ for subsurface flow: typically $\alpha = 1/3 \Rightarrow \text{Cost}(\hat{Q}^{MC}) = \mathcal{O}(\text{TOL}^{-5})$

Darcy's Law:
$$\vec{q} + k \nabla u = f$$

Incompressibility: $\nabla \cdot \vec{q} = 0$

uncertain <u>k</u> –

Darcy's Law:
$$\vec{q} + k \nabla u = f$$

Incompressibility: $\nabla \cdot \vec{q} = 0$

uncertain *u*, *q*

Typical simplified model:

• $\log k(x, \omega)$ = isotropic, scalar **Gaussian** w. exponential covariance $R(x, y) := \sigma^2 \exp\left(-\frac{\|x-y\|}{\lambda}\right)$

uncertain
$$k \rightarrow$$

Darcy's Law:
$$\vec{q} + k \nabla u = f$$

Incompressibility: $\nabla \cdot \vec{q} = 0$

uncertain *u*, *q*

Typical simplified model:

- $\log k(x, \omega)$ = isotropic, scalar Gaussian w. exponential covariance $R(x, y) := \sigma^2 \exp\left(-\frac{\|x-y\|}{\lambda}\right)$
- KL expansion: $\log k(x,\omega) \approx \sum_{j=1}^{J} \sqrt{\mu_j} \phi_j(x) Z_j(\omega)$ with $Z_j(\omega)$ i.i.d. N(0,1)

uncertain
$$k \rightarrow$$

Darcy's Law:
$$\vec{q} + k \nabla u = f$$

Incompressibility: $\nabla \cdot \vec{q} = 0$

uncertain *u*, *q*

Typical simplified model:

- $\log k(x, \omega)$ = isotropic, scalar **Gaussian** w. exponential covariance $R(x, y) := \sigma^2 \exp\left(-\frac{\|x-y\|}{\lambda}\right)$
- KL expansion: $\log k(x,\omega) \approx \sum_{j=1}^{J} \sqrt{\mu_j} \phi_j(x) Z_j(\omega)$ with $Z_j(\omega)$ i.i.d. N(0,1)

• FE discretisation: $A(\omega) U(\omega) = b(\omega)$

uncertain
$$k \rightarrow$$

Darcy's Law:
$$\vec{q} + k \nabla u = f$$

Incompressibility: $\nabla \cdot \vec{q} = 0$

 \rightarrow uncertain *u*, \vec{q}

Typical simplified model:

- $\log k(x, \omega)$ = isotropic, scalar **Gaussian** w. exponential covariance $R(x, y) := \sigma^2 \exp\left(-\frac{\|x-y\|}{\lambda}\right)$
- KL expansion: $\log k(x,\omega) \approx \sum_{j=1}^{J} \sqrt{\mu_j} \phi_j(x) Z_j(\omega)$ with $Z_j(\omega)$ i.i.d. N(0,1)

- **FE** discretisation: $A(\omega) \mathbf{U}(\omega) = \mathbf{b}(\omega)$
- Qol $Q(\omega)$, e.g., particle travel time from repository to boundary

Sample paths of contaminant particles Source: K. A. Cliffe, 2012

Numerical Example $Q = k_{\text{eff}} := \frac{1}{|\Gamma_{\text{out}}|} \int_{\Gamma_{\text{out}}} \vec{q} \cdot \vec{n}$

Case 1: $\lambda = 0.3$, $\sigma^2 = 1$

TOL	М	Ν	Cost
0.01	$1.7 imes 10^4$	$1.4 imes 10^4$	$21\mathrm{min}$
0.002	$1.1 imes10^{6}$	3.5×10^{5}	$30{\rm days}$

Numerical Example $Q = k_{\text{eff}} := \frac{1}{|\Gamma_{\text{out}}|} \int_{\Gamma_{\text{out}}} \vec{q} \cdot \vec{n}$

Case 1: $\lambda = 0.3$, $\sigma^2 = 1$

TOL	М	Ν	Cost
0.01	$1.7 imes 10^4$	$1.4 imes 10^4$	$21\mathrm{min}$
0.002	$1.1 imes10^{6}$	3.5×10^{5}	$30{\rm days}$

Case 2:
$$\lambda = 0.1$$
, $\sigma^2 = 3$

TOL	М	Ν	Cost
0.01	$2.6 imes10^5$	$8.5 imes10^3$	$4\mathrm{h}$
0.002	Prohibitively large!!		

