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Summary

This thesis studies the so-called “criticality problem”, an important generalised eigenvalue problem

arising in neutron transport theory. The smallest positive real eigenvalue of the problem contains

valuable information about the status of the fission chain reaction in the nuclear reactor (i.e. the

criticality of the reactor), and thus plays an important role in the design and safety of nuclear power

stations. Because of the practical importance, efficient numerical methods to solve the criticality

problem are needed, and these are the focus of this thesis.

In the theory we consider the time-independent neutron transport equation in the monoenergetic

homogeneous case with isotropic scattering and vacuum boundary conditions. This is an unsymmetric

integro-differential equation in 5 independent variables, modelling transport, scattering, and fission,

where the dependent variable is the neutron angular flux. We show that, before discretisation, the non-

symmetric eigenproblem for the angular flux is equivalent to a related eigenproblem for the scalar flux,

involving a symmetric positive definite weakly singular integral operator (in space only). Furthermore,

we prove the existence of a simple smallest positive real eigenvalue with a corresponding eigenfunction

that is strictly positive in the interior of the reactor. We discuss approaches to discretise the problem

and present discretisations that preserve the underlying symmetry in the finite dimensional form.

The thesis then describes methods for computing the criticality in nuclear reactors, i.e. the smallest

positive real eigenvalue, which are applicable for quite general geometries and physics. In engineering

practice the criticality problem is often solved iteratively, using some variant of the inverse power

method. Because of the high dimension, matrix representations for the operators are often not available

and the inner solves needed for the eigenvalue iteration are implemented by matrix-free inner iterations.

This leads to inexact iterative methods for criticality computations, for which there appears to be no

rigorous convergence theory. The fact that, under appropriate assumptions, the integro-differential

eigenvalue problem possesses an underlying symmetry (in a space of reduced dimension) allows us

to perform a systematic convergence analysis for inexact inverse iteration and related methods. In

particular, this theory provides rather precise criteria on how accurate the inner solves need to be in

order for the whole iterative method to converge. The theory is illustrated with numerical examples

on several test problems of physical relevance, using GMRES as the inner solver.

We also illustrate the use of Monte Carlo methods for the solution of neutron transport source problems

as well as for the criticality problem. Links between the steps in the Monte Carlo process and the

underlying mathematics are emphasised and numerical examples are given. Finally, we introduce an

iterative scheme (the so-called “method of perturbation”) that is based on computing the difference

between the solution of the problem of interest and the known solution of a base problem. This situation

is very common in the design stages for nuclear reactors when different materials are tested, or the

material properties change due to the burn-up of fissile material.

We explore the relation of the method of perturbation to some variants of inverse iteration, which allows

us to give convergence results for the method of perturbation. The theory shows that the method is

guaranteed to converge if the perturbations are not too large and the inner problems are solved with

sufficiently small tolerances. This helps to explain the divergence of the method of perturbation in some

situations which we give numerical examples of. We also identify situations, and present examples,

in which the method of perturbation achieves the same convergence rate as standard shifted inverse

iteration. Throughout the thesis further numerical results are provided to support the theory.
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Chapter 1
Introduction

Climate change and ensuring a reliable energy supply are challenging problems of great

contemporary interest. It is still open to debate whether or not nuclear power is part of

a solution to these problems, but certainly ensuring the safety and optimal performance

of new, as well as existing, nuclear reactors is an important task of considerable envi-

ronmental and economic significance. When operating a nuclear reactor, the engineer

seeks to achieve a sustainable chain reaction where the neutrons produced by fission

balance the neutrons that are either absorbed or leave the reactor through the outer

boundary. The chain reaction depends on the material composition and geometry of

the reactor and can be controlled by inserting or removing control rods.

Neutron transport theory is of crucial importance to nuclear engineers since it describes

the mechanism by which a stable and continuous fission reaction can be maintained

to generate heat in a safe and controlled manner. As the cost of building nuclear

reactors is high, the task of accurately modelling neutron transport and solving the

resulting problems is essential for designing new nuclear power stations. Also, assurance

tests to model potential accidents in existing plants and to ensure the safety of waste

repositories rely on efficient numerical methods for solving transport problems.

By requiring a balance between the loss and gain of neutrons in the neutron transport

equation an eigenvalue problem can be formulated. The smallest positive real eigen-

value of this problem gives information about the change in the number of neutrons in

the reactor, a value that determines the safety of the nuclear reactor. In this thesis we

discuss iterative methods to compute this eigenvalue.

This dissertation is the result of a PhD project at the University of Bath in cooperation

with Serco Technical and Assurance Services in Winfrith, Dorset, United Kingdom.
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Chapter 1. Introduction

Outline of the introduction

In the first section of this introduction we introduce the linear Boltzmann equation

that governs the distribution of neutrons and photons. By considering the example

of a nuclear reactor we explain the physical meaning of the operators and functions

involved before motivating how the solution of an eigenvalue problem provides vital

information about the safety of the reactor (Section 1.2).

Sections 1.3 and 1.4 describe common boundary conditions for the neutron transport

equation and discuss the adjoint problem which we will use in Chapter 5. In Section

1.5 we present a brief overview of solution methods for source problems before giving a

short review of neutron transport literature. In the final section of the first chapter the

contributions of this thesis to the research community are summarised and an outline

of the remainder of the thesis is given.

1.1 Neutron transport equation

The neutron transport equation (also referred to as linear Boltzmann equation) de-

scribes the distribution of neutrons in terms of their positions in space and time, their

energies and their travel directions. It can be derived by considering the change in

the particle distribution in time using the neutron density N(r, E,Ω, t) , which de-

notes the number of neutrons per unit volume with kinetic energy E ∈ R
+ at position

r ∈ R
3 that move at time t ∈ R

+ in direction Ω ∈ S
2 (where S

2 is the unit sphere

in R
3). The motivation of the linear Boltzmann equation appears in many books

(e.g. [20, 24, 29, 80]), with a particularly good descriptive derivation in [12, §1.1c].

Usually, the physical quantity that is used to state the linear Boltzmann equation is

not the neutron density N , but the (neutron) angular flux Ψ. This is related to the

neutron density by

Ψ(r, E,Ω, t) = v(E)N(r, E,Ω, t) ,

where the neutron speed v is defined implicitly via E = 1
2mv2 .

In order to derive the governing equation, several assumptions on the physics are made

(see [80, p. 3]), which are therefore also present in this thesis. In particular, we consider

all neutrons as point particles and suppose that they travel in straight lines between

collisions. Furthermore, due to their small size, neutron-neutron interactions are ne-

glected and we assume that all material properties are known.

2



Chapter 1. Introduction

The time-dependent form of the neutron transport equation is then (see e.g. [80, (1-

16),(1-94)])

1

v

∂Ψ

∂t
(r, E,Ω, t) = −Ω · ∇Ψ(r, E,Ω, t) − σ(r, E)Ψ(r, E,Ω, t)

+
1

4π

∫

R+

∫

S2

σs(r, E
′, E,Ω′,Ω)Ψ(r, E′,Ω′, t) dΩ′ dE′

+
χ(E)

4π

∫

R+

ν(r, E′)σf (r, E
′)
∫

S2

Ψ(r, E′,Ω′, t) dΩ′ dE′

+ Q(r, E,Ω, t) ,

(1.1)

where

R
+ non-negative real numbers,

r = (x, y, z)T ∈ V ⊂ R
3 position in volume V (the reactor),

E ∈ R
+ energy,

Ω ∈ S
2 = {Ω ∈ R

3 : ‖Ω‖2 = 1} direction,

t ∈ R
+ time,

Ψ(r, E,Ω, t) ∈ R
+ neutron flux of energy E at position r in direction Ω at time t,

σ(r, E) ∈ R
+ total cross-section at position r for energy E,

σs(r, E
′, E,Ω′,Ω) ∈ R

+ scatter cross-section at position r from energy E′

to energy E and from direction Ω
′ to direction Ω,

σf (r, E
′) ∈ R

+ fission cross-section at position r for energy E′,

ν(r, E′) ∈ R
+ neutron yield from fission events in energy E′ at position r,

χ(E) ∈ R
+ resulting fission neutron distribution in energy E, and

Q(r, E,Ω, t) ∈ R
+ non-fission sources of neutrons with energy E and direction Ω

at position r and time t.

As mentioned above, the equation (1.1) describes the flux Ψ at a certain position,

energy, direction, and time, and can be derived by considering how the neutron flux

changes with time. This change in time is determined by taking the difference between

neutrons gained and neutrons lost. The gain of neutrons is represented by the three

positive terms on the right-hand side of (1.1), while the loss of neutrons is represented

by the two negative terms. We now give a brief description of the terms involved.

The first two terms on the right-hand side of (1.1) describe the neutron loss occurring

due to streaming (denoted by Ω · ∇Ψ) and neutrons having a collision with the under-

lying nuclei (σΨ). When a collision occurs, the neutron may be captured, scatter, or

it may cause a fission. In any of these cases the collided neutron no longer travels in

3



Chapter 1. Introduction

the same direction Ω with the same energy E and is therefore lost from the considered

angular flux Ψ(r, E,Ω, t). The probability that neutrons have any kind of collision is

described by the total cross-section σ.

The third term on the right of (1.1) accounts for the increase in the flux Ψ when

neutrons are scattered from a previously different direction Ω′ and energy level E′ into

the direction Ω and energy E that we consider. The probability for this is determined

by the scatter cross-section σs. In order to account for the in-scatter of neutrons from

all possible other energy levels and directions we integrate over these ranges and obtain

the scattering contribution

1

4π

∫

R+

∫

S2

σs(r, E
′, E,Ω′,Ω)Ψ(r, E′,Ω′, t) dΩ′ dE′ .

A common simplification of the problem is the assumption of isotropic scattering.

In this case, the scatter cross-section is independent of the incoming and outgoing

direction, resulting in σs(r, E
′, E,Ω′,Ω) = σs(r, E

′, E) .

The fourth term represents the gain of neutrons from fission events. The fission cross-

section σf is independent of the incoming and outgoing directions as it does not matter

for a fission from which direction the nucleus is hit and for the emerging neutrons all

directions are equally likely. However, the speed of the incident neutron does affect the

probability of a fission occurring and also impacts ν, the number of neutrons produced

in a fission event. This results in an energy dependence of ν and σf .

Finally, the distribution of the emerging fission neutrons in energy is described by χ.

Hence the total number of neutrons entering the angular flux in direction Ω with energy

E at time t due to fission events is given by

χ(E)

4π

∫

R+

ν(r, E′)σf (r, E
′)
∫

S2

Ψ(r, E′,Ω′, t) dΩ′ dE′ .

Lastly, the fifth term on the right-hand side of (1.1) contains neutrons that are gained

from non-fission sources such as radioactive materials that decay and emit neutrons

without a neutron-nucleus collision. These are represented by the external source Q.

Combining all of these terms to describe the change in neutron flux with respect to

time gives the linear Boltzmann equation (1.1).

In addition, the cross-sections in the equation are related by

σ(r, E) = σc(r, E) +
1

4π

∫

R+

∫

S2

σs(r, E,E′,Ω,Ω′) dΩ′ dE′ + σf (r, E) , (1.2)

4



Chapter 1. Introduction

where σc(r, E) denotes the capture cross-section for neutrons of energy E at position

r. Note that here we integrate the scatter cross-section over the outgoing energies and

directions.

1.2 Criticality problem

When operating a nuclear reactor, the aim of the engineer is to achieve a controlled

sustainable chain reaction where the number of neutrons that are produced is equal

to the number of neutrons that are absorbed or leave the system through the outer

boundary. The reactor is started by introducing a source Q that releases neutrons due

to spontaneous radioactive decay. These neutrons then cause fission events which result

in further neutrons being produced.

The chain reaction depends on the material composition and geometry of the nuclear

reactor and can be controlled by inserting and removing control rods. The goal of

nuclear reactor design is to obtain a neutron distribution that does not change with

time after the initial start-up period. A reactor, where the gain and loss of neutrons is

exactly balanced, is called critical. When the reactor reaches this operating stage, the

contribution of neutrons from non-fission sources is negligible.

We will focus on this situation by setting ∂Ψ/∂t and the non-fission neutron contribu-

tion Q to zero and therefore enforcing a balance between the loss and gain of neutrons.

In this case the time-independent neutron transport equation is, for suitable ranges of

r, E and Ω,

Ω · ∇Ψ(r, E,Ω) + σ(r, E)Ψ(r, E,Ω)

=
1

4π

∫

R+

∫

S2

σs(r, E
′, E,Ω′,Ω)Ψ(r, E′,Ω′) dΩ′ dE′

+
χ(E)

4π

∫

R+

ν(r, E′)σf (r, E
′)
∫

S2

Ψ(r, E′,Ω′) dΩ′ dE′ .

(1.3)

The left-hand side of (1.3) is referred to as the transport part of the equation while the

first term on the right contains the scatter contribution and the second term represents

neutrons from fission events. We will discuss boundary conditions for the problem (1.3)

in the next section.

5



Chapter 1. Introduction

Introducing the transport, scatter and fission operators

T Ψ = Ω · ∇Ψ(r, E,Ω) + σ(r, E)Ψ(r, E,Ω) ,

SΨ =
1

4π

∫

R+

∫

S2

σs(r, E
′, E,Ω′,Ω)Ψ(r, E′,Ω′) dΩ′ dE′ , and

FΨ =
χ(E)

4π

∫

R+

ν(r, E′)σf (r, E
′)
∫

S2

Ψ(r, E′,Ω′) dΩ′ dE′ ,

the problem (1.3) can be written in operator form as

T Ψ = SΨ + FΨ . (1.4)

By arriving at the steady-state equation (1.3) we assumed that we obtained a reactor

where the loss and gain of neutrons is exactly balanced. This is the objective of reactor

design but for an arbitrary configuration this will not be the case and the only solution

to the homogeneous problem (1.4) is in general the zero function. In order to evaluate

“how far away from criticality” the reactor is, the problem is transformed into an

eigenvalue problem.

We introduce a scalar λ in front of the fission term and search for the smallest real eigen-

value λ > 0 and the corresponding eigenfunction Ψ to satisfy the resulting generalised

eigenvalue problem

(T − S)Ψ = λFΨ . (1.5)

This is the criticality problem and its smallest positive real eigenvalue, which we call

the principal eigenvalue or fundamental mode, has a physical meaning and gives direct

information about the criticality of the system. If λ > 1 , we have to artificially

increase the fission contribution to find a non-zero solution to (1.4) which means that

the problem is subcritical. If λ < 1 , it is supercritical, and if λ = 1 , the reactor is in

the desired critical state. Hence, the solution of the eigenvalue problem can be used

by nuclear engineers to test and optimise the design of nuclear reactors.

Note that in this thesis we are not concerned about the optimisation part of the process

but our primary objective is to obtain and analyse efficient numerical methods to com-

pute the principal eigenvalue λ for any given reactor. In the terminology for designing

a critical reactor, it is the “forward problem” that we are aiming to solve here, rather

than the “inverse problem” of designing the reactor to optimise λ.

In the literature, and especially in industry, the reciprocal keff := 1/λ is frequently

used instead of λ. For other eigenvalue problems in neutron transport theory (such as

6



Chapter 1. Introduction

the search for time-eigenvalues) see, for example, [80, §1.5].

In this thesis we consider a class of monoenergetic homogeneous model problems with

isotropic scattering for which the operators T , S, and F obtain a simpler structure than

in the energy-dependent heterogeneous case (1.3). We introduce the model problems in

Section 2.1 and prove for these in Section 2.3 that the criticality problem is well-defined,

i.e. that a smallest positive real eigenvalue with non-negative eigenfunction exists. In

Chapters 3, 4 and 5 we then discuss iterative methods to compute the criticality and

consider their convergence.

1.3 Boundary conditions

In nuclear engineering several different boundary conditions are used. The two most

common ones are “vacuum” and “reflective” boundary conditions.

The vacuum boundary conditions are often referred to as zero (incoming) flux boundary

conditions since they demand that the angular flux on the boundary is zero for all

incoming directions, i.e.

Ψ(r, E,Ω) = 0 when Ω · n(r) < 0 , r ∈ ∂V , (1.6)

where n(r) denotes the outward normal at r ∈ ∂V , the boundary of V (see Figure

1.1). We assume throughout that V is a convex domain and has a C1-boundary.

The reflective boundary conditions state that the flux on the boundary in the incoming

direction Ω is the same as the flux at that boundary point in direction Ω′, where

Ω′ = Ω− 2[Ω · n(r)]n(r) is the reflected direction (see Figure 1.1) and satisfies

Ω · n(r) = −Ω′ · n(r) and (Ω×Ω′) · n(r) = 0 .

The reflective boundary conditions can thus be stated as

Ψ(r, E,Ω) = Ψ(r, E,Ω′) when Ω · n(r) < 0 , r ∈ ∂V . (1.7)

Other (less common) boundary conditions are “translational” (also called “periodic”)

and “rotational” boundary conditions, as well as “white” boundary conditions, where

the outgoing flux is reflected isotropically (with an equal distribution in angle) back

into the system. These, and their numerical treatment, are discussed, for example, in

[102].

7



Chapter 1. Introduction

Ω Ω′

n(r)rV

∂V

Figure 1.1: Illustration of the directions Ω and Ω′ used in the reflective boundary conditions
(1.7) together with the outgoing normal n(r). The flux at r ∈ ∂V in the incoming direction Ω

has to equal the flux at r in the outgoing direction Ω′.

In this thesis we will restrict ourselves to vacuum and reflective boundary conditions

(1.6) and (1.7).

1.4 Adjoint problem

In [80, §1.6] the adjoint problem to the criticality problem (1.5), namely

T ∗Ψ∗ = S∗Ψ∗ + λ∗F∗Ψ∗ , (1.8)

is derived. The adjoint operators are given by

T ∗Ψ∗ = −Ω · ∇Ψ∗(r, E,Ω) + σ(r, E)Ψ∗(r, E,Ω) ,

S∗Ψ∗ =
1

4π

∫

R+

∫

S2

σs(r, E,E′,Ω,Ω′)Ψ∗(r, E′,Ω′) dΩ′ dE′ , and

F∗Ψ∗ =
ν(r, E)σf (r, E)

4π

∫

R+

χ(E′)
∫

S2

Ψ∗(r, E′,Ω′) dΩ′ dE′ .

The corresponding adjoint boundary conditions for (1.6) demand that the outgoing

adjoint flux is zero, i.e.

Ψ∗(r, E,Ω) = 0 when Ω · n(r) > 0 , r ∈ ∂V . (1.9)

The boundary conditions (1.6) and (1.9) ensure that T ∗, S∗ and F∗ are the adjoint

8



Chapter 1. Introduction

operators to T , S and F , and satisfy

〈Ψ∗, T Ψ〉 = 〈T ∗Ψ∗,Ψ〉 ,
〈Ψ∗,SΨ〉 = 〈S∗Ψ∗,Ψ〉 , and (1.10)

〈Ψ∗,FΨ〉 = 〈F∗Ψ∗,Ψ〉 , (1.11)

where the inner product 〈 · , · 〉 on L2(V × R
+ × S

2) is defined by

〈f, g〉 :=

∫

V

∫

R+

∫

S2

f(r, E,Ω)g(r, E,Ω)dΩ dE dr .

Considering the transport operator and using integration by parts for the spatial deriva-

tive, we have (using shorthand notation)

〈Ψ∗, T Ψ〉 =

∫∫∫

V
Ψ∗(Ω · ∇Ψ+ σΨ

)

=

∫∫∫

V
(Ψ∗Ω) · ∇Ψ+

∫∫∫

V
σΨ∗Ψ

=

∫∫∫

∂V
Ψ∗Ψ(Ω · n) −

∫∫∫

V

(
∇ · (Ψ∗Ω)

)
Ψ +

∫∫∫

V
σΨ∗Ψ

=

∫∫∫

V

(
−Ω · ∇Ψ∗ + σΨ∗)Ψ = 〈T ∗Ψ∗,Ψ〉 ,

where we made in the penultimate step use of the boundary conditions (1.6) and (1.9)

to obtain that the boundary integral vanishes. The proofs that the scatter and fission

operators satisfy (1.10) and (1.11) follow in a similar way by rearranging the integrals

and are shown, for example, in [80, p. 49].

The physical interpretation of the adjoint flux is that of the importance of the forward

flux at the same position, energy and direction. An explanation of this interpretation

is given in [80, p. 50]. This concept of importance also provides a simple interpretation

of the adjoint boundary conditions (1.9) in the case of vacuum boundary conditions for

the forward problem: The neutrons that leave the system will not re-enter it and have

therefore zero importance.

Adjoint equations have been applied in several areas of neutron transport problems.

Their use to estimate detector responses is particularly important for Monte Carlo

methods where it is easier to estimate intervals over a large region than over a small

detector area as explained in [80, p. 50]. Recently, the use of coarse deterministic adjoint

solutions to define input parameters of Monte Carlo codes has lead to hybrid Monte

Carlo-deterministic methods (also called automatic variance reduction methods). For

further details on this approach see the review [52] and references therein.

9
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The solution to (1.8) can also be applied in perturbation theory to estimate the change

in criticality for small variations of the problem. We will make use of the adjoint

equation in Chapter 5, where we derive an iterative scheme to compute changes of

arbitrary size (i.e. not only small changes as in many perturbation theories) from a

known base solution by using the forward and adjoint solution of the base problem.

Further details on the adjoint equation in neutron transport theory and additional

application areas can be found in [12, §6].

1.5 Solution methods

In this section we discuss solution methods in neutron transport theory that aim to

find a solution Ψ of the source problem

(T − S − F)Ψ = Q (1.12)

subject to suitable boundary conditions. We shall see in Chapter 3 that iterative

methods for solving the eigenvalue problem (1.5) lead to a sequence of source problems

of the form (1.12). Hence, being able to solve these problems is also important for the

solution of the criticality problem.

Many different numerical methods for solving neutron transport source problems have

been developed over the years and describing them all in detail would go beyond

the scope of this thesis. Essentially, the solution approaches can be separated into

two classes: deterministic methods and stochastic techniques. Deterministic meth-

ods discretise the problem and then solve the subsequent system of algebraic equa-

tions, whereas the Monte Carlo method, which models the individual neutrons in a

randomised way, is an example of a stochastic technique. A good discussion of the

difference between the two approaches is given in [75].

In this section we give a brief overview about some of the more widely used solution

methods (discrete ordinates, spherical harmonics, method of characteristics, diffusion

theory, and the Monte Carlo method). We will provide further details of the discrete

ordinates method and the Monte Carlo approach in Section 2.4 and Chapter 4 respec-

tively.

Energy discretisation

For all deterministic methods the discretisation with respect to energy is performed by

considering the so-calledmulti-group equations (see e.g. [80, §2.2]). This uses a partition
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of the energy range into G intervals (or groups) as shown in Figure 1.2. There E0 and

EG denote the lower and upper limit for neutron energies such that the neutron flux

outside this range can be neglected.

EEg EG = 25 MeVEg−1E0 = 0 MeV

Figure 1.2: Division of the energy range into G energy groups.

The goal of this discretisation is to arrive at a system of equations in terms of the group

fluxes

Ψg(r,Ω) :=

∫ Eg

Eg−1

Ψ(r, E,Ω) dE , for g = 1, . . . , G .

Furthermore, it is assumed that the angular flux Ψ can be expressed in each energy

group as the product of a known globally defined function of energy f and the corre-

sponding group flux Ψg, i.e. that

Ψ(r, E,Ω) = f(E)Ψg(r,Ω) , for Eg−1 ≤ E ≤ Eg , (1.13)

where ∫ Eg

Eg−1

f(E) dE = 1 , for g = 1, . . . , G .

Analogous to (1.13) we assume that the source Q can be expressed as

Q(r, E,Ω) = f(E)Qg(r,Ω) , for Eg−1 ≤ E ≤ Eg , (1.14)

using the group sources

Qg(r,Ω) :=

∫ Eg

Eg−1

Q(r, E,Ω) dE , for g = 1, . . . , G .

Dividing the energy intervals in (1.12) into sums of intervals over the different energy

ranges (Eg−1, Eg) , then using (1.13) and (1.14), and integrating over E ∈ (Eg−1, Eg)

11
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gives

Ω · ∇Ψg(r,Ω) + σg(r)Ψg(r,Ω)

=
1

4π

G∑

g′=1

∫

S2

σsgg′(r,Ω
′,Ω)Ψg′(r,Ω

′) dΩ′

+
χg

4π

G∑

g′=1

νg′(r)σfg′(r)

∫

S2

Ψg′(r,Ω
′) dΩ′ + Qg(r,Ω)

(1.15)

for g = 1, . . . , G , where

σg(r) =

∫ Eg

Eg−1

σ(r, E)f(E) dE ,

σsgg′(r,Ω
′,Ω) =

∫ Eg

Eg−1

∫ E′
g

Eg′−1

σs(r, E
′, E,Ω′,Ω)f(E′) dE′ dE ,

νg′(r)σfg′(r) =

∫ E′
g

Eg′−1

ν(r, E′)σf (r, E
′)f(E′) dE′ , and

χg =

∫ Eg

Eg−1

χ(E) dE .

The boundary conditions for (1.15) are obtained by replacing Ψ in (1.6) and (1.7) by

the group fluxes Ψg.

Although we will give numerical solutions for some two energy group problems, for the

theoretical analysis of this thesis we shall consider only monoenergetic problems with

G = 1 . In this case all fission neutrons have the same energy and hence χ1 = 1 .

As only one energy group is present, we can remove the group indices to reduce the

notational burden for the monoenergetic case and write (1.15) as

Ω · ∇Ψ(r,Ω) + σ(r)Ψ(r,Ω)

=
1

4π

∫

S2

σs(r,Ω
′,Ω)Ψ(r,Ω′) dΩ′

+
1

4π
ν(r)σf (r)

∫

S2

Ψ(r,Ω′) dΩ′ + Q(r,Ω) ,

(1.16)

where we implicitly assume that a suitable function f(E) exists and that the cross-

section terms have been adjusted accordingly.
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Discrete ordinates (SN)

The first deterministic approach for solving a source problem of the form (1.12) that

we discuss here is the so-called discrete ordinates or SN -method. This method con-

sists of approximating the angular integrals in the scatter and fission operators with a

quadrature rule. The resulting equation is then evaluated at the angular quadrature

points and a semidiscrete problem is obtained which is discrete in the angular variables

but continuous in the spatial variable. For the numerical approximation of the spatial

derivative there is a wide choice of finite difference and finite element schemes. After

they are applied one obtains a fully-discrete problem that is equivalent to a generalised

matrix eigenvalue problem.

We discuss the discrete ordinates approach in more detail in Section 2.4, where we

also provide discretisation error estimates. Furthermore, we use this technique for our

numerical results and give additional details about its application to a particular model

problem in Section 3.3.3.

Spherical harmonics (PN)

In the spherical harmonics method the angular component of the flux Ψ is expanded in

spherical harmonics. A discretisation is obtained by truncating the expansion after a

small number of terms. The spatial approximation again uses finite difference or finite

element methods. This approach is usually denoted as the PN -method and further

details can be found, for example, in [12, §3].

Method of characteristics

The method of characteristics is typically used to reduce first-order partial differential

equations to ordinary differential equations which are easier to solve. This is done

by finding the characteristic curves, or characteristics, of the problem along which

the partial differential equation can be expressed as an ordinary differential equation.

Using the given initial data from the boundary conditions the solution can be found

by integration of the ordinary differential equation.

Conveniently, the characteristics of the linear Boltzmann equation are straight lines in

the flux directions Ω, along which the differential operator of (1.3) reduces to a total

derivative. For a source problem of the form (1.12), an iterative process (the source

iteration, which is discussed further in Section 4.3.2) is formed, where the scatter and
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fission contributions are fixed in each iteration, leading to problems of the form

T Ψ(i+1) = Q̃(i) , where Q̃(i) := (S + F)Ψ(i) +Q . (1.17)

The method of characteristics is now applied to find, for given Q̃(i), the solution Ψ(i+1)

of (1.17). This new flux estimate is then used to compute the next source Q̃(i+1). The

resulting iteration can be shown to converge under certain conditions (see, for example,

Corollaries 4.6 and 4.9).

One of the first papers describing the method of characteristics for neutron transport

problems in realistic geometries is [8]. Today, this method is frequently applied (see,

for example, [62, 115] and references therein) and is subject to further theoretical

investigations (see e.g. [10] for a new error estimate for two-dimensional problems).

Diffusion theory

Although not treated in this thesis, it is worth mentioning diffusion theory since it is

widely used. Indeed, the following citation from 2008 [112, p. 43] claims that “Diffusion

theory [...] is, in fact, the workhorse computational method of nuclear reactor physics.”

As stated in [112], the diffusion approximation assumes that (i) the probability of scat-

ter events is much higher than the probability of neutron absorption; (ii) the neutron

distribution varies only linearly in space (only the first two terms of a spatial Taylor

expansion of the flux are used to derive the diffusion equations); and (iii) the scatter is

isotropic, i.e. the scatter cross-sections are independent of the incoming and outgoing

direction. The first assumption is true for most moderating and structural materials in

a nuclear reactor but does not hold for the fuel and control rod materials. The second

assumption fails close to material boundaries and the final assumption only holds for

heavy nuclei. Fortunately, transport theory can be used to adjust the boundary con-

ditions and cross-sections used in diffusion theory, such that the results of numerical

methods based on diffusion theory become more accurate ([112, p. 44]).

The multi-group diffusion equations for (1.15) are (see e.g. [80, (2-21)])

−∇Dg(r) · ∇φg(r) + σg(r)φg(r)

=
G∑

g′=1

σsgg′(r)φg′(r) + χg

G∑

g′=1

νg′(r)σfg′(r)φg′(r) + Q̃g(r)

for g = 1, . . . , G , where Dg are the so-called diffusion coefficients, the isotropic scat-
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tering gives σsgg′(r) = σsgg′(r,Ω
′,Ω) and

φg(r) =
1

4π

∫

S2

Ψg(r,Ω) dΩ ,

Q̃g(r) =
1

4π

∫

S2

Qg(r,Ω) dΩ .

For the time-dependent problem (1.1) diffusion theory leads to a system of parabolic

partial differential equations which can be solved more efficiently than the general

integro-differential form (1.1) by using numerical methods for diffusion problems (see

e.g. [103, 127]).

However, it is important to note that diffusion theory is a simplification and does not

incorporate all of the detail in the transport equation. Therefore, efficient methods to

solve the linear Boltzmann equation and the criticality problem (1.5) are needed, the

latter of which is the concern of this thesis.

Monte Carlo

TheMonte Carlo method differs substantially from the deterministic methods described

above. While the deterministic approaches aim to find a discretisation of the neutron

transport equation (1.12) and subsequently solve the resulting system of algebraic equa-

tions, the Monte Carlo method appears to ignore the mathematical description (1.12)

and solve the problem by simulating the behaviour of individual neutrons. The idea

is that a sufficiently large number of simulations recovers the average behaviour of the

system, which is described by (1.12).

We discuss this method in more detail in Chapter 4, where we also establish links

between the apparently random processes in Monte Carlo and the underlying mathe-

matics of the neutron transport equation.

1.6 Literature survey

In this thesis we deal with three different research areas (neutron transport theory,

iterative eigenvalue solvers, and Monte Carlo methods) each of which has been studied

extensively and has given rise to large numbers of publications. At this point we only

provide a brief literature review about neutron transport theory and, in particular,

criticality computations, but we give more detailed reviews of iterative methods and
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Monte Carlo techniques in Section 3.1 and Chapter 4 respectively. Throughout the

thesis additional references are cited where relevant.

There exists a large amount of background literature on neutron transport theory

and nuclear engineering. Standard references for transport theory include the books

[12, 20, 24, 29] and [80]. The recent text [112] focuses on the physical and engineering

aspects in nuclear reactors, updating and extending results from [28] and [43].

The paper [2] by Adams describes progress in neutron transport theory between 1973

and 2004 from a nuclear engineer’s perspective. The article reviews the work of Ed

Larsen containing several important contributions, ranging from analytic solutions for

simple model problems to the diffusion synthetic acceleration scheme (which plays a

major role in real world computations today, see [3]) and the Monte Carlo method.

There has also been widespread interest in transport theory from numerical analysts

(e.g. [6, 63, 82, 83, 93]), but this activity is mainly related to the solution of source

problems of the form (1.12) and not the criticality problem (1.5). However, some

discretisation error estimates for computed eigenvalues are presented in, for example,

[6] and [93], and the well-known integral form of the neutron transport equation that

is used in the latter paper was the basis of the analysis performed in Section 2.2.

Numerical methods for neutron transport problems are the focus of the book [83] which

contains many numerical techniques and research results from the former USSR. The

monograph mainly considers iterative methods for source problems but it also contains

a short section (X.31) on iterative schemes for the computation of the criticality and

corresponding flux shape, presenting five different methods including inverse iteration.

The study of the numerical solution of the criticality problem (1.5) has been, compared

with the vast amount of literature for source problem solutions, very limited. Some

standard references contain short sections on the solution of the criticality problem,

such as [12, §4.4] where eigenvalue problems in multi-group theory have been consid-

ered, and the example of an iterative scheme (a variation of the power method) for the

multi-group diffusion equation has been given.

In 1984 [80, p. 92] the following remark was made about iterative methods in the

context of the solution of the criticality problem: “Multiplication eigenvalue problems

are invariably solved by the method of power iteration.” Section 2.5 in this book then

discusses the power method and acceleration schemes based on extrapolation and the

use of a diffusion solution. While in other areas alternative eigenvalue techniques have

become the preferred method of choice, in the thesis [115, p. 140] from 2008 it is stated

that the power method is (still) the most commonly used approach to solve neutron

transport eigenvalue problems.
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However, recently other methods such as implicitly restarted Arnoldi for the search

of time-eigenvalues (see [78]) and the computation of the criticality value 1/keff (see

[120]) have gained interest. The latter paper tests the implicitly restarted Arnoldi

method from the ARPACK software package [79] and compares the numerical results

to the power method showing that for several test problems, the Krylov subspace based

Arnoldi method requires substantially fewer iterations. This is particularly the case for

problems with a dominance ratio close to one, i.e. where the difference between the

principal eigenvalue and the next eigenvalue is small.

The recent PhD thesis [23] considers the explicitly restarted Arnoldi method for Monte

Carlo criticality computations. Several numerical results are provided that compare

the explicitly restarted Arnoldi approach with the power method. Tests show that

using similar computational effort both methods produce estimates for the fundamen-

tal eigenvalue within statistical uncertainties while the former method additionally

provides estimates for the second and third largest eigenvalue. Furthermore, the supe-

riority of the Arnoldi method over the power method is again shown numerically for

problems with a small distance of the fundamental eigenvalue to the next.

A possible drawback of an Arnoldi method in the context of Monte Carlo is the need for

a discrete mesh on which to orthogonalise the iterates. This introduces a discretisation

error which is not present when the power method is used to compute only the criticality

as we will see in Chapter 4. Overall, the thesis [23] presents the first application of

an Arnoldi method to the criticality problem using a Monte Carlo implementation

showing that a combination of the two methods is possible. Several further extensions

and challenges are mentioned and need to be answered to determine if this technique

is feasible for real world problems.

Another approach based on using Krylov subspaces is discussed in [51] and [87] and

uses the Orthomin method (see [48, §2.2] for details about Orthomin for the solution

of linear systems). Even the simple bisection method has been used in [89] to find the

criticality estimate by altering 1/keff until the determinant of a matrix representation

of (T − S − 1/keffF) becomes zero. Finally, a brief discussion of the inverse power

method with a fixed shift for solving the criticality problem is given in [4], where a

discretisation of the problem is assumed.

Despite the development and application of new algorithms, we note that few of the

recent advances in the theory of iterative methods for eigenvalue problems have been

applied to the solution of the reactor criticality problem. In particular, it appears that

so far there has been no analysis of inexact methods.

To the author’s knowledge the analysis of inexact inverse iteration for the criticality
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problem that is presented in Chapter 3 of this thesis has not been done before. It is

founded on a rigorous mathematical basis which we establish in Chapter 2 and considers

the criticality problem in operator form. Therefore, our results are independent of the

discretisation and (source problem) solution method employed. We consider the general

situation of shifted inverse iteration that includes the power method as a special case,

but also extends to faster converging shift-invert methods such as Rayleigh Quotient

iteration.

For details of numerical methods for general matrix eigenvalue problems (i.e. not neces-

sarily discretisations of the criticality problem), we refer to standard textbooks such as

[45, 91, 99, 122]. A concise review of different eigenvalue computation techniques (in-

cluding direct and iterative solvers) and the research developments in the last century

is given in [44]. We focus in this thesis on inexact iterative methods for the eigen-

value problem, which we discuss in Chapter 3 where we also look in more detail at the

literature for these methods.

1.7 Contributions of this thesis and outline

This thesis provides the following original contributions to the knowledge of the research

community. It

• explores an underlying symmetry of the neutron transport equation (known to

nuclear engineers but not exploited by numerical analysts) and provides a rigorous

mathematical basis for a class of model problems (Sections 2.1 and 2.2);

• provides some fundamental theory for integral operators occurring in neutron

transport theory (for example Theorem 2.9);

• shows the existence of a simple smallest positive real eigenvalue with correspond-

ing eigenfunction that is strictly positive in the interior of the reactor using only

simple analytical tools and avoiding semigroup theory (Section 2.3);

• establishes a systematic convergence analysis for inexact shifted inverse iteration

as an eigenvalue solver applied to the criticality problem on the space of linear

operators (Section 3.2);

• provides simple links between the mathematics of neutron transport theory and

the use of Monte Carlo methods as a solution technique for source and eigenvalue

problems (Chapter 4);
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• derives an iterative method for criticality computations which computes the

change in the eigenvalue when the problem is perturbed from one with a known

solution (this situation often occurs when designing new nuclear reactors) (Sec-

tion 5.1), and it

• gives a convergence analysis of the perturbation scheme that shows that for small

perturbations and inexact inner solves the method can compete with standard

approaches, but that also highlights when the convergence is no longer guaranteed

(Sections 5.2 to 5.4).

Throughout the work numerical results to support the theory are given.

The thesis is organised as follows. In the second chapter we introduce a class of model

problems for which we establish a relationship between the non-symmetric criticality

problem (1.5) and a symmetric problem in a space of reduced dimension. Several

properties of the operators involved are shown and a rigorous mathematical basis for

the following parts of this thesis is provided. Furthermore, we prove the existence

of a simple smallest positive real eigenvalue. We finish Chapter 2 by considering a

popular discretisation approach and giving examples of how to preserve the underlying

symmetry of the problem in the finite dimensional form.

The following three chapters focus on numerical methods for solving the criticality prob-

lem. Chapter 3 considers iterative methods for the criticality problem and provides a

convergence analysis for inexact inverse iteration which is supported by numerical re-

sults. In Chapter 4 the application of the Monte Carlo method to neutron transport

problems is described, and Chapter 5 discusses a new iterative scheme that is based on

computing eigenvalue and eigenvector corrections to a known solution. Again a conver-

gence analysis and numerical examples are given. Chapter 6 contains the conclusions

and suggests possible directions for further research.
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Chapter 2
Integral equation analysis and

discretisation

This chapter provides the mathematical foundations for the remainder of the thesis.

We discussed in Section 1.2 how the criticality of a nuclear reactor is determined by

the solution of an eigenvalue problem. In particular, we asked to find the smallest real

eigenvalue λ > 0 of (1.5) without proving that such an eigenvalue exists. In Section

2.3 we answer this question for a class of model problems which are described in the

following Section 2.1.

Section 2.2 shows that for these model problems the search for the smallest positive

real eigenvalue of the non-symmetric eigenvalue problem (1.5) is equivalent to finding

the smallest positive real eigenvalue of a symmetric eigenvalue problem in a lower

dimensional space. Several mathematical properties of this symmetric problem and

the operators involved therein are established, including a new proof for a not well-

known norm estimate that is crucial for the following analysis.

In Section 2.3 we then show for the model problems from Section 2.1 that a smallest

positive real eigenvalue exists. Furthermore, we show that it is simple and has a

corresponding eigenfunction that is strictly positive within the reactor.

The final section of this chapter discusses a frequently used discretisation technique

and the challenge to preserve the underlying symmetry of the problem in the finite

dimensional form. We also give discretisation error estimates for a scheme that we

employ in our numerical tests in the following chapters.
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2.1 Model problems

The majority of this thesis focuses on homogeneous model problems with isotropic

scattering in the monoenergetic case. Considering only one energy group results in all

energy dependencies being removed (see equation (1.16) on page 12). Furthermore, due

to the isotropic scatter and homogeneous material, all cross-sections become constants.

The relation (1.2) then reduces to

σ = σc + σs + σf . (2.1)

We apply vacuum boundary conditions for these problems. In such a reactor all neu-

trons travel with the same constant speed and no neutrons enter the reactor from

outside. Despite imposing substantial simplifications these model problems are a good

starting point for the analysis of neutron transport and several versions of them in

different spatial dimensions have been studied in the literature (e.g. [6, 63, 82, 93]).

All four of these papers consider the discretisation error of different discrete ordinates

schemes in various geometries. We will discuss [93] in more detail in Section 2.4 and

refer to the other papers when considering the respective geometries.

We perform the majority of the following analysis in the three dimensional case where

r ∈ V ⊂ R
3 and Ω ∈ S

2 , and state the results for the 2D and 1D cases where similar

arguments apply.

3D model

In the 3D case the above assumptions lead to the eigenvalue problem (1.5) taking the

form: Find (λ,Ψ) such that

Ω · ∇Ψ(r,Ω) + σΨ(r,Ω) − σs
4π

∫

S2

Ψ(r,Ω′) dΩ′ = λ
νσf
4π

∫

S2

Ψ(r,Ω′) dΩ′ (2.2)

for all (r,Ω) ∈ V × S
2, subject to

Ψ(r,Ω) = 0 when n(r) ·Ω < 0 , r ∈ ∂V . (2.3)

Two subcases of this have been studied in the literature as discussed below. To describe

them, let (θ, ϕ) ∈ [0, π] × [0, 2π] denote the usual spherical polar coordinates on S
2

(see Figure 2.1).
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Figure 2.1: The contribution of Ω in the z-direction is µ = cos θ.

2D model

Here it is assumed that Ψ(r,Ω) = Ψ(r̃, Ω̃) , where r̃ ∈ Ṽ ⊂ R
2 and Ω̃ = (cosϕ, sinϕ)

lies on the unit circle S
1. The resulting model problem becomes

Ω̃ · ∇̃Ψ(r̃, Ω̃) + σΨ(r̃, Ω̃) − σs
2π

∫

S1

Ψ(r̃, Ω̃′) dΩ̃′ = λ
νσf
2π

∫

S1

Ψ(r̃, Ω̃′) dΩ̃′

for (r̃, Ω̃) on Ṽ × S
1 (where ∇̃ denotes the 2D gradient). The vacuum boundary

conditions then read

Ψ(r̃, Ω̃) = 0 when ñ(r̃) · Ω̃ < 0 , r̃ ∈ ∂Ṽ ,

where ñ(r̃) again denotes the outward unit normal at r̃ ∈ ∂Ṽ (see e.g. [6] and the

references therein).

1D model

In the 1D case it is assumed that Ψ(r,Ω) = Ψ(z, µ) , where z ∈ [0, 1] and µ = cos θ ∈
[−1, 1] . Then the problem (2.2), (2.3) reduces to

µ
∂

∂z
Ψ(z, µ) + σΨ(z, µ) − σs

2

∫ 1

−1
Ψ(z, µ′) dµ′ = λ

νσf
2

∫ 1

−1
Ψ(z, µ′) dµ′ , (2.4)
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which has to be solved on [0, 1]× [−1, 1] , subject to

Ψ(0, µ) = 0 when µ > 0 and Ψ(1, µ) = 0 when µ < 0 . (2.5)

This “1D slab geometry” model has received a lot of attention in the literature (e.g. in

[82] and [93]).

2.2 Integral equation methods

In this section we establish the relation of the model problems introduced above to

corresponding symmetric positive definite integral operator eigenvalue problems. Prop-

erties of the arising integral operator, including a vital norm estimate, are proved. The

symmetry and compactness of the operator can be exploited by applying the Hilbert-

Schmidt theorem to obtain an orthonormal basis for the corresponding function space,

which we will use in later chapters to analyse the convergence of iterative methods.

2.2.1 Equivalence to an integral equation

The key to the reduction to a symmetric problem is to introduce another physical

quantity, the scalar flux φ, which is obtained by integrating the angular flux Ψ over all

directions, i.e.

φ(r) = (PΨ)(r) :=
1

4π

∫

S2

Ψ(r,Ω′) dΩ′ . (2.6)

To make the reduction mathematically precise, we introduce the usual Lebesgue space

L2(V ) with norm ‖ · ‖L2(V ) . Also for any 1 ≤ p ≤ ∞ we introduce the space

L2(V, Lp(S2)) :=

{
Ψ : V × S

2 → R :

∫

V
‖Ψ(r, ·)‖2Lp(S2) dr < ∞

}

with norm ‖Ψ‖2L2(V,Lp(S2)) :=
∫
V ‖Ψ(r, ·)‖2Lp(S2) dr , where Lp(S2) is the usual Lp space

of functions defined on S
2. The operator P defined in (2.6) is then a bounded linear

operator from L2(V, L1(S2)) to L2(V ).

In the 2D and 1D settings P becomes, respectively,

φ(r̃) :=
1

2π

∫

S1

Ψ(r̃, Ω̃′) dΩ̃′ and φ(z) :=
1

2

∫ 1

−1
Ψ(z, µ′) dµ′ .
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In the following lemma, we make use of the notation

d(r,Ω) := inf{s > 0 : r− sΩ /∈ V } ,

which describes the distance from r back to the boundary along the direction −Ω (see

Figure 2.2).

Ω

d(r,
Ω) r

V
∂V

Figure 2.2: Distance d(r,Ω) from r to the boundary ∂V along −Ω.