Here $\alpha \approx 3/8$ (numerically observed) \Rightarrow Cost $\approx \mathcal{O}(\text{TOL}^{-14/3})$

 $25 \times$ more work to halve error!

R. Scheichl (Bath)

Multilevel Monte Carlo

Multilevel Monte Carlo[Heinrich, '01], [Giles, '07], ...Use hierarchy of models w. $M_0 < M_1 < ... < M_L$ and note that

$$\mathbb{E}[Q_L] = \mathbb{E}[Q_0] \ + \ \sum_{\ell=1}^L \mathbb{E}[Q_\ell - Q_{\ell-1}]$$

where $Q_\ell := Q_{M_\ell, s_\ell}$ (Important: need 'knob' to control bias error & cost)

Multilevel Monte Carlo [Heinrich, '01], [Giles, '07], ... Use hierarchy of models w. $M_0 < M_1 < ... < M_L$ and note that

$$\mathbb{E}[Q_L] = \mathbb{E}[Q_0] \ + \ \sum_{\ell=1}^L \mathbb{E}[Q_\ell - Q_{\ell-1}]$$

where $Q_\ell := Q_{M_\ell,s_\ell}$ (Important: need 'knob' to control bias error & cost)

Define the following **multilevel MC** estimator for $\mathbb{E}[Q]$:

$$\begin{split} \widehat{Q}_{L}^{\mathcal{ML}} &:= \widehat{Q}_{0}^{\mathsf{MC}} + \sum_{\ell=1}^{L} \widehat{Y}_{\ell}^{\mathsf{MC}} \text{ where } Y_{\ell} := Q_{\ell} - Q_{\ell-1} \\ \text{Note: } \widehat{Y}_{\ell}^{\mathsf{MC}} = \frac{1}{N_{\ell}} \sum_{i=1}^{N_{\ell}} (Q_{\ell}^{(i)} - Q_{\ell-1}^{(i)}) \text{ with } Q_{\ell}^{(i)} \text{ and } Q_{\ell-1}^{(i)} \text{ from same "path"} \end{split}$$

Multilevel Monte Carlo [Heinrich, '01], [Giles, '07], ... Use hierarchy of models w. $M_0 < M_1 < ... < M_L$ and note that

$$\mathbb{E}[Q_L] = \mathbb{E}[Q_0] \ + \ \sum_{\ell=1}^L \mathbb{E}[Q_\ell - Q_{\ell-1}]$$

where $Q_\ell := Q_{M_\ell,s_\ell}$ (Important: need 'knob' to control bias error & cost)

Define the following **multilevel MC** estimator for $\mathbb{E}[Q]$:

 $\widehat{Q}_{L}^{\mathcal{ML}} := \widehat{Q}_{0}^{\mathsf{MC}} + \sum_{\ell=1}^{L} \widehat{Y}_{\ell}^{\mathsf{MC}} \text{ where } Y_{\ell} := Q_{\ell} - Q_{\ell-1}$ Note: $\widehat{Y}_{\ell}^{\mathsf{MC}} = \frac{1}{N_{\ell}} \sum_{i=1}^{N_{\ell}} (Q_{\ell}^{(i)} - Q_{\ell-1}^{(i)}) \text{ with } Q_{\ell}^{(i)} \text{ and } Q_{\ell-1}^{(i)} \text{ from same "path"}$

Key Observation: (Variance Reduction! Corrections cheaper!)

If $Q_\ell o Q$ then $\mathbb{V}[Q_\ell - Q_{\ell-1}] o 0$ as $\ell o \infty$!

R. Scheichl (Bath)

Complexity Theorem for Multilevel Monte Carlo

Assume bias error $\mathcal{O}(M_{\ell}^{-\alpha})$ & cost/sample $\mathcal{O}(M_{\ell})$ (as above) as well as

 $\mathbb{V}[Q_{\ell} - Q_{\ell-1}] = \mathcal{O}(M_{\ell}^{-\beta})$ (requires strong convergence!)