Throughout we assume that V is a convex domain in R
3 and for convenience we assume

that its boundary ∂V is C1, so that the normal direction n is a continuous function on

∂V . If r ∈ V , it then follows that Ω is an inward pointing direction at the boundary

point r− d(r,Ω)Ω ∈ ∂V , and so by (2.3),

Ψ(r− d(r,Ω)Ω,Ω) = 0 . (2.7)

Lemma 2.1. Suppose g ∈ L2(V, L∞(S2)) and consider the problem of solving

T Ψ(r,Ω) := Ω · ∇Ψ(r,Ω) + σΨ(r,Ω) = g(r,Ω) (2.8)

on V × S
2 , together with the boundary conditions (2.3). This problem has a unique

solution Ψ ∈ L2(V, L1(S2)) given by

Ψ(r,Ω) =

∫ d(r,Ω)

0
exp(−σs)g(r− sΩ,Ω) ds for (r,Ω) ∈ V × S

2 . (2.9)

Proof. First observe that (2.8) is equivalent to the statement

− d

ds

[
Ψ(r− sΩ,Ω) exp(−σs)

]
= g(r− sΩ,Ω) exp(−σs) (2.10)

for (r,Ω) ∈ V × S
2 and s > 0 , provided r− sΩ ∈ V .

To show that (2.9) is a solution of (2.8), observe that if (r,Ω) ∈ V × S
2 and s > 0
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satisfy r− sΩ ∈ V , then (2.9) implies

Ψ(r− sΩ,Ω) =

∫ d(r−sΩ,Ω)

0
exp(−σs′)g(r− (s+ s′)Ω,Ω) ds′ .

Now making the change of variable s′′ = s′ + s and observing that

d(r− sΩ,Ω) + s = d(r,Ω) ,

we obtain

Ψ(r− sΩ,Ω) exp(−σs) =

∫ d(r,Ω)

s
exp(−σs′′)g(r− s′′Ω,Ω) ds′′ ,

which implies (2.10).

Uniqueness of the solution to (2.8) follows since with g = 0 , integrating (2.10) from

s = 0 to s = d(r,Ω) and using (2.7) shows that Ψ vanishes. The proof that Ψ ∈
L2(V, L1(S2)) is deferred to Remark 2.4.

We now state a result from [65, Theorem 1, p. 324] which we will need to prove Lemma

2.3.

Lemma 2.2. Consider Lp(D1) , Lq(D2) with 1 ≤ p , q ≤ ∞ , where D1 and D2 are,

respectively, d1- and d2-dimensional bounded regions in Euclidean space. Consider the

integral operator

(Kg)(r) =

∫

D1

k(r, r′)g(r′) dr′ , r ∈ D2 ,

and assume the following conditions are satisfied:

[∫

D1

|k(r, r′)|u dr′
]1/u

≤ C1 , u > 0

for almost all r ∈ D2 ,

[∫

D2

|k(r, r′)|v dr
]1/v

≤ C2 , v > 0

for almost all r′ ∈ D1 ,

q ≥ p , q ≥ v and

(
1− v

q

)
p′ ≤ u ,

where p′ is the conjugate exponent of p defined by 1/p+ 1/p′ = 1 .
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Then the integral operator K is a continuous linear operator mapping Lp(D1) into

Lq(D2) and

‖K‖ ≤ C
1−v/q
1 C

v/q
2 .

Lemma 2.3. Consider (2.8) in the special case g(r,Ω) = g(r) with g ∈ L2(V ) , and

define φ := PΨ , where Ψ is the solution from (2.9). Then φ ∈ L2(V ) and

φ(r) = (Kσg)(r) := (PT −1g)(r) =

∫

V
kσ(r− r′)g(r′) dr′ ,

where kσ(x) :=
1

4π

exp(−σ‖x‖2)
‖x‖22

, x ∈ R
3 .





(2.11)

Proof. Using (2.9) and applying P yields

φ(r) =

∫

S2

∫ d(r,Ω)

0

exp(−σs)

4πs2
g(r− sΩ) s2 ds dΩ .

Now, using spherical coordinates centred at r with r′ = r − sΩ , we obtain (2.11).

Finally, the assumptions of Lemma 2.2 are satisfied with p = q = 2 , D1 = D2 = V

and u = v = 1 , and hence Kσ is a continuous (bounded) linear operator from L2(V )

to L2(V ). Therefore it follows that φ ∈ L2(V ) which finishes the proof.

Remark 2.4. The fact that Ψ given by (2.9) lies in L2(V, L1(S2)) when the right-hand

side g ∈ L2(V, L∞(S2)) can now be proved by using (2.9) to obtain

‖Ψ(r, ·)‖L1(S2) ≤ 4π

∫

S2

∫ d(r,Ω)

0

exp(−σs)

4πs2
‖g(r− sΩ, ·)‖L∞(S2) s

2 ds dΩ

= 4π (Kσf)(r) ,

where f(r) = ‖g(r, ·)‖L∞(S2) ∈ L2(V ) . The result follows since Kσ is a bounded linear

operator on L2(V ).

This type of integral equation reformulation is well-known for neutron transport source

problems (see e.g. [80, §5]). The integral form of the neutron transport equation is

often used as a tool in the design of iterative schemes to solve source problems as, for

example, in [48, 53], where the source iteration method is discussed. The paper [53]

additionally presents a remedy to avoid negative fluxes in the computation.

However, the use of the reduction to analyse eigenvalue problems is, apart from ob-

taining discretisation error estimates for the critical eigenvalue (see [6, 93] for 2D and

1D examples), less well-known. In particular, the author does not know of any liter-

ature which exploits the structure derived below to provide a convergence analysis of

eigenvalue iteration methods to compute the criticality as we do in Chapter 3.
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Corollary 2.5. If (λ,Ψ) with Ψ ∈ L2(V, L1(S2)) is an eigenpair for (2.2), (2.3), then

(λ, φ) , with φ = PΨ ∈ L2(V ) , is an eigenpair of the reduced generalised eigenvalue

problem

φ(r)− σsKσφ(r) = λ νσfKσφ(r) , r ∈ V . (2.12)

Conversely, if (λ, φ) with φ ∈ L2(V ) is an eigenpair of the problem (2.12), and if we

define Ψ ∈ L2(V, L1(S2)) by solving

T Ψ(r,Ω) = σsφ(r) + λ νσfφ(r) , (2.13)

subject to the boundary conditions (2.3), then (λ,Ψ) is an eigenpair of the problem

(2.2).

Proof. Suppose (λ,Ψ) is an eigenpair of (2.2) with Ψ ∈ L2(V, L1(S2)) , then

T Ψ(r,Ω)− σsφ(r) = λ νσfφ(r) , where φ(r) = PΨ(r,Ω) .

Now it follows from Lemma 2.3 and the linearity of Kσ, that (2.12) holds in L2(V ).

To prove the converse statement, let Ψ ∈ L2(V, L1(S2)) be the unique solution of (2.13)

and set φ̃ := PΨ . Lemma 2.3 and (2.12) imply

φ̃(r) = σsKσφ(r) + λ νσfKσφ(r) = φ(r) .

Hence T Ψ = σsφ̃+ λ νσf φ̃ = SΨ+ λFΨ , as required.

Analogous arguments can be applied to the 2D and 1D model problems. For the 2D

problem with r̃ ∈ Ṽ and Ω̃ ∈ S
1 the equivalent of (2.8) is

(
T −1g

)
(r̃, Ω̃) = Ψ(r̃, Ω̃) =

∫ d(r̃,Ω̃)

0
exp(−σs)g(r̃− sΩ̃, Ω̃) ds .

The scalar flux eigenvalue problem is then

φ(r̃)− σsKσφ(r̃) = λ νσfKσφ(r̃) ,

where

(Kσg)(r̃) :=

∫

Ṽ
kσ(r̃− r̃′)g(r̃′) dr̃′ and kσ(x) :=

1

2π

exp(−σ‖x‖2)
‖x‖2

, x ∈ R
2 .
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For the 1D problem the inverse of the transport operator is given by

(
T −1g

)
(z, µ) = Ψ(z, µ) =





1
µ

z∫
0

exp
(
σ
µ(t− z)

)
g(t, µ) dt , if µ > 0

− 1
µ

1∫
z
exp

(
σ
µ(t− z)

)
g(t, µ) dt , if µ < 0 ,

(2.14)

and the equivalent eigenvalue problem of reduced dimension is

φ(z)− σsKσφ(z) = λ νσfKσφ(z) ,

with

(Kσg)(z) :=

∫ 1

0
kσ(z − z′)g(z′) dz′ and kσ(x) :=

1

2

∫ 1

0
exp

(
−σ|x|

µ

)
dµ

µ
. (2.15)

Remark 2.6. The singularity in the kernel kσ in (2.15) is well-understood and Kσ

maps L2([0, 1]) to the space of continuous functions C([0, 1]) (see, for example, [47]).

Further properties of the solution (2.14) to the 1D problem, such as the differentiability

of Ψ and the extension of Ψ to a Hölder continuous function, are discussed in [66].

Remark 2.7. In the 1D problem the kernel kσ(x) is related to the exponential integral

E1(x) =

∫ ∞

1
exp(−xt)

dt

t
= −1

2

(
ln(x) + γ +

∞∑

k=1

xk

k k!

)
, x > 0 ,

where γ ≈ 0.5772 is the Euler-Mascheroni constant (see [1, equations 5.1.4 and 5.1.11,

pages 228-229]). For real x 6= 0 we have

kσ(x) =
1

2

∫ 1

0
exp

(
−|σx|

µ

)
dµ

µ
=

1

2

∫ ∞

1
exp (−|σx|η) dη

η
=

1

2
E1(|σx|) . (2.16)

2.2.2 Properties of the integral operator

We now establish various mathematical properties of the operator Kσ . In 1D, 2D and

in 3D the kernel kσ is positive and symmetric and we use this to prove that the operator

Kσ is a positive definite self-adjoint operator.

Lemma 2.8. The integral operator Kσ is self-adjoint on the Hilbert space L2(V̄ ),

i.e. (Kσf, g)L2(V̄ ) = (f,Kσg)L2(V̄ ) for all f, g ∈ L2(V̄ ) , where V̄ ∈ {V, Ṽ , [0, 1] } .
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Proof. Using the symmetry of the kernel kσ we get for the 3D problem

(Kσf, g)L2(V ) =

∫

V

∫

V
kσ(r− r′)f(r′) dr′ g(r) dr

=

∫

V

∫

V
kσ(r

′ − r)g(r) dr f(r′) dr′ = (f,Kσg)L2(V ) .

Analogous arguments hold for the 2D and 1D case.

Next, we prove a norm estimate for Kσ.

Theorem 2.9. For V̄ ∈ {V, Ṽ , [0, 1] } we have

‖Kσ‖L (L2(V̄ )) ≤ 1

σ
,

where L
(
L2(V̄ )

)
denotes the space of linear operators from L2(V̄ ) to L2(V̄ ).

Proof. We consider Kσg as a convolution and use Young’s inequality for convolutions

(e.g. [55, Theorem 20.18]) to get, for example, for the 3D case

‖Kσg‖L2(V ) ≤ ‖kσ ∗ ge‖L2(R3) ≤ ‖kσ‖L1(R3)‖ge‖L2(R3) ,

where ∗ denotes convolution and

ge(r) :=

{
g , if r ∈ V

0 , if r /∈ V .

As ‖ge‖L2(R3) = ‖g‖L2(V ) this gives the estimate

‖Kσ‖L (L2(V )) ≤ ‖kσ‖L1(R3) . (2.17)

Now, to estimate the right-hand side of (2.17), we write x ∈ R
3 in polar coordinates

x = sΩ , Ω ∈ S
2 to obtain

‖kσ‖L1(R3) =

∫

R3

1

4π

exp(−σ‖x‖2)
‖x‖22

dx

=

∫ ∞

0

∫

S2

1

4π

exp(−σ‖sΩ‖2)
‖sΩ‖22

s2 dΩ ds

=

∫ ∞

0

∫

S2

1

4π
exp(−σs) dΩ ds

=

∫ ∞

0
exp(−σs) ds

=
1

σ
.
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Therefore, with (2.17),

‖Kσ‖L (L2(V )) ≤ 1

σ
. (2.18)

Although (2.17) holds in all three spatial dimensions, the derivation of (2.18) using

polar coordinates only works in the 2D and 3D case (using similar arguments in the

former). In 1D we use the positivity of kσ to express ‖kσ‖L1(R) as the evaluation of the

Fourier transform of kσ at zero.

‖kσ‖L1(R) =

∫ ∞

−∞
kσ(x) dx =

∫ ∞

−∞
exp(ix 0)kσ(x) dx = k̂σ(0) , (2.19)

where the exponential Fourier transform of kσ is given by

k̂σ(ξ) =

∫ ∞

−∞
exp(ix ξ)kσ(x) dx .

To find an expression for k̂σ we use that kσ is related to the exponential integral E1 with

positive real argument |σx| (see Remark 2.7) for which the Fourier transform is known.

Using that kσ(x) = 1/2E1(|σx|) by (2.16), and performing a change of variables, we

get

k̂σ(ξ) =

∫ ∞

−∞
exp(ix ξ)kσ(x) dx

=
1

2

∫ ∞

−∞
exp(ix ξ)E1(|σx|) dx

=
1

2σ

∫ ∞

−∞
exp

(
iξ

x̃

σ

)
E1(|x̃|) dx̃

=
1

2σ
f̂

(
ξ

σ

)
, where f(x) := E1(|x|) .

Therefore, we need to find the Fourier transform of f(x) = E1(|x|) . As f is an even

function, the Fourier transform f̂ is given by 2Fc{f(x); y} (e.g. [33, p. 117]), where

Fc{f(x); y} :=
∫∞
0 f(x) cos(xy) dx denotes the Fourier cosine transform. Erdelyi et

al. [33, eq. (19), p. 42] now give the corresponding Fourier cosine transform

Fc{f(x); y} = Fc{E1(x); y} =
tan−1(y)

y
. (2.20)

Note that the Fourier transform in equation (19) on page 42 of [33] is stated in terms

of the exponential integral Ei(−x) and not explicitly in terms of E1(x). However, the
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book uses the notation E1(x) = −Ei(−x) for real x (see [33, p. 386]) giving us (2.20).

Finally, combining these results, we have

k̂σ(ξ) =
1

2σ
2Fc

{
f(x);

ξ

σ

}
=

1

σ

tan−1
(

ξ
σ

)

ξ
σ

,

and using l’Hôspital’s rule to calculate the limit of k̂σ as ξ → 0 , we obtain

k̂σ(0) =
1

σ
.

Therefore it follows from (2.19) that

‖kσ‖L1(R) = k̂σ(0) =
1

σ
.

Combining this with the 1D version of (2.17), we get ‖Kσ‖L (L2([0,1])) ≤ 1/σ .

Remark 2.10. The above norm estimate for Kσ does not appear to be well known

in the literature. However, the result also follows, using different techniques, from the

proof on page 32 in the appendix of [42], where the special case of α = 0 has to be

considered. In [34, p. 39] it is remarked that for a 1D problem with total cross-section

σ = 1 the operator Kσ is even a contraction in L2([0, 1]), i.e. ‖Kσ‖L (L2([0,1])) < 1 .

Next, we show that Kσ is compact. For this we require the first part of [65, Theorem

6, p. 332] which we now state applied to our case for completeness.

Lemma 2.11. Consider L2(D) , where D is a d-dimensional bounded region in Eu-

clidean space, and define the kernel of potential type

k(r, r′) =
b(r, r′)

‖r− r′‖m2
,

where b(r, r′) is a bounded function, continuous for r 6= r′ . If

d > m , (2.21)

then the integral operator

(Kg)(r) =

∫

D
k(r, r′)g(r′) dr′ , r ∈ D ,

is a compact operator mapping L2(D) into L2(D) .
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Using this lemma we can prove the following result.

Lemma 2.12. Kσ is compact on L2(V ).

Proof. We apply Lemma 2.11 to our integral operator Kσ. We then have D = V ⊂ R
3 ,

b(r, r′) = exp(−σ‖r − r′‖2) , m = 2 and d = 3 . These satisfy the assumptions of

Lemma 2.11 and therefore Kσ is compact on L2(V ).

We can also apply the Lemma 2.11 to the 2D problem where the condition (2.21) is

satisfied with D = Ṽ ⊂ R
2 , b(r, r′) = exp(−σ‖r− r′‖2) and m = 1 , d = 2 .

However, in the 1D case the kernel is no longer of potential type and we need to use

the following result from [56, Theorem 7, p. 51] to prove the compactness of Kσ.

Lemma 2.13. Let k(x, y) be such that

∫ 1

0

∫ 1

0
|k(x, y)|2 dx dy < ∞ . (2.22)

Then the operator

(Kf)(x) =

∫ 1

0
k(x, y)f(y) dy

is a compact operator on L2([0, 1]) .

We can now prove the compactness of Kσ in the 1D case.

Lemma 2.14. The operator Kσ in (2.15) is compact on L2([0, 1]).

Proof. We have to show that the kernel kσ satisfies the condition (2.22), i.e. that

∫ 1

0

∫ 1

0
|kσ(z − t)|2 dt dz < ∞ .

For our kσ we obtain with η := µ/|x| , x ∈ (0, 1)

kσ(x) =

∫ 1

0
exp

(
−σ|x|

µ

)
dµ

µ
=

∫ 1/|x|

0
exp

(
−σ

η

)
dη

η
=: h

(
1

|x|

)
.

Now we get for y := 1/|x| ∈ (1,∞)

h(y) =

∫ y

0
exp

(
−σ

η

)
dη

η
=

∫ 1

0
exp

(
−σ

η

)
dη

η
+

∫ y

1
exp

(
−σ

η

)
dη

η
.

32



Chapter 2. Integral equation analysis and discretisation

The first term on the left is just a constant which we denote with C1. Bounding

exp (−σ/η) in the second term from above by one gives then

h(y) = C1 +

∫ y

1
exp

(
−σ

η

)
dη

η
≤ C1 +

∫ y

1

1

η
dη = C1 + ln(y) .

Hence, for |x| ∈ (0, 1) ,

kσ(x) ≤ C1 + ln

(
1

|x|

)
.

Now we can bound ln (1/|x|) for example by the following expressions, using that the

function x
1
4 ln (1/|x|) is increasing on (0, e−4) and ln (1/|x|) is bounded by 1/4 on

(e−4, 1) , i.e.

ln

(
1

|x|

)
≤
{

C2x
− 1

4 , if x ∈ (0, e−4)
1
4 , if x ∈ (e−4, 1) .

with C2 = 4/e , and therefore,

kσ(z − t) ≤
{

C1 + C2|z − t|− 1
4 , if |z − t| ∈ (0, e−4)

C1 +
1
4 , if |z − t| ∈ (e−4, 1) .

Finally,

∫ 1

0

∫ 1

0
|kσ(z − t)|2 dt dz ≤

∫ 1

0

∫ 1

0

∣∣∣∣C1 + C2|z − t|− 1
4 +

1

4

∣∣∣∣
2

dt dz < ∞ ,

and the condition (2.22) is satisfied. Hence Kσ is a compact operator in 1D.

In the final part of this section we consider whether the operator Kσ is positive. There

are many different notions of positivity in the literature and, in fact, we will be using two

different concepts ourselves. To distinguish these let us now define what we understand

by positive definite operators (see also [30, p. 906]).

Definition 2.15. Let H be a complex Hilbert space and let A be a bounded operator on

H. A is called positive definite if it is self-adjoint and (Af, f) > 0 for all f ∈ H\{0}
where ( · , · ) denotes the inner product on H.

For compact operators we have the following equivalence using the remark in [56, p. 87]:

Lemma 2.16. If H is a complex Hilbert space and A is a compact self-adjoint operator

on H, then A is positive definite if and only if all eigenvalues of A are positive.
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Proof. As A is a compact self-adjoint operator, the Hilbert-Schmidt theorem (see

e.g. [94, p. 268]) tells us that there exists an orthonormal basis {ej}∞j=1 of eigen-

functions of A, so that we can write every f ∈ H as

f =
∞∑

j=1

ξj(f)ej ,

where ξj(f) = (f, ej) . Using that the ej are eigenfunctions, i.e. that Aej = ωjej , we

obtain

Af =
∞∑

j=1

ωjξj(f)ej ,

and therefore

(Af, f) =
∞∑

j=1

ωj |ξj(f)|2 .

Now if (Af, f) > 0 for all f ∈ H\{0} , we get from using f = ej that ωj > 0 for all

j = 1, . . . ,∞ .

Conversely, for every f 6= 0 there exists at least one J ∈ N such that ξJ(f) 6= 0 . If

now ωj > 0 for all j = 1, . . . ,∞ , then this implies that (Af, f) > 0 for all f ∈ H\{0}
which finishes the proof.

We apply this result now to our operator Kσ.

Lemma 2.17. All the eigenvalues of the operator Kσ are positive and hence Kσ is a

positive definite operator.

Proof. Suppose Kσf = ωf for some eigenvalue ω with corresponding eigenfunction

f ∈ L2(V ) . As Kσ is self-adjoint, the eigenvalue ω must be real. Let Ψ be the solution

of Ω · ∇Ψ+ σΨ = f on V × S
2 , subject to vacuum boundary conditions (2.3). Then,

by Lemma 2.3, the corresponding scalar flux satisfies φ = Kσf = ωf , and we have

ωf2(r) = φ(r)f(r)

=
1

4π

∫

S2

Ψ(r,Ω)f(r) dΩ

=
1

4π

∫

S2

Ψ(r,Ω) [Ω · ∇Ψ(r,Ω) + σΨ(r,Ω)] dΩ

=
1

4π

∫

S2

Ω · [Ψ(r,Ω)∇Ψ(r,Ω)] dΩ +
σ

4π

∫

S2

Ψ2(r,Ω) dΩ .

Integrating over V and applying the divergence theorem, the first term on the right-
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hand side becomes

1

4π

∫

S2

Ω ·
[∫

V
Ψ(r,Ω)∇Ψ(r,Ω) dr

]
dΩ =

1

8π

∫

S2

Ω ·
[∫

V
∇
[
Ψ2(r,Ω)

]
dr

]
dΩ

=
1

8π

∫

S2

∫

∂V
Ψ2(r,Ω) [Ω · n(r)] dr dΩ

≥ 0 ,

where we used the boundary conditions (2.3) for the final estimate. Hence

ω

∫

V
f2(r) dr ≥ σ

4π

∫

V

∫

S2

Ψ2(r,Ω) dΩ dr .

As f 6= 0 , both integrals are positive and it follows that ω > 0 . Lemma 2.16 then

implies that Kσ is positive definite.

For the 2D and 1D problems analogous arguments apply.

2.2.3 Existence of an orthonormal basis

Now, by the Hilbert-Schmidt theorem for self-adjoint compact operators and Lemma

2.17, Kσ has a sequence of eigenpairs {(ωj , ej)}∞j=1 , where the sequence {ωj} is positive,
monotone non-increasing and converges to zero as j → ∞ . Furthermore, the {ej} form

a complete orthonormal basis in L2(V̄ ) and finally, from Lemma 2.9 and the fact that

σ = σc + σs + σf (and that all cross-sections are positive), we have

‖σsKσ‖L (L2(V̄ )) ≤ σs
σ

< 1 . (2.23)

Combining this with Corollary 2.5 gives the following result.

Lemma 2.18. The eigenvalues in Corollary 2.5 are

λj =
1− σsωj

νσfωj
j = 1, 2, . . . . (2.24)

The sequence {λj} is positive, non-decreasing and tends to infinity as j → ∞ .

The eigenvalue of physical interest is the smallest λj . Our labelling makes this λ1,

corresponding to w1. Also of physical interest is the fact that the smallest eigenvalue

should be simple and have a positive eigenfunction. We prove this fact for our model

problems in the next section.

Remark 2.19. The relation (2.24) between the eigenvalues ωj of Kσ and the criticality

described by λ1, suggests that computing ω1 (the largest eigenvalue of Kσ) could be a
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viable alternative to computing λ1. In practice, however, Kσ is not constructed explicitly

(although integral transport methods do use a related approach by integrating the angular

dependence out and then working on a scalar flux problem (see [80, §5] for further

details)). We will use properties of the operator Kσ to obtain theoretical results about the

eigenvalue of interest, but we do all our numerical calculations on the non-symmetric

eigenvalue problem involving the operators T , S and F .

2.3 Simplicity of the smallest eigenvalue

In this section we prove that the smallest eigenvalue λ1 of our monoenergetic homoge-

neous model problem with isotropic scattering is simple and has a corresponding strictly

positive eigenfunction. This result has been shown in [86] for a more general class of

problems, but the analysis there considers the criticality problem via time-dependent

problems and makes use of semigroup theory.

The approach presented here only uses simple analytical tools to study the time-

independent problem. In [101] it has been stated that by applying the Perron-Frobenius

theorem (the finite dimensional equivalent of the Krein-Rutman theorem that we will

use in our analysis), the existence of a simple real and positive fundamental eigenvalue

with a positive eigenvector can be guaranteed. The paper also mentions the Krein-

Rutman theorem as a generalisation of the Perron-Frobenius theorem to the operator

case but does not provide details of how to apply it to the criticality problem.

Our argument goes as follows. First, we show the existence of a smallest positive

real eigenvalue with a non-negative eigenfunction using a Krein-Rutman argument.

Unfortunately, this does not imply the simplicity of the eigenvalue. However, we can

use the obtained result, together with the strict positivity of the kernel kσ, to show

that the eigenspace corresponding to λ1 is one-dimensional.

To be able to do this we need the notion of positive operators on cones. These are

different to positive definite operators which were introduced in Definition 2.15.

Definition 2.20 (Cone, see [26, p. 218]). Let B be a Banach space. A cone C ⊂ B is a

closed convex set such that αf ∈ C for all α ≥ 0 , and all f ∈ C , and C∩(−C) = {0} .

Definition 2.21 (Positive operator, see [69, p. 59]). Let B be a Banach space with a

cone C ⊂ B . The linear operator A is called positive on C if it transforms the cone

C into itself, i.e. A(C) ⊂ C .

Definition 2.22 (Reproducing and total cones, see [26, Definition 19.1(a)]). Let B

be a Banach space with a cone C ⊂ B . The cone C is reproducing if C − C = B ,
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i.e. if every element in B can be represented as the difference of two elements in C. If

C − C = B , the cone is total.

In the following we will work with the cone of non-negative functions in L2(V ). This

is defined as L2
+(V ) := {f ∈ L2(V ) : f(x) ≥ 0 a.e.} .

Lemma 2.23. L2
+(V ) is a reproducing and therefore total cone in the Hilbert space

L2(V ).

Proof. Since we can write every function in L2(V ) as the sum of its positive and negative

parts, the cone L2
+(V ) is reproducing in L2(V ). Furthermore, every reproducing cone

in a Banach space is also a total cone.

We first show that the generalised eigenvalue problem (2.12) can be written as an

eigenvalue problem in standard form.

Lemma 2.24. The following two problems are equivalent in L2(V ):

φ(r)− σsKσφ(r) = λ νσfKσφ(r) , (2.25)

Aσφ(r) =
1

λ
φ(r) , where Aσ := νσf

∞∑

n=0

(σsKσ)
nKσ . (2.26)

Proof. We note that the left-hand side of (2.25) can be written as (I −σsKσ)φ , where

I denotes the identity operator on L2(V ). From (2.23) we know that σsKσ is a con-

traction and we can therefore compute the inverse of the operator (I − σsKσ) using

the convergent Neumann series

(I − σsKσ)
−1 =

∞∑

n=0

(σsKσ)
n .

Rearranging the scalar flux eigenvalue problem (2.25) gives then the standard eigen-

value problem (2.26).

In the following we show that there exists a largest positive eigenvalue (λ1)
−1 of Aσ

from (2.26), which then corresponds to a smallest eigenvalue λ1 of (2.25). We start

with the following observation.

Lemma 2.25. Kσ is positive on L2
+(V ), i.e. Kσ(L

2
+(V )) ⊂ L2

+(V ) . Moreover, it maps

non-zero non-negative functions to strictly positive functions, such that

Kσ(L
2
+(V )\{0}) ⊂ L2

++(V ) ,
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where L2
++(V ) := {f ∈ L2(V ) : f(x) > 0 a.e.} ⊂ L2

+(V ) .

Proof. As kσ is a strictly positive kernel, the first part obviously holds. If in addition

g ∈ L2
+(V )\{0} , then there exists a set of positive measure such that g > 0 on that

set and

(Kσg)(r) =

∫

V
kσ(r− r′)g(r′) dr′ > 0 for all r ∈ V ,

which proves the second part of the lemma.

Using that all cross-sections as well as ν are positive, we obtain that the operator Aσ

given in (2.26) also maps non-zero non-negative functions to strictly positive functions.

Corollary 2.26. The operator Aσ in (2.26) is positive on the cone L2
+(V ) and satisfies

Aσ(L
2
+(V )\{0}) ⊂ L2

++(V ) .

We now use the Krein-Rutman theorem as stated in [26] to prove that ‖Aσ‖L (L2(V ))

is the largest positive eigenvalue of Aσ and has an eigenfunction in L2
+(V ).

Theorem 2.27 (Krein-Rutman theorem [26, Theorem 19.2]). Let B be a Banach space,

C ⊂ B a total cone and A ∈ L (B) be a compact and positive operator on C (in the

sense of Definition 2.21, i.e. A(C) ⊂ C ) with spectral radius r(A) > 0 . Then r(A)

is an eigenvalue with an eigenfunction f ∈ C .

Using this we can prove the following result.

Theorem 2.28. The scalar flux eigenvalue problem

φ(r)− σsKσφ(r) = λ νσfKσφ(r) (2.27)

has a smallest positive real eigenvalue λ1 with non-negative eigenfunction φ1 ∈ L2
+(V ) .

Proof. We apply Theorem 2.27 to the operator Aσ = νσf
∑∞

n=0(σsKσ)
nKσ from the

standard eigenvalue problem (2.26) using the cone C = L2
+(V ) . By Corollary 2.26, Aσ

is a positive operator on L2
+(V ).

Since νσf
∑∞

n=0(σsKσ)
n is a bounded operator and Kσ is compact, the composition

Aσ is also compact. The set of non-zero eigenvalues for non-zero self-adjoint compact

operators on Hilbert spaces is non-empty (e.g. [98, Theorem 7.33]), and hence the

spectral radius r(Aσ) is positive.
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Theorem 2.27 then yields that the largest eigenvalue r(Aσ) = ‖Aσ‖L (L2(V )) =: (λ1)
−1

is real and positive, and that there exists a non-negative scalar flux φ1 ∈ L2
+(V )

corresponding to this eigenvalue. Lemma 2.24 finally implies that λ1 is the smallest

positive real eigenvalue of the scalar flux problem (2.27) with corresponding eigenfunc-

tion φ1 ∈ L2
+(V ) .

We can extend this result to the angular flux problem.

Corollary 2.29. The angular flux eigenvalue problem

Ω · ∇Ψ(r,Ω) + σΨ(r,Ω)− σs
4π

∫

S2

Ψ(r,Ω′) dΩ′ = λ
νσf
4π

∫

S2

Ψ(r,Ω′) dΩ′ (2.28)

has a smallest positive real eigenvalue λ1 with corresponding non-negative eigenfunction

Ψ1 ∈ L2(V, L1(S2)) .

Proof. We know by Theorem 2.28 that the scalar flux problem (2.27) has a smallest

positive real eigenvalue λ1 with corresponding non-negative eigenfunction φ1 ∈ L2
+(V ) .

Now from Corollary 2.5 we obtain a solution Ψ1 ∈ L2(V, L1(S2)) of

T Ψ1(r,Ω) = σsKσφ1(r) + λ1 νσfKσφ1(r) , (2.29)

which is an eigenfunction for the angular flux problem (2.28) corresponding to the

eigenvalue λ1. As the right-hand side of (2.29) is non-negative, the formula (2.9) yields

a non-negative function Ψ1 which finishes the proof.

Remark 2.30. The above proof does not show that λ1 is a simple eigenvalue. The

stronger version of the Krein-Rutman theorem given by [26, Theorem 19.3], which would

ensure simplicity of the eigenvalue, demands that the interior of the cone is non-empty.

This is not satisfied for the cone L2
+(V ) as for every f ∈ L2

+(V ) and every ε > 0 , we

can construct a function f̃ (by changing f on a small set of positive measure to negative

values) which still ensures ‖f − f̃‖L2 < ε but is not contained in L2
+(V ). This means

that there exists no ε > 0 such that the ball B(f, ε) := { f ′ ∈ L2(V ) : ‖f−f ′‖L2 < ε }
is in L2

+(V ) . Hence there is no open neighbourhood of f contained in L2
+(V ) and

therefore the interior is empty.

Fortunately, our integral operator Kσ has a strictly positive kernel and, as we saw in

Corollary 2.26, Aσ therefore maps non-zero non-negative functions to strictly positive

functions. This fact will help us to prove that λ1 is simple.
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We use for our argument a result about self-adjoint positive operators on cones from

[116] which we adapt to our situation. In [116] real Hilbert spaces are considered,

remarking that if H is a complex Hilbert space with inner product ( · , · ) , then H is

also a real Hilbert space with a real inner product

(f, g)R := Real(f, g) , f, g ∈ H .

Note that our operators Kσ and Aσ map real-valued functions to real-valued functions,

they are self-adjoint and there exists a basis of real eigenfunctions in the space L2(V )

that we consider. Hence, we may restrict ourselves to real Hilbert spaces without loss

of generality. We keep the ( · , · ) notation for the inner product assuming implicitly

that it agrees with the real inner product.

Definition 2.31. Let H be a real Hilbert space with inner product ( · , · ) and let C be

a reproducing cone. Then define for each f ∈ H the projection πC(f) as the unique

element of the cone C which is closer to f than any other element in C.

Now, if f ∈ H and p ∈ C , then p = πC(f) if and only if

(g − p, f − p) ≤ 0 for all g ∈ C . (2.30)

Analogously to [116, Lemma 1] we have the following equivalence.

Lemma 2.32. If H is a real Hilbert space, C is a cone in H, f ∈ H and p ∈ C , then

p = πC(f) if and only if

sup
g∈C

(g, f − p) = (p, f − p) = 0 . (2.31)

Proof. Let p = πC(f) so that (2.30) holds. Setting g = 0 and g = 2p in (2.30), we

deduce that (p, f − p) = 0 . Now using this result in (2.30), we get

0 ≥ (g − p, f − p) = (g, f − p) for all g ∈ C ,

and therefore (2.31) holds. Conversely, if (2.31) holds, we have for all g ∈ C

(g − p, f − p) = (g, f − p)− (p, f − p) ≤ 0 ,

and (2.30) holds. Hence p = πC(f) .

The following result, analogous to [116, Lemma 2], will be key to our proof that the

smallest eigenvalue of (2.27) is simple.
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Lemma 2.33. Let C be a reproducing cone in a real Hilbert space H and let A be a self-

adjoint operator on H that maps C into itself. Furthermore, assume that the spectral

radius of A is an eigenvalue, i.e. Af = ‖A‖f for some f 6= 0 , and let p = πC(f) . If

p 6= 0 , then p is also an eigenfunction for the eigenvalue ‖A‖, i.e.

Ap = ‖A‖p . (2.32)

Proof. We use the fact that Ap ∈ C . Then from (2.31) with g = Ap , and the self-

adjointness of A, we get

0 ≥ (Ap, f − p)

= (p,Af)− (Ap, p)

= ‖A‖(p, f − p+ p)− (Ap, p)

= ‖A‖‖p‖2 − (Ap, p) ,

where the final equality is obtained by applying (2.31) again. Together with the Cauchy-

Schwarz inequality this gives

‖A‖‖p‖2 ≤ (Ap, p) ≤ ‖Ap‖‖p‖ ≤ ‖A‖‖p‖2 ,

and hence ‖A‖‖p‖2 = (Ap, p) . Finally,

0 ≤ ‖(Ap− ‖A‖p)‖2

= ‖Ap‖2 − 2‖A‖(Ap, p) + ‖A‖2‖p‖2

= ‖Ap‖2 − ‖A‖2‖p‖2

≤ ‖A‖2‖p‖2 − ‖A‖2‖p‖2 = 0 ,

and therefore (2.32) holds.

We can now prove our main result of this section.

Theorem 2.34. The scalar flux eigenvalue problem (2.27) has a simple smallest pos-

itive real eigenvalue λ1 with strictly positive eigenfunction φ1 ∈ L2
++(V ) .

Proof. By Lemma 2.24 we know that (2.27) is equivalent to the standard eigenvalue

problem (2.26). From Theorem 2.28 we obtained that the largest positive real eigen-

value ‖Aσ‖L (L2(V )) of problem (2.26) has an eigenfunction in the cone L2
+(V ). We

now need to show that ‖Aσ‖L (L2(V )) is a simple eigenvalue and the corresponding

eigenfunction actually lies in L2
++(V ).
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Assume ‖Aσ‖L (L2(V )) is not a simple eigenvalue. Then there exists a two-dimensional

subspace of eigenfunctions. As L2
+(V ) is a cone, L2

+(V ) ∩ (−L2
+(V )) = {0} , and we

can construct a non-zero eigenfunction φ̃ outside the cone L2
+(V ) such that

Aσφ̃ = ‖Aσ‖L (L2(V ))φ̃ and πL2
+(V )(φ̃) 6= 0 .

Now, since φ̃ /∈ L2
+(V ) , its projection πL2

+(V )(φ̃) is zero on a set of positive measure.

On the other hand, applying Lemma 2.33, we get that

Aσ(πL2
+(V )(φ̃)) = ‖Aσ‖L (L2(V ))(πL2

+(V )(φ̃)) . (2.33)

Corollary 2.26 states that the left-hand side of (2.33) is in L2
++(V ) and therefore strictly

positive almost everywhere, but by construction the right-hand side of (2.33) is zero

on a set of positive measure and we obtain a contradiction. Hence the eigenspace

corresponding to the eigenvalue ‖Aσ‖L (L2(V )) must be one-dimensional.

Let now φ1 ∈ L2
+(V ) be an eigenfunction in the one-dimensional eigenspace. Then

Aσφ1 = ‖Aσ‖L (L2(V ))φ1 , (2.34)

and applying Corollary 2.26 again yields that the left-hand side of (2.34) is in L2
++(V ).

As ‖Aσ‖L (L2(V )) > 0 this implies that φ1 ∈ L2
++(V ) .

Using Lemma 2.24 and the same argument as in Theorem 2.28, we therefore obtain that

λ1 = ‖Aσ‖−1
L (L2(V ))

is a simple smallest eigenvalue with strictly positive eigenfunction

φ1 ∈ L2
++(V ) for the scalar flux eigenvalue problem (2.27).

Applying similar arguments as in the proof of Corollary 2.29 we get, due to the strict

positivity of the integrand in (2.9), the final result of this section.

Corollary 2.35. The smallest eigenvalue λ1 of the eigenvalue problem (2.28) is posi-

tive, real and simple and has a corresponding eigenfunction Ψ1(r,Ω) ∈ L2(V, L1(S2))

which is strictly positive in the interior of V .

Remark 2.36. The simplicity of the smallest eigenvalue and the existence of a strictly

positive eigenfunction are also proved in [118, Theorem II, p. 77] and [42, Theorem 5

with α = 0 ], but both references make use of a different Krein-Rutman theorem to the

one applied here.

42



Chapter 2. Integral equation analysis and discretisation

2.4 Discretisation techniques

Several different discretisation schemes have been developed and discussed in the lit-

erature, some of which we already mentioned in Section 1.5. We now describe the

discrete ordinates approach in more detail, indicating in Section 2.4.2 how a popular

spatial discretisation scheme in 1D can fail to retain the underlying symmetry that we

observed in the previous sections. We propose symmetry preserving discretisations and

finish this section with discretisation error estimates for a scheme that we employ in

our numerical tests. We focus here on one-dimensional problems while the 2D and 3D

cases have been considered, for example, in [29, §8.1] and [19].

2.4.1 Discrete ordinates

As mentioned in Section 1.5, the idea of the discrete ordinates approach is to approxi-

mate the angular flux at a set of spatial mesh points and in a number of fixed directions.

The directions are often denoted as ordinates giving the discretisation scheme its name.

We now discuss how to fully discretise the 1D criticality problem

µ
∂

∂z
Ψ(z, µ) + σΨ(z, µ) − σs

2

∫ 1

−1
Ψ(z, µ′) dµ′ = λ

νσf
2

∫ 1

−1
Ψ(z, µ′) dµ′ (2.35)

with vacuum boundary conditions (2.5).

The first step is to perform an angular discretisation to approximate the integrals.

A quadrature rule with 2N points {µk} ⊂ [−1, 1]\{0} , and weights {wk} for indices

k = −N,−(N − 1), . . . ,−1, 1, . . . , (N − 1), N is applied to approximate

∫ 1

−1
f(µ) dµ ≈

N∑

|i|=1

wif(µi) .

The quadrature points and weights are chosen symmetrically so that

0 < µ1 < µ2 < . . . < µN ≤ 1 ,

µi = −µ−i , i = 1, . . . , N , and

wi = w−i , i = 1, . . . , N ,

(2.36)

which corresponds physically to treating fluxes in the positive and negative direction

with equal importance. Furthermore, since we are working with non-negative functions,

we demand that the weights are positive.
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Standard approaches are Gaussian quadrature rules on either the two separate intervals

[−1, 0] and [0, 1] or choosing 2N Gauss-Legendre points on [−1, 1] . We use the latter

for our numerical experiments.

Applying the angular discretisation to the 1D problem (2.35) and evaluating the re-

sulting semidiscrete problem at the 2N quadrature points µk, |k| = 1, . . . , N , leads

to the following system of ordinary differential equations for the semidiscrete solution

ΨN ∈ L2([0, 1]) :

µk
∂

∂z
ΨN (z, µk) + σΨN (z, µk) − σs

2

N∑

|i|=1

wiΨN (z, µi)

= λ
νσf
2

N∑

|i|=1

wiΨN (z, µi) , where

(2.37)

ΨN (0, µk) = 0 , k = 1, . . . , N and ΨN (1, µk) = 0 , k = −1, . . . ,−N . (2.38)

To arrive at a fully discrete problem we need to approximate the spatial derivative.

Again, several different schemes have been applied in the literature (see e.g. [76, 77, 92]

and the references therein). Usually, a finite difference or finite element method is

used in space. A popular approach is the Crank-Nicolson scheme. This is one of the

methods that we use for the numerical results in this thesis and now discuss in more

detail. Define a spatial mesh zj , j = 0, . . . ,M , on [0, 1] with intervals Ij = [zj−1, zj ] ,

j = 1, . . . ,M , and lengths hj = zj − zj−1 .

We follow [93] for the application of the Crank-Nicolson scheme to (2.37), (2.38). Let

V h = { v ∈ C0[0, 1] : v|Ij ∈ P1(Ij), j = 1, . . . ,M } be the space of continuous

piecewise linear functions on the interval [0, 1] . The Crank-Nicolson scheme is to

approximate ΨN from (2.37) with Ψh
N ∈ V h , such that Ψh

N satisfies

∫

Ij

µk
∂

∂z
Ψh

N (z, µk) dz + σ

∫

Ij

Ψh
N (z, µk) dz − σs

2

N∑

|i|=1

wi

∫

Ij

Ψh
N (z, µi) dz

= λ
νσf
2

N∑

|i|=1

wi

∫

Ij

Ψh
N (z, µi) dz , j = 1, . . . ,M , and

Ψh
N (0, µk) = 0 , k = 1, . . . , N and Ψh

N (1, µk) = 0 , k = −1, . . . ,−N . (2.39)
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This gives the usual Crank-Nicolson discretisation of (2.37)

µk

(
Ψh

N (zj , µk)−Ψh
N (zj−1, µk)

)
+

σhj
2

(
Ψh

N (zj−1, µk) + Ψh
N (zj , µk)

)

− σshj
4

N∑

|i|=1

wi

(
Ψh

N (zj−1, µi) + Ψh
N (zj , µi)

)

= λ
νσfhj

4

N∑

|i|=1

wi

(
Ψh

N (zj−1, µi) + Ψh
N (zj , µi)

)
.

Together with the discretised boundary conditions (2.39) this can be written as a

generalised eigenvalue problem in matrix form (see Section 3.3.3 for an example).

Note that the discrete ordinates scheme is not restricted to the criticality problem and

that the same steps can be applied to obtain a discretisation for source problems.

2.4.2 Symmetry preserving discretisations

We established in Section 2.2 that the non-symmetric criticality problem (2.2) for the

angular flux is equivalent to the symmetric scalar flux problem (2.12). We will see

in Chapter 3 that it is advantageous for iterative eigenvalue solvers to preserve the

symmetry in the continuous problem by the discretisation scheme. Unfortunately, the

above Crank-Nicolson approach does not retain the underlying symmetry and this can

result in slower convergence of iterative methods as we will observe in the numerical

results in Section 3.4.

While a full study of symmetry-preserving discretisations is beyond the scope of this

thesis, we show here by two examples, that natural symmetry-preserving discretisations

do exist. First we consider the semidiscrete case of (2.4) and (2.5), where we discretise

only with respect to the spatial variable z and leave the angular variable µ continuous.

The discrete approximation to the operator Kσ = PT −1 is obtained by applying the

inverse of the discrete version of T and then integrating over µ. This turns out to be

symmetric in the discrete spatial variable when certain conditions are met. In addition

we describe how to preserve the symmetry under further discretisation with respect

to the angular variable µ. In both examples below, analogously to Lemma 2.1, we

consider for any g ∈ L2([0, 1]) discrete versions of the problem

T Ψ(z, µ) = µ
∂

∂z
Ψ(z, µ) + σΨ(z, µ) = g(z) , z ∈ [0, 1] , µ ∈ [−1, 1] , (2.40)

subject to the vacuum boundary conditions (2.5).
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Symmetry preserving Euler scheme

For the first example we use a uniform spatial mesh zj = jh , j = 0, . . . ,M with

h = 1/M , and an Euler-type method (i.e. a first order finite difference approximation

of the derivative, also known as the step method [80, §3]). Integrating from left to right

for µ > 0 and from right to left for µ < 0 gives

µ
Ψ(zj , µ)−Ψ(zj−1, µ)

h
+ σΨ(zj−1, µ) = g(zj−1) for µ > 0 , j = 1, . . . ,M ,

µ
Ψ(zj , µ)−Ψ(zj−1, µ)

h
+ σΨ(zj , µ) = g(zj) for µ < 0 , j = 1, . . . ,M ,

with Ψ(z0, µ) = 0 when µ > 0 and Ψ(zM , µ) = 0 when µ < 0 .