There exist L, $\{N_{\ell}\}_{\ell=0}^{L}$ (computable on the fly) to obtain MSE < TOL² with

 $\mathsf{Cost}(\widehat{Q}_L^{\mathcal{ML}}) = \mathcal{O}\left(\mathsf{TOL}^{-2-\mathsf{max}\left(0,\frac{1-\beta}{\alpha}\right)}\right) + \mathsf{possible} \mathsf{ log-factor}$

Complexity Theorem for Multilevel Monte Carlo

Assume bias error $\mathcal{O}(M_{\ell}^{-\alpha})$ & cost/sample $\mathcal{O}(M_{\ell})$ (as above) as well as

$$\mathbb{V}[\mathcal{Q}_{\ell}-\mathcal{Q}_{\ell-1}]=\mathcal{O}(M_{\ell}^{-eta})$$
 (requires strong convergence!)

There exist L, $\{N_{\ell}\}_{\ell=0}^{L}$ (computable on the fly) to obtain MSE < TOL² with

$$\operatorname{Cost}(\widehat{Q}_{L}^{\mathcal{ML}}) = \mathcal{O}\left(\operatorname{TOL}^{-2-\max\left(0,\frac{1-\beta}{\alpha}\right)}\right) + \operatorname{possible} \log\operatorname{-factor}$$

If $\beta \sim 2 \alpha$ (as in subsurface example above) then

$$\operatorname{Cost}(\widehat{Q}_{L}^{\mathcal{ML}}) = \mathcal{O}\left(\operatorname{TOL}^{-\max\left(2,\frac{1}{\alpha}\right)}\right) = \mathcal{O}\left(\max(N_{0}, M_{L})\right)$$

Complexity Theorem for Multilevel Monte Carlo

Assume bias error $\mathcal{O}(M_{\ell}^{-\alpha})$ & cost/sample $\mathcal{O}(M_{\ell})$ (as above) as well as

$$\mathbb{V}[\mathcal{Q}_{\ell}-\mathcal{Q}_{\ell-1}]=\mathcal{O}(M_{\ell}^{-eta})$$
 (requires strong convergence!)

There exist L, $\{N_{\ell}\}_{\ell=0}^{L}$ (computable on the fly) to obtain MSE < TOL² with

$$\operatorname{Cost}(\widehat{Q}_{L}^{\mathcal{ML}}) = \mathcal{O}\left(\operatorname{TOL}^{-2-\max\left(0,\frac{1-\beta}{\alpha}\right)}\right) + \operatorname{possible} \log\operatorname{-factor}$$

If $\beta \sim 2 \alpha$ (as in subsurface example above) then

$$\operatorname{Cost}(\widehat{Q}_{L}^{\mathcal{ML}}) = \mathcal{O}\left(\operatorname{TOL}^{-\max\left(2,\frac{1}{\alpha}\right)}\right) = \mathcal{O}\left(\max(N_{0}, M_{L})\right)$$

Proof. $\hat{Q}_{L}^{\mathrm{ML}}$ is unbiased estimator of $\mathbb{E}[Q_{L}]$ and the $\widehat{Y}_{\ell}^{\mathrm{MC}}$ are independent. Hence $\mathbb{E}[(\hat{Q}_{L}^{\mathrm{ML}} - \mathbb{E}[Q])^{2}] = \sum_{\ell} \mathbb{V}[Y_{\ell}]/N_{\ell} + (\mathbb{E}[Q_{L} - Q])^{2}$

Then minimise cost for fixed MSE (simple constrained minimisation problem).

R. Scheichl (Bath)

Numerical Example

 $D = (0,1)^2$, $\sigma^2 = 1$, $\lambda = 0.1$, s = 500, $Q = k_{
m eff}$, ${
m TOL} = 10^{-3}$

Matlab implementation on 3GHz Intel Core 2 Duo E8400 proc, 3.2GByte RAM

Numerical Example

 $D = (0,1)^2$, $\sigma^2 = 1$, $\lambda = 0.1$, s = 500, $Q = k_{
m eff}$, ${
m TOL} = 10^{-3}$

Matlab implementation on 3GHz Intel Core 2 Duo E8400 proc, 3.2GByte RAM

In subsurface model problem assumptions can be verified theoretically. [Charrier, RS, Teckentrup, 2011], [Teckentrup, RS, Giles, Ullmann, 2012], ...