These equations can be written as the two linear systems

A+(µ)Ψ+(µ) = g+ for µ > 0 and A−(µ)Ψ−(µ) = g− for µ < 0 ,

where Ψ+(µ) := (Ψ(z1, µ), . . . ,Ψ(zM , µ))T , g+ := (g(z0), . . . , g(zM−1))
T ,

Ψ−(µ) := (Ψ(z0, µ), . . . ,Ψ(zM−1, µ))
T and g− := (g(z1), . . . , g(zM ))T , and where

A+(µ) is a lower bidiagonal matrix and A−(µ) is an upper bidiagonal matrix given

respectively by

A+(µ) :=




µ
h(

σ − µ
h

) µ
h
. . .

. . .
(
σ − µ

h

) µ
h



, A−(µ) :=




−µ
h

(
σ + µ

h

)

. . .
. . .

−µ
h

(
σ + µ

h

)

−µ
h



.

Note that A−(µ) and A+(µ) are both non-singular and

A−(−µ) =
(
A+(µ)

)T
and so

(
A−(−µ)

)−1
=
(
A+(µ)

)−T
. (2.41)

This condition plays a crucial role in our proof to show that this difference scheme pre-

serves the underlying symmetry. With Ψ(µ) := (Ψ(z0, µ), . . . ,Ψ(zM , µ))T we reduce

the problem now to one in terms of scalar fluxes. For φφφ := (φ(z0), . . . , φ(zM ))T and

g := (g(z0), . . . , g(zM ))T ∈ R
M+1 we get

φφφ =

∫ 1

−1
Ψ(µ) dµ =

∫ 1

0

(
0
(
A−(−µ)

)−1

0 0T

)
g dµ +

∫ 1

0

(
0T 0(

A+(µ)
)−1

0

)
g dµ

= K̃g ,
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where

K̃ :=

[∫ 1

0
A(µ) dµ

]
and A(µ) :=

(
0
(
A−(−µ)

)−1

0 0T

)
+

(
0T 0(

A+(µ)
)−1

0

)
.

The symmetry of K̃ then follows from (2.41).

Finally, let us now consider the full discretisation and suppose we choose a quadrature

rule with points {µk} ⊂ [−1, 1]\{0} , and weights {wk} that satisfy the conditions

(2.36). We then obtain φφφ = Kg with a symmetric K :=
∑N

k=1wkA(µk) .

Finite element scheme

As an alternative to the finite difference method above, consider an arbitrary mesh

0 = z0 < z1 < . . . < zM = 1 . For i = 0, . . . ,M , let ϕi denote the usual continuous

piecewise linear “hat” functions on [0, 1] , satisfying ϕi(zj) = δi,j . Furthermore, set

hj = zj − zj−1 and define ( · , · ) to be the standard inner product on L2([0, 1]) .

Now use the following approximation for (2.40). If µ > 0 , we approximate Ψ(z, µ) by

Ψ+(z, µ) :=
∑M

j=1Ψ
+
j (µ)ϕj(z) and determine the coefficients Ψ+

j (µ) by requiring

(
µ
∂

∂z
Ψ+(·, µ) + σΨ+(·, µ) , ϕi−1

)
= (g, ϕi−1) , i = 1, . . . ,M .

This is equivalent to the M ×M system

A+(µ)Ψ+(µ) = g+ ,

where Ψ+(µ) :=
(
Ψ+

1 (µ), . . . ,Ψ
+
M (µ)

)T
, g+ :=

(
(g, ϕ0), . . . , (g, ϕM−1)

)T
and

(
A+(µ)

)
i,j

:= µ(ϕ′
j , ϕi−1) + σ(ϕj , ϕi−1) .

Similarly, for µ < 0 approximate Ψ(z, µ) by Ψ−(z, µ) :=
∑M−1

j=0 Ψ−
j (µ)ϕj(z) defined

by (
µ
∂

∂z
Ψ−(·, µ) + σΨ−(·, µ) , ϕi

)
= (g, ϕi) , i = 1, . . . ,M .

This is equivalent to

A−(µ)Ψ−(µ) = g− ,

where Ψ−(µ) :=
(
Ψ−

0 (µ), . . . ,Ψ
−
M−1(µ)

)T
, g− :=

(
(g, ϕ1), . . . , (g, ϕM )

)T
and

(
A−(µ)

)
i,j

:= µ(ϕ′
j−1, ϕi) + σ(ϕj−1, ϕi) .
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The matrices A+(µ) are lower tridiagonal with positive diagonal while the matrices

A−(µ) are upper tridiagonal with positive diagonal and hence A±(µ) are non-singular.

Now we notice that by integration by parts (ϕ′
i−1, ϕj) = −(ϕ′

j , ϕi−1) , and so the crucial

condition (2.41) is also satisfied by the matrices A±(µ) . Therefore, this finite element

method also has the property that the symmetry of the discrete version of the operator

PT −1 is preserved if the quadrature points are chosen according to (2.36).

2.4.3 Discretisation error estimates

We now briefly describe the discretisation error when using 2N Gauss-Legendre quadra-

ture points on [−1, 1] and a Crank-Nicolson scheme for the spatial approximation. The

results that we state are a special case of Theorems 4.4 and 4.5 in [93]. The paper [93]

also considers more general conditions on the quadrature rules as well as a discontin-

uous Galerkin scheme for the approximation of the spatial derivative. Discretisation

error estimates for two dimensional problems have been studied, for example, in [63]

with an extension to the analysis in [5] and [6].

The discretisation error results which are given below allow for non-uniform meshes,

where h := maxj=1,...,M hj (with hj = zj−zj−1 ) denotes the maximal distance between

two spatial points. For a 1D source problem for the scalar flux [93, Theorem 4.4] gives

the following result.

Theorem 2.37. Let φ ∈ L2([0, 1]) be the solution to the source problem

φ(z)− γKσφ(z) = KσQ(z) ,

which is the integral equation form of

Ψ(z, µ) + σΨ(z, µ)− γ

∫ 1

−1
Ψ(z, µ′)dµ′ = Q(z) (2.42)

with source Q ∈ C2+ε([0, 1]) for arbitrary ε > 0 . The notation Q ∈ C2+ε([0, 1])

denotes that Q is twice continuously differentiable on [0, 1] and the second derivative

is Hölder continuous with exponent ε.

Let γ < ρ(Kσ) , where ρ(Kσ) is the spectral radius of the operator Kσ, and define

φh
N (z) =

N∑

|i|=1

wiΨ
h
N (z, µi) ,

where Ψh
N is the discrete ordinates approximation to the solution of (2.42), which is
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obtained using 2N Gauss-Legendre quadrature points on [−1, 1] with corresponding

weights and the Crank-Nicolson scheme for the spatial discretisation.

If the spatial mesh size h = h(N) is chosen such that h(N)| log(N)| → 0 for N → ∞ ,

then the following estimate for the discretisation error of the scalar flux holds:

‖φ− φh
N‖L2([0,1]) ≤ C(φ,Q)

(
N− 3

2 + h2N
1
2
)
, (2.43)

where C(φ,Q) = Cε

(
‖φ‖L2([0,1]) + ‖Q‖C2+ε([0,1])

)
for arbitrary ε > 0 .

Proof. The result is obtained by applying Theorem 4.4 in [93] for the case of the Crank-

Nicolson method, i = 1 and p = 2 . Note that the λ defined in the paper is in our

notation γ and not related to our eigenvalue λ which in turn corresponds to λmin in

the paper.

If we choose, for example, γ = σs , we have the source problem (T − S)Ψ = Q which

includes neutron scatter but no fission. For the criticality problem [93, Theorem 4.5]

provides the following result.

Theorem 2.38. Let (λ, φ) be an eigenpair in L2([0, 1]) of the generalised eigenvalue

problem (2.12), and let (λh
N , φh

N ) be an eigenpair in L2([0, 1]) of the approximation

φh
N (r)− σsKφh

N (r) = λh
N νσfKφh

N (r) , r ∈ V ,

where K is the discrete version of Kσ after applying the 2N Gauss-Legendre quadrature

rule on [−1, 1] and the Crank-Nicolson scheme for the spatial discretisation.

If the spatial mesh size h = h(N) satisfies the same criterion as in Theorem 2.37, then

the discretisation error estimate (2.43) holds for the eigenfunctions φh
N and we have

the eigenvalue error estimate

|λ− λh
N | ≤ C

(
N−2 + log(N)h2

)
.

These results show that the solution of the discrete problem converges to the true

solution when the number of spatial and angular discretisation points tends to infinity.

The estimates also suggest that the optimal relation between h and N is

h = h(N) = N−1 .

We will therefore choose the number of spatial and angular points of the same magni-

tude for the numerical tests in this thesis.
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Iterative methods for criticality

computations

In the previous chapter we established the existence of a simple smallest positive real

eigenvalue λ of the criticality problem

(T − S)Ψ = λFΨ (3.1)

subject to vacuum boundary conditions (2.3), where the special form of the operators

T , S, and F from page 6 was given in Section 2.1.

This chapter now discusses iterative methods to compute the eigenvalue of interest.

The first section describes four such algorithms and introduces the concept of inexact

solves. Section 3.2 then provides a convergence analysis for the use of inexact inverse

iteration to compute the criticality of neutron transport problems of the form (2.2),

(2.3). This is done by exploiting the underlying symmetry of the problem that we have

observed in the previous chapter and by transferring recently developed techniques for

the analysis of matrix eigenvalue problems (in particular from [14]) to the continuous

eigenvalue problem (3.1).

In Section 3.3 we present two 1D model problems of different complexity and give

details of a discretisation which is used in our computations. The final section then

provides numerical results that support the convergence theory from Section 3.2.
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3.1 Description of iterative methods

In this section we describe four related iterative methods to compute the criticality of a

nuclear reactor. As discussed in Section 1.2, the criticality is determined by the smallest

positive real eigenvalue λ of the generalised eigenvalue problem (3.1). In the case of a

discretisation of the problem we are usually working with large sparse linear systems,

where so-called direct eigenvalue solvers (like the QR method), that approximate the

whole eigenvalue spectrum, are expensive or not feasible to use. On the other hand

matrix-vector multiplications can be performed efficiently for sparse matrices. Often

we also have other ways of “cheaply” applying the operators T , S, and F (for example

in the case of the method of characteristics (see Section 1.5) or by using Monte Carlo

techniques (see Chapter 4)) and we are, in general, only interested in one, i.e. the

smallest, eigenvalue. Therefore, we focus on so-called iterative methods in this thesis.

These methods consist of an outer iteration in which the eigenvalue approximation is

updated and where a linear (source) problem has to be solved. This solve is usually

done iteratively itself, leading to an inner iteration. In the following we will discuss

examples of these inner-outer iteration methods to solve the criticality problem (3.1).

Note that matrix free engineering techniques often only perform one (rough) inner

solve (without necessarily satisfying a stopping criterion based on the residual of the

source problem) before continuing the outer iteration. This is, for example, done in

CACTUS, a module in the WIMS code developed by the ANSWERS software group

of Serco Technical and Assurance Services1. The approach is based on the method of

characteristics and can be used to compute the reactor criticality. Another example,

where only one inner iteration is performed, is the version of the method of perturbation

which we will describe in Section 5.5.

For theoretical purposes we focus on iterative methods where the outer (eigenvalue)

iteration is separated from inner (source problem) iterations, and inner and outer toler-

ances are satisfied by the respective solvers. We now consider some well-known iterative

methods for eigenvalue problems and apply them to the criticality problem (3.1).

3.1.1 Power method

The most basic method for solving eigenvalue problems is the power method (e.g. [45,

91, 99]). In order to apply this to our criticality problem we formally transform (3.1)

1http://www.sercoassurance.com/answers/
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into the standard eigenvalue problem

(T − S)−1FΨ =
1

λ
Ψ . (3.2)

The power method consists now of iteratively applying the operator on the left of (3.2)

to the current eigenfunction approximation Ψ(i), followed by a normalisation of the

result to give the next iterate Ψ(i+1).

Algorithm 1 Power method

Require: Starting guess Ψ(0) .
for i=0,1,2,. . . do

Compute Ψ̃(i+1) = (T − S)−1FΨ(i) .
Obtain Ψ(i+1) by normalisation of Ψ̃(i+1) .

end for

The outer iteration in Algorithm 1 – and in all other algorithms in this chapter – is

stopped when the eigenvalue residual

res(i) := (T − S − ρ(i)F)Ψ(i) (3.3)

is sufficiently small in some suitable norm, where ρ(i) is the standard Rayleigh quotient

on L2(V × S
2) given by

ρ(i) =
〈Ψ(i), (T − S)Ψ(i)〉

〈Ψ(i),FΨ(i)〉 . (3.4)

The inner product 〈 · , · 〉 denotes again integration over all independent variables.

For the matrix case it is well known (e.g. [99, Theorem 4.1]) that this approach con-

verges to the eigenvector corresponding to the largest eigenvalue in modulus, provided

that (i) this eigenvalue is simple; (ii) the initial guess Ψ(0) contains a component in the

eigendirection; and (iii) the linear systems are solved exactly.

We proved in Section 2.3 that our smallest eigenvalue λ of (3.1) (which corresponds to

the largest 1/λ of (3.2)) is simple and has a corresponding eigenfunction that is strictly

positive in the interior of the reactor. Hence, when using a strictly positive starting

guess, the power method provides a suitable way of solving the criticality problem in

neutron transport theory.

Let λj denote now the different eigenvalues of (3.1), where λ1 < λ2 ≤ λ3 ≤ . . . . The

convergence of the power method in Algorithm 1 to the desired λ1 depends then on the

ratio λ1/λ2 (see, for example, the proof of Theorem 4.1 in [99] for the matrix case) and
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is very slow for problems with λ1 ≈ λ2 . However, the convergence can be improved

by using a shift that is close to the eigenvalue of interest.

This leads to our next method which was, according to [60], introduced in 1944

by Wielandt for computing eigenfunctions of linear operators [121] and subsequently

turned by Wilkinson into a numerical method for computing eigenvectors of matrices.

It is today generally called (shifted) inverse iteration [61], but in the context of Monte

Carlo methods for neutron transport problems it is still referred to as the “Wielandt

method” or “Wielandt acceleration” (e.g. [18, 125]).

3.1.2 Shifted inverse iteration

By applying the power method to the shifted problem (T − S − αF)Ψ = (λ− α)FΨ

and assuming that the shift α is chosen such that 0 < |λ1 − α| < |λ2 − α| ≤ |λj − α| ,
j > 2 , we obtain from Section 3.1.1 that this yields a method where the convergence

speed is determined by |λ1 − α|/|λ2 − α| . Hence, for an appropriately chosen shift

α, the convergence of this method can be faster than the standard power method.

This method, called shifted inverse iteration, provides an important tool in practical

applications as well as in the analysis of more complicated iterative eigenvalue methods

as we will see later.

If we are solving criticality problems for reactor safety computations, we expect the

desired smallest eigenvalue to be around unity and a fixed shift α = 1 can be applied.

Alternatively, a variable shift can be used. This is usually taken from a suitable eigen-

value approximation (e.g. a Rayleigh quotient) derived from Ψ(i), when Ψ(i) is rich in

a certain eigendirection. One option is to choose the shift to be the standard Rayleigh

quotient from (3.4). We will suggest an alternative choice for a non-standard Rayleigh

quotient shift in Lemma 3.4 below.

Algorithm 2 Shifted inverse iteration

Require: Starting guess Ψ(0) .
for i=0,1,2,. . . do

Define a shift α(i) .
Compute Ψ̃(i+1) such that (T − S − α(i)F)Ψ̃(i+1) = FΨ(i) .
Obtain Ψ(i+1) by normalisation of Ψ̃(i+1) .

end for

Note that the power method in Algorithm 1 can be interpreted as a special case of

shifted inverse iteration in Algorithm 2, where a fixed shift α(i) = 0 for all i is used.

As mentioned above the solutions of the linear systems which are to be solved within

53



Chapter 3. Iterative methods for criticality computations

the different methods are usually computed iteratively. This often leads to only approx-

imate solutions and we can formalise these inexact methods by replacing, for example,

the linear system

(T − S − α(i)F)Ψ̃(i+1) = FΨ(i)

in Algorithm 2 by the requirement to seek Ψ̃(i+1) such that

‖(T − S − α(i)F)Ψ̃(i+1) − FΨ(i)‖ ≤ τ (i) , (3.5)

where τ (i) is a given tolerance and ‖ · ‖ is a suitable norm.

Although standard iterative solvers often check the relative residual condition

‖(T − S − α(i)F)Ψ̃(i+1) − FΨ(i)‖
‖FΨ(i)‖ ≤ τ (i) ,

and not the absolute stopping criterion (3.5), we will restrict our theory to the case of

an absolute residual condition to simplify the analysis.

Inexact iterative methods applied to matrix eigenvalue problems of the form

Ax = λBx , A,B ∈ R
n×n , (3.6)

have received a large amount of attention in recent years and substantial progress

regarding the convergence analysis of these methods has been made. The paper [70],

for example, contains a proof for linear convergence of an inexact inverse iteration

method for non-Hermitian matrices A, B with diagonalisable B−1A, when a fixed shift

and decreasing tolerances for the inner problems are used. The technical proof expands

the iterates x(i) in terms of the eigenvectors of the problem and gives a condition on

the size of the inner tolerances which depends on the distance of the shift to the second

closest eigenvalue, an unknown quantity for most problems. The symmetric problem

has been considered in [107], where a geometric approach is used for the analysis.

A well-known orthogonal splitting (see e.g. [91, p. 63]) for a unit vector x(i) ∈ R
n

approximating the eigenvector e1 of (3.6) is

x(i) = c(i)e1 + s(i)u(i) ,

where Aej = λjBej , j = 1, . . . , n , u(i) ∈ span(e2, . . . , en) , e1⊥u(i) and ‖u(i)‖ = 1 .

Here s(i) = s(x(i)) and c(i) = c(x(i)) are the sine and cosine of the angle between e1

and the current iterate x(i). They satisfy (s(i))2 + (c(i))2 = 1 and are used to define
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the tangent t(i) := |s(i)|/|c(i)| . This splitting approach is, for example, employed in

[14] for the real symmetric eigenvalue problem

Ax = λx , A ∈ R
n×n .

The analysis presented covers the case of variable and fixed shifts, as well as the use

of fixed and decreasing tolerances for the inner solve. First a one-step bound on t(i+1)

is derived which is then applied to different choices of inner tolerances and shifts.

This results, for example, in cubic convergence if a Rayleigh quotient shift and certain

decreasing tolerances are used. Applying fixed inner tolerances the Rayleigh quotient

iteration is still shown to converge quadratically for this symmetric problem. We will

use similar ideas and a similar structure as in that paper in our convergence analysis

in Section 3.2.

The paper [16] extends the results from [70] for the problem (3.6) with a non-symmetric

matrix A but symmetric positive definite B to the case of variable shifts. The proof

uses the orthogonal splitting

x(i) = α(i)(c(i)e1 + s(i)u(i)) ,

where α(i) is a scalar defined by x(i). The analysis provides convergence results for

different shifts and inner tolerances, showing, for example, quadratic convergence for a

fixed shift and suitably decreasing tolerances.

Improvements of the bounds in [16] and generalisations of the analysis that do not

require B to be symmetric positive definite, or even non-singular, are given in [38].

The matrices in that paper are also allowed to be complex. The very general results

use a decomposition of the eigenvector approximations in terms of the exact eigenvector

e1 and a basis of an invariant subspace (see also [114, §4]).

Further papers that consider inexact inverse iteration and focus on the use of partic-

ular iterative solvers for the solution of the inner problems are, for example, [15] for

GMRES, [97] for the conjugate gradient method and [39] for MINRES. The paper [39]

also presents a tuned preconditioner which avoids the growth in the number of inner

iterations as the outer iteration proceeds.

A different approach, that does not use an eigenvector expansion or orthogonal splitting

employed by most other papers, is taken in [37]. There, convergence estimates of an

inexact inverse iteration algorithm are obtained using the relation between inverse

iteration and Newton’s method. The suggested shift strategy and normalisation given

in [37] allow a reformulation of inexact inverse iteration as a modified Newton’s method
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and it is shown that for decreasing tolerances τ (i) ≤ C‖res(i)‖∞ and a sufficiently

“good” starting guess the (local) quadratic convergence of Newton’s method can be

retained. If a fixed inner tolerance is chosen, the given algorithm converges linearly.

A block version of inverse iteration, called inverse subspace iteration, that aims to

compute an invariant subspace of a matrix, has been analysed in [95]. The arising

linear systems

(A− αI)X̃(i+1) = X(i) , A ∈ C
n×n , X(i), X̃(i+1) ∈ C

n×p

with fixed shift α are assumed to be solved inexactly. The paper gives conditions on

the tolerances for the inner solves which ensure that linear convergence is retained.

Furthermore, a tuning of the preconditioner for the block-GMRES inner solver is dis-

cussed that can avoid the increase in cost of the iterative solves as the outer iteration

proceeds even though the inner tolerances are decreasing.

3.1.3 Inverse correction

The method that we introduce in this section is called inverse correction. This has

been discussed, for example, in [96] and, as a form of inexact inverse iteration, in [46].

It is based on computing a correction ∆Ψ(i+1) to the current iterate Ψ(i), such that

Ψ̃(i+1) = Ψ(i) +∆Ψ(i+1) yields a better approximation to the true eigenfunction than

Ψ(i). In every iteration we have to solve the correction equation

(T − S − α(i)F)∆Ψ(i+1) = −res(i) , (3.7)

where the eigenvalue residual res(i) is given by (3.3).

It is important that the shift α(i) is not exactly the Rayleigh quotient ρ(i) which is used

for the computation of the residual res(i). Otherwise (3.7) becomes

(T − S − ρ(i)F)∆Ψ(i+1) = −(T − S − ρ(i)F)Ψ(i) ,

and for exact solves this results in ∆Ψ(i+1) = −Ψ(i) . Computing Ψ̃(i+1) = Ψ(i) +

∆Ψ(i+1) then leads to Ψ̃(i+1) becoming zero. In [96] a shift that is a slight perturbation

of the Rayleigh quotient (e.g. α(i) = 0.95ρ(i) ) is suggested.

This method is closely related to inverse iteration with shift as the next lemma shows.

To avoid confusion we denote the solution of the linear system in Algorithm 2 (inverse

iteration) by Ψ̃
(i+1)
II and the next iterate before normalisation in Algorithm 3 (inverse

correction) by Ψ̃
(i+1)
IC = Ψ(i) +∆Ψ(i+1) .
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Algorithm 3 Inverse correction

Require: Starting guess Ψ(0) .
for i=0,1,2,. . . do

Compute the residual res(i) = (T − S − ρ(i)F)Ψ(i) .
Define a shift α(i) .
Compute ∆Ψ(i+1) such that (T − S − α(i)F)∆Ψ(i+1) = −res(i) .
Define Ψ̃(i+1) = Ψ(i) +∆Ψ(i+1) .
Obtain Ψ(i+1) by normalisation of Ψ̃(i+1) .

end for

Lemma 3.1. Suppose Algorithms 2 and 3 use the same shifts α(i) with α(i) 6= ρ(i) .

Furthermore, assume the linear systems are solved exactly and the same normalisation

is applied. Then the algorithms produce, up to a different sign, the same iterates.

Proof. The next iterate of Algorithm 3 is computed from

Ψ̃
(i+1)
IC = Ψ(i) +∆Ψ(i+1)

= Ψ(i) − (T − S − α(i)F)−1(T − S − ρ(i)F)Ψ(i)

= Ψ(i) − (T − S − α(i)F)−1[(T − S − α(i)F)Ψ(i) + (α(i) − ρ(i))FΨ(i)]

= (ρ(i) − α(i))(T − S − α(i)F)−1FΨ(i)

= (ρ(i) − α(i))Ψ̃
(i+1)
II .

If in both methods the same normalisation is used, we therefore get

Ψ
(i+1)
IC =

Ψ̃
(i+1)
IC

‖Ψ̃(i+1)
IC ‖

=
ρ(i) − α(i)

|ρ(i) − α(i)|
Ψ̃

(i+1)
II

‖Ψ̃(i+1)
II ‖

= ±Ψ
(i+1)
II .

Hence Algorithms 2 and 3 produce the same iterates up to a different sign.

Section 3.5 of the thesis [13] considers the relation between inverse iteration and inverse

correction for inexact solves. Lemma 3.14 in that thesis provides conditions for the

standard eigenvalue problem under which it is shown that the iterates of inexact inverse

correction are contained in a set of solutions to the linear problems of inexact inverse

iteration with an adjusted inner tolerance. Using the convergence theory for inverse

iteration derived earlier in the thesis, it is then shown that inexact inverse correction

converges to the desired eigenvalue.

We consider variations of Algorithms 2 and 3 in Section 5.2 of this thesis, where we

show (in agreement with the result in [13]) that there exists an equivalence between
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the inexact forms of the two methods, provided that the inner tolerances are adjusted

in a certain way. For further details about inexact inverse correction and its efficiency

we refer the reader to [13, §3.5].

A recent method that follows the idea of inverse correction to generate a fast algorithm

for the simultaneous computation of p eigenvalues and eigenvectors of the complex

matrix eigenvalue problem

Ax = λBx , A,B ∈ C
n×n

has been discussed in [124]. The new approach consists of a two-phase strategy for

solving the inner block linear systems

AX̃(i+1) = BX(i) , X(i), X̃(i+1) ∈ C
n×p (3.8)

by applying a tuned preconditioner (which changes in every outer iteration) to perform

one single block-GMRES step and thereby obtain an approximate solution X̃
(i+1)
1 to

(3.8). Then the correction equation

A∆X(i+1) = BX(i) −AX̃
(i+1)
1 (3.9)

is solved iteratively (second phase of the inner iteration process) using a fixed precon-

ditioner until X̃(i+1) = X̃
(i+1)
1 +∆X(i+1) satisfies the stopping criterion for the inner

solve. This approach allows further strategies to reduce the costs for the inner solve

(such as obtaining a special starting vector for (3.9) as a linear combination of previous

solutions).

3.1.4 Simplified Jacobi-Davidson

Another approach that follows the idea of computing a correction to the current iterate

is the Jacobi-Davidson method (see e.g. [105, 106]). It additionally demands that the

correction is orthogonal to the space that is spanned by all previous iterates. The

simplified Jacobi-Davidson method reduces this requirement by enforcing orthogonality

only to the current iterate.

The latter approach is also known as the Newton-Grassmann method and is, for ex-

ample, discussed in [104]. There it is proved that, for the standard eigenvalue problem

with Hermitian matrices, this method is equivalent to Rayleigh quotient iteration if no

preconditioner and exact solves of the linear problem are used. This equivalence also

holds for inexact solves with the same Galerkin-Krylov subspace method (e.g. the CG
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method). The paper [40] remarks that the result also extends to the non-Hermitian

case of the standard eigenvalue problem. In addition [40] presents a tuning for the

preconditioner of the Rayleigh quotient iteration using which it is shown that the two

methods are equivalent even if preconditioned inexact solves are performed.

An extension to generalised eigenvalue problems is given in [38, 41], where the link

between Rayleigh quotient iteration and the simplified Jacobi-Davidson method is ex-

ploited to obtain convergence results for the latter. The reference [38] also provides a

sample algorithm (Algorithm 6.1 in [38]) which we adapted to our criticality problem

(3.1) to obtain Algorithm 4.

Algorithm 4 Simplified Jacobi-Davidson

Require: Starting guess Ψ(0) .
for i=0,1,2,. . . do

Compute the residual res(i) = (T − S − ρ(i)F)Ψ(i) .

Define a shift α(i) and projections Q(i)
l and Q(i)

r so that for all g ∈ L2(V, L1(S2))

Q(i)
l g = g − 〈g,FΨ(i)〉

〈FΨ(i),FΨ(i)〉(FΨ(i)) and Q(i)
r g = g − 〈FΨ(i),Fg〉

〈FΨ(i),FΨ(i)〉Ψ
(i) .

Compute ∆Ψ(i+1) such that Q(i)
l (T − S − α(i)F)Q(i)

r ∆Ψ(i+1) = −res(i) .

Define Ψ̃(i+1) = Ψ(i) +∆Ψ(i+1) .
Obtain Ψ(i+1) by normalisation of Ψ̃(i+1) .

end for

The orthogonal projections Q(i)
l and Q(i)

r in Algorithm 4 are used to find a solution

∆Ψ(i+1) such that 〈F∆Ψ(i+1),FΨ(i)〉 = 0 , i.e. that F∆Ψ(i+1) is orthogonal to FΨ(i).

A review of the Jacobi-Davidson method including recent developments is given in

[58]. The Jacobi-Davidson method has also lately been applied to compute generalized

singular values and singular vectors of large sparse matrices (see [57]).

Numerical comparison of the iterative methods

Tables 3.1 and 3.2 now show numerical results for the four iterative methods described

above when applied to a discretisation of the control rod insertion model problem which

we will describe in Section 3.3.2. The resulting generalised matrix eigenvalue problem

is non-symmetric with a singular right-hand side. The first and second column of the

table contain the name of the method and the shift that is applied. As remarked above

the power method can be considered as an application of inverse iteration with a fixed

shift α(i) = 0 .

The columns “outer” and “inner” denote the number of outer iterations needed for

the solution of the eigenvalue problem and the average number of iterations that were
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needed to solve the inner source problems. The final column contains the average

computing time of the method taken from 10 consecutive runs.

For the inner solves we used the GMRES function in MATLAB with an LU factorisation

of the matrix representing the transport operator T as preconditioner. In the first test

the tolerance for the inner solves is fixed to τ0 = 10−14 . This is also used as outer

tolerance.

When applying the preconditioner in the simplified Jacobi-Davidson method, we need

to take care to also apply the matrix equivalents of the orthogonal projections Q(i)
l and

Q(i)
r , i.e.

Q
(i)
l = I − (FΨ(i))(FΨ(i))T

(FΨ(i))T (FΨ(i))
and Q(i)

r = I − Ψ(i)(FΨ(i))TF

(FΨ(i))T (FΨ(i))
,

correctly to the preconditioner. To achieve this we have to adjust the GMRES function

in MATLAB for this case. Details about the orthogonalisation of the preconditioner

for the standard eigenvalue problem are given in [40] and [9, §4].

α(i) outer inner time

Power method (inverse iteration) 0 6 22 28.4

Inverse iteration 1 4 23 23.3

Inverse iteration ρ(i) 3 26 21.3

Inverse correction 1 4 26 23.7

Inverse correction 0.95ρ(i) 4 27 23.8

Simplified Jacobi-Davidson 1 4 25 21.4

Simplified Jacobi-Davidson ρ(i) 3 19 18.7

Table 3.1: Comparison of the numerical methods in Algorithms 1 to 4 for a fixed inner
tolerance τ0 = 10−14 applied to the control rod problem presented in Section 3.3.2.

The results in Table 3.1 show that all methods need very similar numbers of inner and

outer iterations when the linear systems are solved almost exactly. However, when

solving the inner systems only inexactly, we obtain different results as seen in Table

3.2. The tolerance for the (outer) eigenvalue residual remained 10−14 while the inner

tolerances were increased to τ0 = 0.1 .

The power method and inverse iteration with a fixed shift α(i) = 1 failed to converge in

this case while the number of outer iterations for the other methods increased. Rayleigh

quotient iteration needed the smallest number of outer iterations but with an average

of 14 inner iterations the inner solver had to work hardest. The correction based

approaches (inverse correction and simplified Jacobi-Davidson) only needed on average

four inner iterations to satisfy the stopping criterion. The reason for this appears to
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α(i) outer inner time

Power method (inverse iteration) 0 - - -

Inverse iteration 1 - - -

Inverse iteration ρ(i) 6 14 22.7

Inverse correction 1 13 4 30.2

Inverse correction 0.95ρ(i) 12 4 29.0

Simplified Jacobi-Davidson 1 13 4 22.1

Simplified Jacobi-Davidson ρ(i) 9 4 20.0

Table 3.2: Comparison of the numerical methods in Algorithms 1 to 4 applied to the control
rod problem from Section 3.3.2 using a fixed inner tolerance τ0 = 0.1 .

be that the default starting vector for the inner solver in GMRES is the zero vector

which provides a good initial guess to the solution of the correction equation.

In the next section we give a convergence analysis for the operator case of inexact

inverse iteration for the criticality problem.

3.2 Convergence theory for inexact inverse iteration

The key to analysing the convergence properties of iterative methods for the criticality

problem as described in Section 2.1, is to use the link of the non-symmetric problem

(2.2) for the angular flux to the self-adjoint scalar flux problem (2.12). We can then

take a similar approach to the one in [14] to obtain convergence results for inexact

inverse iteration.

Note that we are working here with operators on infinite dimensional function spaces

whereas [14], and the other references mentioned in Section 3.1, considered the case of

finite-dimensional matrices. Fortunately, due to Kσ being self-adjoint and compact on

L2(V ), we have analogous tools to the case in [14] at our access.

Using that the eigenfunctions {ej}∞j=1 of Kσ, which we introduced in Section 2.2.3,

form an orthonormal basis of L2(V ), we can write any φ ∈ L2(V ) as

φ =
∞∑

j=1

ξj(φ)ej , (3.10)

where ξj(φ) = (φ, ej)L2(V ) . Parseval’s equality gives that

‖φ‖2L2(V ) =
∞∑

j=1

|ξj(φ)|2 = c(φ)2 + s(φ)2 , (3.11)
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where c(φ) := |ξ1(φ)| and s(φ)2 :=
∑∞

j=2 |ξj(φ)|2 . Analogous to the finite dimen-

sional case s(φ) and c(φ) can be interpreted as generalised sine and cosine of the angle

between φ and e1. Finally, we define the generalised tangent t(φ) := s(φ)/c(φ) , which

we will use to estimate the convergence of the iterative method. Note that if φ → e1 ,

then s(φ) → 0 and c(φ) → 1 , so that t(φ) → 0 .

In Algorithm 5 we present inexact inverse iteration for the criticality problem (3.1).

When approximately solving the linear system for the next iterate (step (†) below),

we measure the residual of the linear system using the following scalar quantity. For

v ∈ L2(V, L∞(S2)) we set

‖v‖∗ = ‖PT −1v‖L2(V ) , (3.12)

which is well-defined by Lemma 2.1. Moreover, Lemma 2.3 tells us that if v(r,Ω) =

v(r) , for all (r,Ω) ∈ V × S
2 , we have ‖v‖∗ = ‖Kσv‖L2(V ) , so that ‖ · ‖∗ acts as a

norm on the subspace of all functions in L2(V, L∞(S2)) that are constant with respect

to their second argument.

Algorithm 5 Inexact shifted inverse iteration

Require: Starting guess Ψ(0) .
for i=0,1,2,. . . do

Choose a shift α(i) and an inner tolerance τ (i) ≥ 0 .
Compute Ψ̃(i+1) such that ‖(T − S − α(i)F)Ψ̃(i+1) − FΨ(i)‖∗ ≤ τ (i) . (†)
Normalise Ψ(i+1) = Ψ̃(i+1)/‖PΨ̃(i+1)‖L2(V ) .

end for

In this algorithm we implicitly require Ψ(i), Ψ̃(i) ∈ L2(V, L1(S2)). A simple application

of Lemma 2.3 proves the following lemma.

Lemma 3.2. If Ψ̃(i) and Ψ(i) are computed by Algorithm 5, and if we introduce the

corresponding scalar fluxes φ̃(i) := PΨ̃(i) and φ(i) := PΨ(i) , then

‖(I − (σs + α(i)νσf )Kσ)φ̃
(i+1) − νσfKσφ

(i)‖L2(V ) ≤ τ (i) , and (3.13)

φ(i+1) =
φ̃(i+1)

‖φ̃(i+1)‖L2(V )

. (3.14)

Thus, when Ψ(i) is close to an eigenfunction corresponding to the minimal eigenvalue

of (1.4), then φ(i) is predominantly in the direction e1 and t(φ(i)) will be close to zero.

The following theorem gives a mechanism for bounding t(φ(i+1)) . This theorem will

be used in Corollaries 3.5 and 3.6 to obtain convergence properties of several variants

of Algorithm 5. For convenience we will discuss an abstract version of (3.13), (3.14)

where the superscripts are suppressed.
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Theorem 3.3. Suppose s(φ) 6= 0 ,

‖(I − (σs + α νσf )Kσ)φ̃ − νσfKσφ‖L2(V ) ≤ τ , (3.15)

and set φ′ =
φ̃

‖φ̃‖L2(V )

. (3.16)

Then, if τ < νσfω1c(φ) , we have with constant C1 = 1/(νσfω2) ,

t(φ′) ≤
(
s(φ) + C1 τ

c(φ)− C1 τ

) ∣∣∣∣
λ1 − α

λ2 − α

∣∣∣∣ . (3.17)

Proof. To make the notation simpler, we set, without loss of generality, ν = 1 in the

proof. First observe that if φ̃ = 0 in (3.15), then, since s(φ) 6= 0 , we have

τ ≥ σf‖Kσφ‖L2(V ) = σf

{ ∞∑

j=1

ω2
j |ξj(φ)|2

}1/2

> σfω1c(φ) ,

which contradicts the assumption. So φ̃ 6= 0 and the normalisation (3.16) is well-

defined.

To obtain the bound on t(φ′) , set

R := (I − (σs + ασf )Kσ)φ̃ − σfKσφ . (3.18)

Because the (ωj , ej) are eigenpairs of Kσ, we have (using (3.10), (3.16) and (2.24)),

for all j ≥ 1 ,

ξj(R) =
(
(I − (σs + ασf )Kσ)φ̃ − σfKσφ, ej

)
L2(V )

= (1− (σs + ασf )ωj)ξj(φ̃)− σfωjξj(φ)

= (1− σsωj − ασfωj)‖φ̃‖L2(V )ξj(φ
′)− σfωjξj(φ)

= σfωj

[
‖φ̃‖L2(V )(λj − α)ξj(φ

′)− ξj(φ)
]
. (3.19)

Now using (3.11) and (3.15), we have

τ ≥ ‖R‖L2(V ) ≥ |ξ1(R)| ≥ σfω1

[
c(φ)− ‖φ̃‖L2(V ) |λ1 − α| c(φ′)

]
,

and a rearrangement of this yields,

1

c(φ′)
≤
(

σfω1

σfω1c(φ)− τ

)
|λ1 − α| ‖φ̃‖L2(V ) . (3.20)
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On the other hand, rearranging (3.19) gives for j ≥ 2

ξj(φ
′)‖φ̃‖L2(V ) =

(
1

λj − α

)[
ξj(R)

σfωj
+ ξj(φ)

]
. (3.21)

Now recall (2.24) which leads with ν = 1 to

σfωj(λj − α) = 1− (σs + σfα)ωj .

As ωj tends to zero, this shows that σfωj(λj − α) increases with j (as does λj − α ).

We can now square (3.21), sum over j = 2, . . . ,∞ , take the square root and use the

triangle inequality for the Euclidean norm to get

s(φ′)‖φ̃‖L2(V ) =




∞∑

j=2

∣∣∣∣
ξj(R)

σfωj(λj − α)
+

ξj(φ)

λj − α

∣∣∣∣
2



1/2

≤ 1

σfω2|λ2 − α|




∞∑

j=2

|ξj(R)|2



1/2

+
1

|λ2 − α|




∞∑

j=2

|ξj |2



1/2

,

where we used the decrease of |λj − α|−1 and |σfωj(λj − α)|−1 . Applying (3.15),

recalling the definition of R in (3.18) and of s(φ), we then obtain

s(φ′)‖φ̃‖L2(V ) ≤ 1

|λ2 − α|

(
τ

σfω2
+ s(φ)

)
. (3.22)

Finally, by rearranging the product of (3.20) and (3.22), and using the definition of C1,

we obtain the result.

The estimate (3.17) contains a great deal of information about the convergence of

Algorithm 5. For example, if α(i) converges quadratically to λ1, then, with a fixed

choice of τ (i) = τ0 (satisfying the assumption of Theorem 3.3), the algorithm will

converge quadratically. We define a possible candidate for α(i) in the following lemma.

Lemma 3.4. Given Ψ(i) ∈ L2(V, L1(S2)) , consider the non-standard Rayleigh quotient

ρ̃(i) :=
(PΨ(i),PT −1(T − S)Ψ(i))L2(V )

(PΨ(i),PT −1FΨ(i))L2(V )

=
(φ(i), (I − σsKσ)φ

(i))L2(V )

(φ(i), νσfKσφ(i))L2(V )

. (3.23)

This satisfies the estimate

ρ̃(i) = λ1 + O(s(φ(i))2) . (3.24)
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Proof. We write

φ(i) = c(φ(i))e1 + s(φ(i))u(i) , (3.25)

where ‖u(i)‖L2(V ) = 1 and (u(i), e1)L2(V ) = 0 . Now using (2.24), we see that

ρ̃(i) =
(1− σsω1) c(φ

(i))2 + O(s(φ(i))2)

νσfω1 c(φ(i))2 + O(s(φ(i))2)
= λ1 + O(s(φ(i))2) ,

which proves the estimate (3.24).

Using Theorem 3.3 and Lemma 3.4, we obtain the following convergence result for

Algorithm 5.

Corollary 3.5. Suppose that for every step in Algorithm 5 the conditions of Theorem

3.3 are satisfied and the shift α(i) = ρ̃(i) (Rayleigh Quotient Iteration) is applied. Then

t(φ(i+1)) ≤
(
s(φ(i)) + C1 τ

(i)

c(φ(i))− C1 τ (i)

)∣∣∣∣
C2

λ2 − λ1

∣∣∣∣ t(φ(i))2 , C2 constant .

Hence, Algorithm 5 converges quadratically. The convergence rate is even cubic if the

tolerances decrease with rate

τ (i) ≤ C3s(φ
(i)) , C3 constant , (3.26)

or if the linear systems are solved exactly.

On the other hand, using (3.17) for a fixed shift and decreasing tolerances, we get the

following corollary.

Corollary 3.6. If in every iteration of Algorithm 5 the conditions of Theorem 3.3 are

met and fixed shifts α(i) = α0 , as well as tolerances satisfying (3.26) are used, then

for small enough C3 in (3.26)

t(φ(i+1)) ≤
(

1 + C1C3

1− C1C3t(φ(i))

) ∣∣∣∣
λ1 − α0

λ2 − α0

∣∣∣∣ t(φ(i)) .

Hence, provided the shift α0 is close enough to λ1, we obtain linear convergence of the

algorithm.

Note that this analysis gives no guarantee that Algorithm 5 converges when we use a

fixed shift and constant tolerances. We investigate this question numerically in Section

3.4. Furthermore, to satisfy the condition (3.26), we can use the following lemma.
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Lemma 3.7. If we choose the tolerances such that

τ (i) ≤ ‖r̃es(i)‖∗ ,

where r̃es(i) := (T − S − ρ̃(i)F)Ψ(i) , then τ (i) satisfies the estimate (3.26).

Proof. Using the definitions of the residual r̃es(i) and the ∗-norm we have

‖r̃es(i)‖∗ = ‖PT −1(T − S − ρ̃(i)F)Ψ(i)‖L2(V )

= ‖(I − σsKσ − ρ̃(i)νσfKσ)φ
(i)‖L2(V )

≤ ‖(I − σsKσ − λ1νσfKσ)φ
(i)‖L2(V ) + ‖(λ1 − ρ̃(i))νσfKσφ

(i)‖L2(V ) . (3.27)

For the first term in (3.27) we obtain by applying the orthogonal splitting (3.25) to φ(i)

and using that (I − σsKσ)e1 = λ1νσfKσe1

‖(I − σsKσ − λ1νσfKσ)(c(φ
(i))e1 + s(φ(i))u(i))‖L2(V ) = C4s(φ

(i)) ,

where C4 = ‖(I − σsKσ − λ1νσfKσ)u
(i)‖L2(V ) . The second term in (3.27) can be

estimated using Lemma 3.4 which gives

|ρ̃(i) − λ1|‖νσfKσφ
(i)‖L2(V ) = O(s(φ(i))2) .

Inserting these two results into (3.27), we obtain, for an appropriately chosen C3,

equation (3.26).

The above analysis will also extend to other iterative methods such as Jacobi-Davidson

type methods using techniques applied, for example, in [36, 38, 40].

Remark 3.8. Note that the convergence analysis in this section is given only for the

continuous problem (1.4). However, it provides a guide to how iterations behave in dis-

crete cases as we will see in Section 3.4, where we investigate two 1D model problems of

different complexity. We emphasise here that the obtained numerical solutions contain

a discretisation error (which was briefly discussed in Section 2.4.3). We do not inves-

tigate this difference between the solution of the discrete problem and the continuous

solution further in this thesis.
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3.3 Model problems for numerical computations

The model problems we consider here are criticality computations in one-dimensional

slab geometry. An example of such a geometry is given in Figure 3.3.

fuel region absorber region

x

y

z
0

L

Figure 3.3: Slab reactor (infinite and homogeneous in x- and y-direction) with fuel and ab-
sorber region.

The neutron flux Ψ is then a function of z, E and µ = cos θ only, where θ denotes the

angle between the z-axis and the flux direction Ω (see Figure 2.1).

For this geometry the eigenvalue problem (1.5) reduces to

µ
∂Ψ(z, E, µ)

∂z
+ σ(z, E)Ψ(z, E, µ)

− 1

2

∫ ∞

0

∫ 1

−1
σs(z, E

′, E, µ′, µ)Ψ(z, E′, µ′) dµ′ dE′

= λ
χ(E)

2

∫ ∞

0
ν(z, E′)σf (z, E

′)
∫ 1

−1
Ψ(z, E′, µ′) dµ′ dE′ .

(3.28)

We now describe two slab model problems of different complexity.

3.3.1 Model problem from the Los Alamos benchmark test set

This model problem is taken from a collection of benchmark tests [109, 110] produced

at Los Alamos National Laboratory. The test set contains several benchmark problems

with analytic eigenvalue solutions to the neutron transport equation in 1D geometries

which are taken from peer-reviewed journal articles.
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The problem that we consider here (number 2 of the benchmark test set) is a slab

reactor with only one homogeneous region. The energy dependence is removed by

assuming that all neutrons are of the same speed (monoenergetic case, see (1.16)) and

isotropic scattering is considered. In this case all cross-sections reduce to constants and

equation (3.28) simplifies to

µ
∂Ψ(z, µ)

∂z
+ σΨ(z, µ) =

σs
2

∫ 1

−1
Ψ(z, µ′) dµ′ + λ ν

σf
2

∫ 1

−1
Ψ(z, µ′) dµ′ .