R. Scheichl (Bath)

Multilevel Monte Carlo

Reducing #Samples (Multilevel Quasi–Monte Carlo) [Graham, Kuo, Nuyens, RS, Sloan '11]... [Kuo, RS, Schwab, Sloan, Ullmann '15]

Reducing #Samples (Multilevel Quasi–Monte Carlo) [Graham, Kuo, Nuyens, RS, Sloan '11]... [Kuo, RS, Schwab, Sloan, Ullmann '15]

- Provided KL-eigenvalues decay sufficiently fast (e.g. Matérn): QMC estimator converges with O(N⁻¹) instead of O(N^{-1/2})
- New theory $(s \to \infty)$: $\operatorname{cost} = \mathcal{O}\left(\operatorname{TOL}^{-\max\left(1, \frac{1}{\alpha}\right)}\right)$ (for $\beta = 2\alpha$)

Reducing #Samples (Multilevel Quasi–Monte Carlo) [Graham, Kuo, Nuyens, RS, Sloan '11]... [Kuo, RS, Schwab, Sloan, Ullmann '15]

- Provided KL-eigenvalues decay sufficiently fast (e.g. Matérn): QMC estimator converges with O(N⁻¹) instead of O(N^{-1/2})
- New theory $(s \to \infty)$: $\operatorname{cost} = \mathcal{O}\left(\operatorname{TOL}^{-\max\left(1, \frac{1}{\alpha}\right)}\right)$ (for $\beta = 2\alpha$)

• In practice #samples (and thus cost) always significantly smaller

R. Scheichl (Bath)

Numerical Example $D = (0, 1)^2$; $Q = k_{\text{eff}}$; randomised lattice rule w. $\gamma_i = 1/j^2$ $\nu = 2.5, \sigma^2 = 1, \lambda = 1$ 10⁵ - → MC → MLMC - → QMC → MLQMC 10⁴ Cost (in sec) 2 3 10⁰ 10⁻¹ 10⁻³ 10⁻² 10⁻⁴ ϵ

R. Scheichl (Bath)

• SDEs: in particular, molecular dynamics, atmospheric dispersion e.g. [Mueller, RS, Shardlow '15]

- SDEs: in particular, molecular dynamics, atmospheric dispersion e.g. [Mueller, RS, Shardlow '15]
- Stochastic simulation (Gillespie algorithm, event-driven MC, ...): [Anderson, Higham, MMS '12], [Lester, Yates, Giles, Baker, J Chem Ph '15]

- SDEs: in particular, molecular dynamics, atmospheric dispersion e.g. [Mueller, RS, Shardlow '15]
- Stochastic simulation (Gillespie algorithm, event-driven MC, ...): [Anderson, Higham, MMS '12], [Lester, Yates, Giles, Baker, J Chem Ph '15]
- Metropolis-Hastings Markov Chain MC (so far only UQ): [Ketelsen, RS, Teckentrup, arXiv '13] (revision to be submitted; + Dodwell)

- SDEs: in particular, molecular dynamics, atmospheric dispersion e.g. [Mueller, RS, Shardlow '15]
- Stochastic simulation (Gillespie algorithm, event-driven MC, ...): [Anderson, Higham, MMS '12], [Lester, Yates, Giles, Baker, J Chem Ph '15]
- Metropolis-Hastings Markov Chain MC (so far only UQ): [Ketelsen, RS, Teckentrup, arXiv '13] (revision to be submitted; + Dodwell)
- Ideas how to use multilevel MCMC also
 - in other statistics applications (w. Lindgren, Simpson)
 - ▶ in physics, e.g. Ising model (w. Jack, Mueller, Wilding)

- SDEs: in particular, molecular dynamics, atmospheric dispersion e.g. [Mueller, RS, Shardlow '15]
- Stochastic simulation (Gillespie algorithm, event-driven MC, ...): [Anderson, Higham, MMS '12], [Lester, Yates, Giles, Baker, J Chem Ph '15]
- Metropolis-Hastings Markov Chain MC (so far only UQ): [Ketelsen, RS, Teckentrup, arXiv '13] (revision to be submitted; + Dodwell)
- Ideas how to use multilevel MCMC also
 - ▶ in other statistics applications (w. Lindgren, Simpson)
 - in physics, e.g. Ising model (w. Jack, Mueller, Wilding)
- Several other extensions: CDFs, PDFs, failure probabilities, rare events, exit times, Levy noise, ...

Numerical Example (MLMCMC) $D = (0, 1)^2$; $Q = k_{eff}$; exponential covariance w. $\lambda = 0.5$, $\sigma^2 = 1$; conditioned on 16 "measurements"