The test problem uses vacuum boundary conditions and is therefore an example of the

1D problem (2.4), (2.5). Further specifications of the problem are given in Table 3.4.

σ σs σf ν

0.32640 0.225216 0.081600 3.24

slab length: L = 3.707444cm

Table 3.4: Data for the problem from the Los Alamos benchmark test set (problem number 2).

3.3.2 Control rod insertion model problem

This model problem simulates the insertion of a control rod into the core of a nuclear

reactor. Usually the cells of a reactor are arranged in a lattice structure or in rings

surrounding a central pin. In order to simulate the existence of neighbouring identical

cells in 1D, we consider half of a cell and enforce reflective boundary conditions.

The reflective boundary conditions demand in the 1D case that the flux for the incoming

angle represented by µ is the same as the outgoing flux for the angle represented by

−µ. Hence, with V = [0, L] and E denoting the energy, the boundary conditions for

this problem are

Ψ(0, E, µ) = Ψ(0, E,−µ) , ∀ µ > 0 ,

Ψ(L,E, µ) = Ψ(L,E,−µ) , ∀ µ < 0 .
(3.29)

We model the problem as a slab reactor with two regions (see Figure 3.5). The only

variation in material properties is in the z-direction. The first part of the slab contains

the fuel region, a homogenised mix of fuel (typically uranium or plutonium), water and

cladding. The second part, the absorber region, models the control rod and consists

of a homogenised mix of the absorber material in the control rod and the remaining

water if the control rod is not fully inserted.
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fuel
control
rod

x

y zz = 0 z = L

Figure 3.5: Criticality computations on large lattice structures can be done approximately
by treating them as infinite lattices and modelling a part of them (highlighted) using reflective
boundary conditions at the sides.

Depending on the insertion depth of the rod the ratio of absorber to water varies and

therefore the material properties in the absorber region change. These are determined

by the cross-sections σ, σs and σf as well as the neutron yield ν and the fission neutron

distribution χ. Within each region we assume the material cross-sections to be constant.

The energy spectrum of the model problem is constrained to two groups, i.e. neutrons

of high and low energy, corresponding to the angular fluxes Ψh and Ψl, so that (3.28)

can be written as a system of two equations. We assume isotropic scatter and use the

corresponding group cross-sections (for example σs,h→l(z) denotes the probability of a

scatter from the high to the low energy group). We obtain two equations which we can

write in the vector format

µ
∂

∂z

(
Ψh(z, µ)

Ψl(z, µ)

)
+

(
σh(z) 0

0 σl(z)

)(
Ψh(z, µ)

Ψl(z, µ)

)

−
(
σs,h→h(z) σs,l→h(z)

σs,h→l(z) σs,l→l(z)

)
1

2

∫ 1

−1

(
Ψh(z, µ

′)

Ψl(z, µ
′)

)
dµ′

= λ

(
χhνh(z)σf,h(z) χhνl(z)σf,l(z)

χlνh(z)σf,h(z) χlνl(z)σf,l(z)

)
1

2

∫ 1

−1

(
Ψh(z, µ

′)

Ψl(z, µ
′)

)
dµ′ .

(3.30)

3.3.3 Discrete ordinates discretisation for the control rod problem

We now describe details of the application of the discrete ordinates approach from

Section 2.4.1 to the control rod problem from Section 3.3.2, where the first discretisation

with respect to the energy has already been included to arrive at the two-group equation

(3.30). We now consider the further steps to arrive at a fully discrete matrix eigenvalue

problem.

First, we apply a Gauss-Legendre quadrature with 2N points {µk} ⊂ [−1, 1]\{0} , and
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weights {wk} with k = −N, . . . ,−1 and k = 1, . . . , N to approximate

∫ 1

−1
f(µ)dµ ≈

N∑

|k|=1

wkf(µk) .

Applying the angular discretisation and evaluating the resulting semidiscrete problem

at the different quadrature points µk, |k| = 1, . . . , N , gives the following system of 4N

ordinary differential equations:

µk
d

dz

(
Ψh(z, µk)

Ψl(z, µk)

)
+

(
σh(z) 0

0 σl(z)

)(
Ψh(z, µk)

Ψl(z, µk)

)

−
(
σs,h→h(z) σs,l→h(z)

σs,h→l(z) σs,l→l(z)

)
N∑

|i|=1

wi

(
Ψh(z, µi)

Ψl(z, µi)

)

= λ

(
χhνh(z)σf,h(z) χhνl(z)σf,l(z)

χlνh(z)σf,h(z) χlνl(z)σf,l(z)

)
N∑

|i|=1

wi

(
Ψh(z, µi)

Ψl(z, µi)

)
.

(3.31)

We now choose spatial mesh points zj , j = 0, . . . ,M , such that the material boundaries

(i.e. the jumps in the piecewise constant cross-sections) coincide with mesh points, and

introduce the shorthand notation

Ψj,k
h = Ψh(zj , µk) and Ψj,k

l = Ψl(zj , µk) .

A fully discrete approximation of (3.30) can then be constructed by approximat-

ing the spatial derivative in (3.31) using a Crank-Nicolson scheme on the intervals

Ij := [zj−1, zj ] , j = 1, . . . ,M , with lengths hj := zj − zj−1 (see also page 44). We ap-

proximate the material properties by their value at the interval midpoints z̄j :=
zj−1+zj

2

and obtain

[
hj
2

(
σh(z̄j) 0

0 σl(z̄j)

)
− µkI2

](
Ψj−1,k

h

Ψj−1,k
l

)

+

[
hj
2

(
σh(z̄j) 0

0 σl(z̄j)

)
+ µkI2

](
Ψj,k

h

Ψj,k
l

)

− hj
2

(
σs,h→h(z̄j) σs,l→h(z̄j)

σs,h→l(z̄j) σs,l→l(z̄j)

)
N∑

|i|=1

wi

[(
Ψj,i

h

Ψj,i
l

)
+

(
Ψj−1,i

h

Ψj−1,i
l

)]

= λ
hj
2

(
χhνh(z̄j)σf,h(z̄j) χhνl(z̄j)σf,l(z̄j)

χlνh(z̄j)σf,h(z̄j) χlνl(z̄j)σf,l(z̄j)

)
N∑

|i|=1

wi

[(
Ψj,i

h

Ψj,i
l

)
+

(
Ψj−1,i

h

Ψj−1,i
l

)]
.

(3.32)

70



Chapter 3. Iterative methods for criticality computations

This holds for j = 1, . . . ,M and |k| = 1, . . . , N , and therefore we have 4MN equa-

tions which contain 4(M + 1)N unknowns (2 energy groups, 2N angles and M + 1

spatial points). They can be written as a large matrix-vector system which is currently

underdetermined.

However, the boundary conditions (3.29) yield 4N additional conditions (2N for each

of the two energy groups) which allow us to remove the same number of unknowns

from the system since

(Ψ0,N
h , . . . ,Ψ0,1

h )T = (Ψ0,−N
h , . . . ,Ψ0,−1

h )T ,

(ΨM,−1
h , . . . ,ΨM,−N

h )T = (ΨM,1
h , . . . ,ΨM,N

h )T ,

(Ψ0,N
l , . . . ,Ψ0,1

l )T = (Ψ0,−N
l , . . . ,Ψ0,−1

l )T , and

(ΨM,−1
l , . . . ,ΨM,−N

l )T = (ΨM,1
l , . . . ,ΨM,N

l )T .

Using the 4MN equations and 4MN unknowns, we can set up the corresponding

matrices. We represent the first two rows (the transport part) of (3.32) by a matrix

T , the scattering part by S and the right-hand side (the fission source) by a matrix F .

The vector of unknowns is denoted by Ψ, where we define

Ψ := (Ψ0
h, . . . ,Ψ

j
h, . . . ,Ψ

M
h ,Ψ0

l , . . . ,Ψ
j
l , . . . ,Ψ

M
l )T

and

Ψ0
h := (Ψ0,−1

h , . . . ,Ψ0,−N
h )T ,

Ψ
j
h := (Ψj,N

h , . . . ,Ψj,1
h ,Ψj,−1

h , . . . ,Ψj,−N
h )T , j = 2, . . . ,M − 1 ,

ΨM
h := (ΨM,N

h , . . . ,ΨM,1
h )T ,

Ψ0
l := (Ψ0,−1

l , . . . ,Ψ0,−N
l )T ,

Ψ
j
l := (Ψj,N

l , . . . ,Ψj,1
l ,Ψj,−1

l , . . . ,Ψj,−N
l )T , j = 2, . . . ,M − 1 , and

ΨM
l := (ΨM,N

l , . . . ,ΨM,1
l )T .

The shortened vectors for the boundary points ( j = 0 and j = M ) result from the

use of the boundary conditions to reduce the number of unknowns. The ordering of

the entries in Ψ is visualised in Figure 3.6

We obtain the generalised matrix eigenvalue problem

(T − S)Ψ = λFΨ ,
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−1

−2

1
1

2

2

3 4 5 6 7 8

M

N

Figure 3.6: Ordering of the flux elements in the vector Ψ with respect to the spatial and
angular mesh points.

where the matrix T has the structure

T =

(
Th 0

0 Tl

)
,

with Th and Tl being sparse matrices with only one upper and one lower diagonal.

The matrices S and F have a block format with equal rows in each block. In practice,

instead of setting them up explicitly, we exploit their simple structure to compute

efficient matrix vector products.

3.4 Numerical results for criticality computations

We now consider numerical experiments for the two model problems from Section 3.3

using inexact inverse iteration as described in Algorithm 5.

3.4.1 Los Alamos benchmark test set problem

Our first numerical tests are performed using the Los Alamos problem from Section

3.3.1. To obtain a discrete matrix eigenvalue problem we apply a Gauss-Legendre

quadrature with 2N quadrature points on [−1, 1] . The spatial discretisation uses the

Euler scheme described in Section 2.4.2 with M + 1 mesh points, which preserves

the symmetry under reduction to the scalar flux. We also apply a Crank-Nicolson

scheme for the spatial approximation and will see that this does not preserve the

underlying symmetry. Note that none of our matrices T , S, and F itself is symmetric.

Furthermore, we will see that the symmetry preserving Euler scheme only achieves a

faster convergence rate if we choose the non-standard Rayleigh quotient ρ̃ as shift.
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The continuous problem has a dominant eigenvalue of λ1 = 1 (see [109, 110]). We

note again that we ignore the discretisation error in the numerical results and focus

on the convergence rate of the iterative scheme by considering the discrete eigenvalue

residual. We use M = 128 equally sized spatial intervals and 2N = 128 angular Gauss

points leading to non-symmetric generalised matrix eigenvalue problems of dimension

16384×16384. The eigenvalues nearest zero of the discrete problems are λEul
1 ≈ 0.99570 ,

λEul
2 ≈ 2.60907 and λCN

1 ≈ 1.00003 , λCN
2 ≈ 2.60530 . Our stopping criterion for the

outer iteration is ‖res(i)‖2 < 10−14 , where res(i) := (T − S − ρ(i)F )Ψ(i) with T , S,

F , and Ψ being the discrete versions of T , S, F , and Ψ, respectively. The eigenvalue

approximation is given by the standard Rayleigh quotient

ρ(Ψ(i)) :=
〈Ψ(i), (T − S)Ψ(i)〉

〈Ψ(i), FΨ(i)〉 , (3.33)

where 〈 · , · 〉 represents the `2 inner product over all spatial and angular discrete vari-

ables. Note that we compute the eigenvalue residual res(i) in the full, spatially and

angular dependent space.

Problem (†) in Algorithm 5 is solved using the GMRES function in MATLAB 2009b

with an LU factorisation of T as preconditioner. When the preconditioner is not ap-

plied, the GMRES solver fails to converge. Note that the stopping criterion of MAT-

LAB’s GMRES function checks the relative residual norm (and not the absolute norm

as we assumed in our analysis).

As starting guess Ψ(0) for Algorithm 5, we use a normalised vector with equal positive

entries. To measure the convergence rate of the algorithm, we consider the eigenvalue

error ∆(i) := |λ1 − ρ(i)| , where λ1 is the computed eigenvalue when the iteration

terminates.

Table 3.7 shows the numerical results for fixed shifts α0 = 0.9 and α0 = 0.99 . We

used decreasing tolerances τ (i) ≤ 0.1 ‖PT−1 res(i)‖2 for the inner solves, where P

denotes the discrete version of the projection operator P. The results clearly show

linear convergence in both cases with a faster linear rate for α = 0.99, agreeing with

Corollary 3.6.

When replacing the symmetry preserving Euler scheme from Section 2.4.2 with the

Crank-Nicolson discretisation (which does not preserve the symmetry of the reduction),

we obtain very similar results to those in Table 3.7. This suggests that the convergence

for the fixed shift iteration is not influenced by retaining the underlying symmetry if

the tolerances decrease sufficiently fast and the fixed shift is chosen close enough to the

desired eigenvalue.
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α0 = 0.9 α0 = 0.99

i ∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2

0 3.3E-02 3.3E-02

1 2.6E-04 8.0E-03 2.5E-01 1.4E-05 4.2E-04 1.3E-02

2 5.4E-06 2.0E-02 7.7E+01 2.0E-08 1.4E-03 1.0E+02

3 1.3E-07 2.4E-02 4.6E+03 3.0E-11 1.5E-03 7.7E+04

4 3.3E-09 2.6E-02 2.0E+05 4.5E-14 1.5E-03 5.1E+07

5 8.6E-11 2.6E-02 7.7E+06 0.0E+00 0.0E+00 0.0E+00

6 2.2E-12 2.6E-02 3.0E+08

7 5.8E-14 2.6E-02 1.2E+10

8 0.0E+00 0.0E+00 0.0E+00

Table 3.7: Numerical results for the inexact inverse iteration method in Algorithm 5 with
decreasing tolerances τ (i) ≤ 0.1 ‖PT−1 res(i)‖2 when using the symmetry preserving Euler
scheme.

Surprisingly, even for a fixed shift α0 = 0.3 and a fixed inner tolerance τ0 = 0.1 , we

still obtained linear convergence. This appears to be due to the fact that for sufficiently

large i of the outer iteration, the inner solver GMRES is observed to converge after one

iteration and the accuracy of the GMRES solves for the linear systems (†) increases.

This then results effectively in a slowly decreasing inner tolerance, leading to linear

convergence of the method.

Tables 3.8 and 3.9 concern the variable shift case, comparing the convergence for α(i) =

ρ(i) , the standard Rayleigh quotient in (3.33), and α(i) = ρ̃(i) , the special Rayleigh

quotient from (3.23).

In Table 3.8 we obtain only linear convergence for the symmetry preserving Euler

scheme and fixed inner tolerances when using the standard Rayleigh quotient ρ(i) as

shift, but the numerical results suggest quadratic convergence for the special Rayleigh

quotient ρ̃(i). This agrees with our theory and so we recommend the use of the non-

standard Rayleigh quotient ρ̃(i) as shift.

α(i) = ρ(i) α(i) = ρ̃(i)

i ∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2

0 3.3E-02 3.3E-02

1 9.7E-05 3.0E-03 9.1E-02 9.4E-05 2.9E-03 8.8E-02

2 2.4E-08 2.4E-04 2.5E+00 2.4E-11 2.5E-07 2.7E-03

3 1.6E-11 6.8E-04 2.9E+04 0.0E+00 0.0E+00 0.0E+00

4 1.1E-15 7.0E-05 4.4E+06

5 0.0E+00 0.0E+00 0.0E+00

Table 3.8: Numerical results for Algorithm 5 with constant tolerances τ0 = 0.1 and two
different Rayleigh quotient shifts for matrices arising from the application of the Euler scheme
described in Section 2.4.2.

However, when applying the Crank-Nicolson scheme for the spatial approximation (see
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Table 3.9), the underlying symmetry gets lost in the discretisation and neither of the

variable shifts achieves quadratic convergence. We used twice as many angular and

spatial discretisation points as in Table 3.8 to produce Table 3.9. In this case the

convergence rates are clearer to establish from the numerical results. Both shifts give

only linear convergence, emphasising the benefits of using a symmetry preserving dis-

cretisation with the special Rayleigh quotient ρ̃(i). However, using the special Rayleigh

quotient ρ̃(i) in the non-symmetric case is not disadvantageous, but actually leads to

slightly faster (but still linear) convergence.

α(i) = ρ(i) α(i) = ρ̃(i)

i ∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2

0 3.3E-02 3.3E-02

1 7.8E-05 2.4E-03 7.3E-02 7.4E-05 2.3E-03 6.9E-02

2 9.7E-09 1.3E-04 1.6E+00 8.3E-10 1.1E-05 1.5E-01

3 3.1E-12 3.1E-04 3.2E+04 1.3E-14 1.6E-05 1.9E+04

4 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

Table 3.9: Numerical results for Algorithm 5 with constant tolerances τ0 = 0.1 and Rayleigh
quotient shifts using a Crank-Nicolson scheme for the spatial approximation.

Due to reaching machine precision so quickly, we were not able to clearly establish

the predicted cubic convergence for a Rayleigh quotient shift and decreasing tolerances

when using the symmetric Euler discretisation and our special Rayleigh quotient shift

ρ̃(i).

When applying decreasing tolerances to the other three variable shift cases that we

considered in Tables 3.8 and 3.9, the numerical results suggest the gain of an additional

order in the convergence rate leading to quadratic convergence for those problems as

Table 3.10 indicates.

α(i) = ρ(i) α(i) = ρ̃(i)

i ∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2

0 3.3E-02 3.3E-02

1 8.0E-05 2.4E-03 7.2E-02 7.2E-05 2.2E-03 6.5E-02

2 1.7E-09 2.1E-05 2.7E-01 1.3E-10 1.8E-06 2.5E-02

3 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

Table 3.10: Numerical results as in Table 3.9 but in this case applying decreasing tolerances
τ (i) ≤ 0.1 ‖PT−1 res(i)‖2 .

The following numerical results are now for the more realistic control rod problem with

two different material regions and neutrons of two energy levels.

75



Chapter 3. Iterative methods for criticality computations

3.4.2 Control rod insertion model problem

Our second example is the control rod model problem described in Section 3.3.2. We

apply a Gauss quadrature and Crank-Nicolson scheme with 128 uniform spatial inter-

vals in the fuel region and 8 equally sized intervals in the absorber part of the problem

(resolving the material boundary) and giving a total of M = 136 spatial intervals. We

use again 2N = 128 angles, leading to a system of size 34816× 34816.

The convergence behaviour of Algorithm 5 is investigated with respect to three different

material compositions in the absorber region: (i) The pure absorber case; (ii) a mix of

10% absorber and 90% water; and (iii) a homogeneous case, where the absorber and

fuel region have the same cross-sections. The principal eigenvalues in cases (i)–(iii) are

λ1 ≈ 1.18, 0.92, and 0.85, respectively, and the problem details are given in Table 3.11.

properties of the fuel in (i)-(iii) and absorber in (iii)

σ σs σf ν

h 2.11228E-01 1.90001E-01 1.16636E-05 3.01008E-04 2.48225

l 7.23458E-01 1.85926E-02 7.04384E-01 1.01367E-02 2.43832

absorber properties for (i) absorber properties for (ii)

σ σs σ σs

h 3.96908E-02 1.76684E-02 1.75847E-06 1.78882E-01 1.39293E-01 9.30325E-06

l 1.74551E-01 1.12667E-05 1.60722E-02 1.03217E+00 3.37989E-02 1.00381E+00

problem length: L = 5.25cm (fuel region: 5.0cm, absorber region: 0.25cm)

Table 3.11: Data for the control rod insertion model problem; the scatter cross-sections are
arranged as in (3.30).

The theory does not apply directly to (3.30) and even the homogeneous problem (iii)

does not have an obvious symmetric reduction. Moreover, we assumed vacuum bound-

ary conditions for our analysis above, while this model problem has reflective boundary

conditions. However, the numerical results are nevertheless interesting and give an in-

dication for possible extensions of our analysis.

For the first test we used the same starting vector and stopping criterion as in the Los

Alamos problem but changed the fixed shift to α0 = 0.5 . With this and a constant

inner tolerance τ0 = 0.1 , we failed to converge to our demanded accuracy in all of cases

(i) to (iii). The first five columns in Table 3.12 show that the norm of the residual and

the error in the eigenvalue do not decrease any further between 200 and 2000 iterations.

The increasing accuracy of the inner GMRES solves, that we saw for the Los Alamos

problem, was not observed here.
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τ0 = 0.1 τ0 = 10−12

∆(200) ‖res(200)‖2 ∆(2000) ‖res(2000)‖2 i ∆(i) ‖res(i)‖2
pure absorber 5.5E-02 2.0E-04 5.5E-02 2.0E-04 6 0.0E+00 3.2E-15

absorber & water mix 9.3E-03 2.4E-04 9.3E-03 2.4E-04 5 0.0E+00 3.9E-16

homogeneous case 3.9E-03 1.5E-04 3.9E-03 1.5E-04 1 0.0E+00 1.4E-15

Table 3.12: Fixed shift α0 = 0.5 ; for τ0 = 10−12 the problems converge within i iterations.

We recovered convergence only by decreasing the fixed tolerance τ0 to 10−12 as the final

columns in Table 3.12 show. These small tolerances resulted in almost exact solves of

the linear system so that the convergence is not greatly surprising. The statement that

the homogeneous problem was solved in only one iteration (last row in Table 3.12) is

no typing error but is due to the fact that our starting vector with equal entries is

almost an eigenvector in this case (the solution to a homogeneous slab problem with

reflective boundary conditions is a constant flux in each of the energy groups).

Therefore, in order not to give problem (iii) an advantage for the remaining numerical

tests, we changed our starting vector to one whose entries were chosen randomly in

(0, 1), i.e. from the uniform distribution U(0, 1). Repeating the previous test for the

homogeneous case with a random starting vector increased the number of iterations

needed to converge from one to five.

Table 3.13 gives numerical results for the cases (i) to (iii) using a fixed shift and

decreasing tolerances. We obtain – as in the Los Alamos problem – linear convergence.

Apart from the first iterate, the convergence speed for all three cases appears to be

similar. This suggests that the heterogeneity does not impair the convergence in this

case.

pure absorber 10% absorber, 90% water homogeneous material

i ∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2

0 9.0E-01 8.9E-01 8.5E-01

1 1.7E-04 1.9E-04 2.1E-04 1.1E-05 1.2E-05 1.4E-05 4.2E-06 5.0E-06 5.9E-06

2 1.0E-06 6.0E-03 3.6E+01 8.8E-08 8.2E-03 7.7E+02 4.6E-09 1.1E-03 2.6E+02

3 4.7E-09 4.7E-03 4.6E+03 2.6E-10 2.9E-03 3.3E+04 3.7E-11 8.2E-03 1.8E+06

4 2.4E-11 5.2E-03 1.1E+06 1.0E-12 4.0E-03 1.5E+07 1.7E-13 4.4E-03 1.2E+08

5 2.3E-13 9.5E-03 3.9E+08 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

6 0.0E+00 0.0E+00 0.0E+00

Table 3.13: Numerical results for the control rod problem using a fixed shift α0 = 0.5 and
decreasing inner tolerances τ (i) ≤ 0.1 ‖PT−1 res(i)‖2 for different materials in the absorber
region.

Table 3.14 illustrates the convergence properties using constant tolerances τ0 = 0.1

and variable shifts α(i) chosen to be the non-standard Rayleigh quotients ρ̃(i). As in

the Los Alamos problem for the Crank-Nicolson discretisation, we obtain linear but
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not quadratic convergence. The numerical results suggest that for the use of a Rayleigh

quotient shift, the heterogeneity in the first two problems may influence the speed of

the linear convergence.

pure absorber 10% absorber, 90% water homogeneous material

i ∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2

0 9.0E-01 8.9E-01 8.5E-01

1 1.1E-02 1.3E-02 1.4E-02 1.7E-05 1.9E-05 2.2E-05 1.9E-05 2.3E-05 2.7E-05

2 1.6E-04 1.4E-02 1.2E+00 1.6E-06 9.4E-02 5.5E+03 8.4E-08 4.4E-03 2.3E+02

3 1.4E-05 8.9E-02 5.6E+02 9.4E-09 5.8E-03 3.6E+03 2.4E-10 2.8E-03 3.3E+04

4 4.7E-08 3.3E-03 2.3E+02 3.8E-09 4.0E-01 4.3E+07 7.6E-13 3.3E-03 1.4E+07

5 5.2E-10 1.1E-02 2.4E+05 5.8E-11 1.6E-02 4.1E+06 0.0E+00 0.0E+00 0.0E+00

6 1.0E-11 1.9E-02 3.6E+07 0.0E+00 0.0E+00 0.0E+00

7 0.0E+00 0.0E+00 0.0E+00

Table 3.14: Numerical results for the control rod problem with α(i) = ρ̃(i) and constant
tolerances τ0 = 0.1 .

Solving the same fixed tolerance problems with the standard Rayleigh quotient ρ(i)

gave similar convergence results to those in Table 3.14 without indicating superiority

of one Rayleigh quotient over the other.

Finally, using Rayleigh quotient shifts and decreasing tolerances, the convergence rates

for the two variable shift cases improve. Table 3.15 contains numerical results for

the standard Rayleigh quotient which suggest that quadratic convergence is achieved.

Applying the non-standard Rayleigh quotient ρ̃(i) leads to similar results.

pure absorber 10% absorber, 90% water homogeneous material

i ∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2

0 9.0E-01 8.9E-01 8.5E-01

1 1.3E-05 1.5E-05 1.6E-05 2.7E-05 3.0E-05 3.4E-05 1.0E-05 1.2E-05 1.4E-05

2 1.3E-11 1.0E-06 7.5E-02 2.2E-11 8.2E-07 3.0E-02 2.4E-12 2.3E-07 2.3E-02

3 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

Table 3.15: Numerical results for the control rod problem using the standard Rayleigh quotient
shift ρ(i) and decreasing tolerances τ (i) ≤ 0.1 ‖PT−1 res(i)‖2 .

The final numerical results in this chapter consider as shift for the control rod problem

the two-sided Rayleigh quotient

ρ(i)q =
y(i)T (T − S)Ψ(i)

y(i)TFΨ(i)
,

where y(i) is an approximation to the left eigenvalue of yT (T − S) = λyTF . This

method is known as Ostrowski’s Two-Sided Iteration and discussed in [90], where it is

shown that ρ
(i)
q approximates λ1 quadratically and that for exact solves cubic conver-
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gence of the iteration is obtained. For our inexact solves with fixed tolerance τ0 = 0.1

we expect a quadratic convergence rate which is supported by Table 3.16.

pure absorber 10% absorber, 90% water homogeneous material

i ∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2

0 9.0E-01 8.9E-01 8.5E-01

1 3.1E-03 3.4E-03 3.8E-03 8.9E-03 1.0E-02 1.1E-02 3.1E-03 3.6E-03 4.3E-03

2 7.7E-06 2.5E-03 8.3E-01 2.3E-06 2.5E-04 2.9E-02 6.9E-06 2.3E-03 7.4E-01

3 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

Table 3.16: Numerical results for the control rod problem using the a quadratic Rayleigh

quotient shift ρ
(i)
q and fixed tolerances τ0 = 0.1 for different materials in the absorber region.

In order to compute the Rayleigh quotient shift ρ
(i)
q we need to solve in every outer iter-

ation two linear systems (the forward and the adjoint problem) which roughly doubles

the computational demand since the solution of the source problem is the dominating

work in the iterative process. Often this is not worth the effort.

Nevertheless, this well-known approach has recently regained some interest in conjunc-

tion with Monte Carlo methods (see e.g. [74]), where the adjoint solution is obtained

from a cheap (but coarse) diffusion solution while a Monte Carlo solver is used to ob-

tain the solution of the forward problem. We will consider Monte Carlo methods for

neutron transport problems in the next chapter.
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transport theory

Advances in nuclear reactor design lead to more and more complex geometries and the

need to model an increasing amount of detail. Deterministic methods as described in

Section 1.5 are either by nature (for example in the diffusion approximation) or due

to the huge computational demands (SN and PN approach) not able to provide such

detail for complex problems.

Monte Carlo statistical sampling methods on the other

Figure 4.1: Model of a Magnox
reactor which is used for Monte
Carlo calculations.

hand use no (or very few) approximations to the true

physics and are able to capture details in complex

three dimensional geometries. Figure 4.1 is a Visu-

alWorkshop1 image of a model for the Monte Carlo

code MCBEND, provided by the ANSWERS Software

Service of Serco Technical and Assurance Services. It

shows part of a model of a Magnox reactor at the

Oldbury nuclear power station in South Gloucester-

shire, UK. Capturing such a high level of detail in a

3D problem using deterministic methods is currently

not possible. Furthermore, due to their inherent ease

of parallelisation and the growth in computer power,

the statistical sampling methods are becoming more

and more popular.

1VisualWorkshop is jointly developed between Serco Technical and Assurance Services and Sellafield
Ltd.
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Monte Carlo methods give rise to a large research area on their own and discussing all

different techniques and their background in detail would go well beyond the scope of

this thesis. The objective of this chapter is to indicate how Monte Carlo techniques are

applied to problems arising in neutron transport and to point out where the advantages

and drawbacks of these solution methods lie. In particular the latter then motivate the

use of a new iterative scheme for solving the criticality problem, which we will discuss

in Chapter 5.

Furthermore, we link the steps of the statistical sampling technique and the underlying

mathematics for the neutron transport equation together, providing a new angle on

the Monte Carlo method in this context while only using simple tools and avoiding the

probabilistic framework of random walks in references such as [111]. The idea of using a

Neumann series to solve source problems containing scatter has been mentioned briefly

in [29, §2.2.2] and [31, §3.4]. We will use our theoretical framework from Chapter 2 to

make this link rigorous and obtain a convergence result for the source iteration method.

We start this chapter with a brief historical review of Monte Carlo methods and particu-

larly their relation to neutron transport problems which motivated significant advances.

Then a short review on elementary probability theory that is needed in the following

sections is provided. We next describe how source problems can be solved using Monte

Carlo techniques, and finally discuss the solution of the criticality problem using sta-

tistical sampling, before finishing this chapter with numerical results to support the

theory.

4.1 History of the Monte Carlo method

The name “Monte Carlo” was first used in the article [85] by Nicolas Metropolis and

Stanislav Ulam in 1949. However, simple statistical sampling tests were already per-

formed many years before that. Generally the first reference is that of an experiment

known as “Buffon’s needle” from 1777 (see [25]), which, as Laplace later showed in [72],

could be used to estimate π.

A lot of progress and research on Monte Carlo techniques was done during and after

the second world war. Key characters of that time were Metropolis, Ulam and John

von Neumann who performed Monte Carlo calculations on the ENIAC machine at the

Los Alamos laboratory. According to [32, 88], the idea of obtaining an approximate

answer to a (physical) process by means of simulation came to Ulam when playing a

simple patience card game and wondering what the chances to win are. He thought

that playing the game often enough would give him a good estimate for these. He then
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discussed this idea with von Neumann and Metropolis and they applied it to neutron

transport problems that they had been working on at Los Alamos.

With the rapid growth of computing power Monte Carlo approaches received an in-

creasing interest over time and their application to neutron transport has been studied

in several books (e.g. [64, 71, 108, 111]). Today, Monte Carlo methods play a very

important role in the neutron transport community. They are used to produce bench-

marking results for shielding and criticality problems (e.g. [22, 119]) and many different

computer codes have been developed (see [67] for a recent overview of Monte Carlo ra-

diation transport codes).

4.2 Background on probability theory

In order to understand how Monte Carlo methods work and in what sense they converge

to the solution of neutron transport problems, we need some background on probability

theory. While there exist many references with further details on probability theory

(e.g. [50, 68]), we try to keep this section as short and simple as possible and follow

the exposition in [80, §7].

Let us start by considering a real random variable X. This is a measurable map from

a probability space to R (see, for example, [68]), i.e. X takes an element from the

probability space and maps it to a real number. We then denote the probability that

X attains a value between a and b by P [a ≤ X ≤ b] , and using this, we can define the

probability density function f(x) as the limit of

f(x)∆x = P [x ≤ X ≤ x+∆x] (4.1)

when ∆x ↓ 0 . It follows that f(x) ≥ 0 for all x ∈ R and, moreover,

∫ x+

x−

f(x) dx = 1 ,

where x− and x+ denote the lower and upper values (possibly −∞ and +∞) of the

range of X.

Now the corresponding cumulative distribution function F (x) denotes the probability

that a random variable X attains values less than or equal to x. It is given by

F (x) := P [X ≤ x]
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and satisfies

F (x) =

∫ x

x−

f(x′) dx′ .

This implies that F (x) is an increasing real function with

lim
x→x−

F (x) = 0 , (4.2)

lim
x→x+

F (x) = 1 , and (4.3)

P [a ≤ X ≤ b] = F (b)− F (a) .

A major challenge when performing Monte Carlo calculations is to obtain realisations

of random variables Xj that are distributed according to a given probability density

function f(x). To achieve this the cumulative density function F (x), which by (4.2)

and (4.3) attains values between zero and one, can be used together with a random

number generator that produces numbers ξj that are uniformly distributed between

zero and one. A realisation xj of the random variable Xj can then be computed for a

given ξj via

xj = F−1(ξj) . (4.4)

Note that the xj in (4.4) is not a random variable but its image, i.e. a real value that

describes the outcome of the random variable for a certain sample from the probability

space. There exist several different techniques to perform the sampling of realisations

of random variables (see e.g. [29, p. 542] for examples in neutron transport).

We denote by

E[X] :=

∫ x+

x−

xf(x)dx

the expected value (or expectation) of the random variable X, where f(x) is the corre-

sponding probability distribution function.

Let X now be a random variable whose expectation describes a quantity that we would

like to estimate (for example the average scalar flux in a certain spatial region or the

criticality of a nuclear reactor). Furthermore, let Xj be independent and identically

distributed copies of X (i.e. also random variables). An estimator for the expectation

of X is given by the sample mean

X̂ :=
1

n

n∑

j=1

Xj . (4.5)

We use the Monte Carlo method to obtain realisations xj of the random variables Xj
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to compute a realisation x̂ of the estimator X̂ in (4.5) from n simulated histories.

These histories are in our case the trajectories of the neutrons from their “birth” to

their “death”, and the xj are the contributions for each of these trajectories to the

quantity that we would like to estimate. Loosely speaking, the idea of the Monte Carlo

method is now to approximate E[X] by x̂. For n → ∞ the estimate x̂ converges in a

probabilistic way (see (4.9)) to E[X]. This can be made more rigorous as we will see

in the following.

For independent and identically distributed copies Xj of X, their expectation is

E[Xj ] = E[X] for all j = 1, . . . , n .

Then, by the linearity of the integral, we get

E[X̂] = E


 1

n

n∑

j=1

Xj


 =

1

n

n∑

j=1

E[Xj ] = E[X] ,

which tells us that the sample mean is a so-called unbiased estimator of E[X]. Note that

this does not say that every realisation xj of Xj , or even the estimate x̂ of the sample

mean X̂, will be equal to the true expected value E[X]. However, the realisations will

be correct on average and vary around the true value. The question is now how this

spread can be estimated and controlled.

The common way to measure the accuracy of the sample results is to consider the

variance σ2[X] (sometimes also denoted as Var[X]) of the random variable X, which

is defined as

σ2[X] := E[(X − E[X])2] . (4.6)

Note that the σ in (4.6) is not related to the total cross-section from (2.1) that we dealt

with so far. However, as both notations are standard in the literature, we do not want

to alter them and it should be clear from the context which definition is to be used.

As the expectation is a linear operator,

σ2[X] = E[X2]− (E[X])2 ,

and it can be shown (see, for example, [80, p. 316]) that we have for the variance of

the sample mean X̂

σ2[X̂] = E[(X̂ − E[X̂])2] =
σ2[X]

n
.
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From this we obtain

σ[X̂] =
σ[X]√

n
, (4.7)

where σ[X], the square root of the variance, is the standard deviation of X.

Hence, let us assume that, using (4.5), we construct a realisation x̂ of X̂ from n realisa-

tions xj of copies Xj of the random variable X. Equation (4.7) tells us now that if we

constructed many estimates x̂ with this approach, then the spread in these realisations

x̂ around E[X] is proportional to σ[X] and falls of with the square root of n. Therefore,

if we increase n, i.e. if we use a larger number of particle histories, then the computed

x̂ will lie closer around the expectation E[X].

To obtain an estimate of the spread in X̂ in practice, we need an estimate for σ[X].

An unbiased estimate for σ2[X] is provided by the sample variance

S2 :=
1

n− 1

n∑

j=1

(Xj − X̂)2 ,

which, as shown in [80, p. 318], satisfies E[S2] = σ2[X] . This is then used to compute

an estimate of σ[X] by the sample standard deviation

S =

(
n

n− 1

) 1
2


 1

n

n∑

j=1

X2
j − X̂2




1
2

. (4.8)

In the next step we apply the central limit theorem (see, for example, [35, 68]). Let

us assume that we perform the Monte Carlo computations for a fixed n several times

and consider the resulting realisations x̂ of the sample mean X̂. Then the central limit

theorem tells us that if the number of samples n approaches infinity, the corresponding

probability function fn(x̂) of X̂ tends to the normal distribution with expectation E[X]

and standard deviation σ[X]/
√
n.

This result allows us to obtain for large enough n a probability that states that the

realisations of the sample mean X̂ lie within an interval of a certain size around the

true expectation E[X]. For a given probability the size of the interval depends on the

standard deviation and the number of samples. We get, for example, that

P

[
E[X]− σ[X]√

n
≤ X̂ ≤ E[X] +

σ[X]√
n

]
≈ 0.6826 , (4.9)

stating that the computed estimates for the sample mean X̂ will lie with a probability
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of about 68% in the interval
(
E[X]− σ[X]√

n
, E[X] + σ[X]√

n

)
. For further details of how to

obtain this result see, for example, [80, p. 319]. If the width of the interval is increased

by considering 2σ[X] or 3σ[X] instead of σ[X], the probability of a realisation of X̂

lying in the larger intervals increases to 0.954 and 0.997 respectively. In practice we

use the sample standard deviation S, defined in (4.8), to estimate σ[X] in (4.9).

The aim is now to obtain a high probability at the same time as a small interval

width. The simplest way to achieve this is by increasing n and therefore sampling

more particles. However, this comes at the expense of computing time and finding a

balance between the accuracy of the sample mean and the computing time needed is

an important problem in the application of Monte Carlo methods.

As an alternative to simulating more particles, there exist many different variance

reduction techniques for neutron transport problems which lead to a smaller σ[X] and

therefore a better estimate in (4.9) (see, for example, [80, §7-6]). In order to keep this

chapter concise we will not discuss these techniques here. Also note that for the central

limit theorem to hold true, a large enough n must be taken. In addition, the histories

of the Monte Carlo calculations have to be independent which turns out to cause some

difficulty when the method is used to solve the criticality problem (see e.g. [17]).

Let us summarise the above results using a description from [80] before we give details

of an actual Monte Carlo method. Although the probability density function f(x)

is not a Gaussian distribution, the probability density function fn(x̂), that describes

the distribution of the mean values X̂ computed from n histories, resembles a normal

distribution for sufficiently large n. Furthermore, the standard deviation of fn(x̂)

decreases proportional to 1/
√
n. Hence, if we perform several Monte Carlo calculations

for large enough n, we expect the realisations x̂ of the sample mean X̂ to be spread

closely around the true expected value E[X] which we want to estimate.

4.3 Monte Carlo techniques for solving source problems

Monte Carlo methods are often divided into two different classes. The first one is

Monte Carlo in the sense of statistical sampling and is sometimes called “Monte Carlo

simulation” [88] or “analog Monte Carlo sampling” [80, §7-3]. The basic idea of this

approach is to obtain an approximation to the physical quantity of interest (in this

section it will be the neutron flux) by collecting information from the particle histories

during the course of simulation.

The second class of methods uses Monte Carlo techniques to evaluate integrals or

86



Chapter 4. Monte Carlo methods in neutron transport theory

integral equations. Both approaches are applied in the context of neutron transport

[29, p. 553].

4.3.1 Pure absorber case

To simplify the discussion let us start with considering a monoenergetic source problem

in a homogeneous region without any scatter and fission. We assume vacuum boundary

conditions and the problem becomes

T Ψ = Q (4.10)

subject to

Ψ(r,Ω) = 0 when n(r) ·Ω < 0 , r ∈ ∂V . (4.11)

The extension of the Monte Carlo method to more general cases is relatively straight-

forward. We will discuss in Section 4.3.2 how to include scatter events and on page 106

how to deal with heterogeneous media.

Let us now consider the statistical sampling approach and motivate the Monte Carlo

steps by establishing links to the mathematics. We pick n neutrons and track one

particle after the other through the numerical experiment. Note that this allows easy

parallelisation since the different neutrons do not influence each other.

The initial positions and directions for the n neutrons are determined according to the

source distribution Q. For a cuboid reactor and a spatially uniform isotropic source,

for example, the position of each neutron can be obtained by choosing three random

numbers ξi ∈ U(0, 1), i = 1, 2, 3 , where U(0, 1) denotes the uniform distribution on

(0, 1). These ξi are then multiplied with the length, width and height of the system to

give the (x, y, z)-coordinates of the starting position.

We then draw two further random numbers ξ4, ξ5 ∈ U(0, 1) to compute the direction

of travel by setting µ = 2ξ4−1 and ϕ = 2πξ5 , with µ being the cosine of the azimuthal

angle θ and ϕ denoting the polar angle, see Figure 4.2.

We now have to find out how far the neutron travels, which can be done by using the

probability

P [X ≥ d] = exp(−σd) (4.12)

for a neutron travelling a distance X ≥ d without having a collision. To justify (4.12)

consider the transmission of a beam of particles through a purely absorbing material

without any scatter and sources. For our model problem a purely absorbing system
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x
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1

θ

ϕ
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Ω

Figure 4.2: Choosing µ and ϕ determines the travel direction Ω ∈ S
2 .

corresponds to

Ω · ∇Ψ(r,Ω) + σΨ(r,Ω) = 0 . (4.13)

Along the line from r to r+ dΩ equation (4.13) can be written as

d

ds
Ψ(r+ sΩ,Ω) + σΨ(r+ sΩ,Ω) = 0 , s ∈ [0, d] ,

and by using the factor exp(σs), integrating from 0 to d, and rearranging, we obtain

Ψ(r+ dΩ,Ω) = exp(−σd)Ψ(r,Ω) . (4.14)

If we interpret (4.14) now physically, we see that the neutron flux at position r+ dΩ ,

i.e. at a distance d along the line, is the flux at the starting point r multiplied with

the probability exp(−σd) that the neutrons have no collision between r and r + dΩ ,

i.e. we have justified (4.12).

Using (4.12) to look at the probability of a neutron having a collision between r and

r+ εΩ where ε is small, we get from a Taylor expansion around −σd

P [d ≤ X ≤ d+ ε] = P [X ≥ d] − P [X ≥ d+ ε]

= exp(−σd) − exp(−σ(d+ ε))

= σ exp(−σd)ε + O(ε2) .

By the definition (4.1) the probability distribution function for having a collision at a
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distance d is therefore given by

f(d) = σ exp(−σd) . (4.15)

This satisfies the condition f(d) ≥ 0 for all d ≥ 0 and integrates to one on the interval

[0,∞) that we are considering. The corresponding cumulative density function is

F (d) = 1− exp(−σd) . (4.16)

Using now inverse sampling, i.e. (4.4), we can pick a random number ξ6 ∈ U(0, 1) which

we set equal to our F (d), and, by rearranging (4.16), we obtain the travel distance

d = − 1

σ
ln(1− ξ6) .

However, as the uniform distribution is symmetric in (0, 1), we can replace 1 − ξ6 by

ξ6 to get

d = − 1

σ
ln(ξ6) . (4.17)

We use (4.17) to let the neutron undergo a collision at the distance d along the direction

Ω which allows us to compute the coordinates of the collision point. If this point lies

outside of the reactor dimensions, the neutron left the system and we move on to the

next neutron. If the collision point was inside the system boundaries, we now relate

this collision event to the angular flux Ψ.

From Lemma 2.1 we know that the solution to (4.10) is given by

Ψ(r,Ω) =

∫ d(r,Ω)

0
exp(−σs)Q(r− sΩ,Ω) ds for (r,Ω) ∈ V × S

2 ,

where

d(r,Ω) = inf{s > 0 : r− sΩ /∈ V } .

Using (4.15) this can be written as

Ψ(r,Ω) =
1

σ

∫ d(r,Ω)

0
f(s)Q(r− sΩ,Ω) ds for (r,Ω) ∈ V × S

2 . (4.18)

Now Q(r − sΩ,Ω) determines the number of neutrons that are launched at r − sΩ

in the direction Ω and f(s) gives the probability to travel a distance s. Hence the
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integrand f(s)Q(r − sΩ,Ω) denotes the amount of collisions at the point r, caused

by neutrons that started at r− sΩ and travelled in the direction Ω. Integrating this

over s ∈ [0, d(r,Ω)] therefore results in counting all the collisions at r of neutrons that

travelled in the direction Ω.

If we define the collision density

c(r,Ω) =

∫ d(r,Ω)

0
f(s)Q(r− sΩ,Ω) ds

for (r,Ω) ∈ V × S
2 , then we obtain from (4.18) that

Ψ(r,Ω) =
1

σ
c(r,Ω) . (4.19)

The relationship (4.19) between the angular flux and the collision density is well known

(e.g. [80, p. 18]), but it is usually not derived via the solution of a source problem.

When estimating the angular flux in practice, we introduce a spatial and angular mesh,

and it is common to call the individual mesh elements bins. Whenever there is a collision

of a neutron that travelled in the cone of directions dΩ about Ω in the mesh element

centred at r with volume dV , we add w/(σdV dΩ) to the corresponding bin, where

dV dΩ denotes the incremental volume in the spatial and angular space and

w =
1

n

∫

V

∫

S2

|Q(r′,Ω′)| dΩ′ dr′

represents the particle weight. This particle weight is a scaling factor to ensure that

the flux scales correctly with the number of neutrons used as well as the magnitude of

the source. By repeating the tracking for all n neutrons, we subsequently build up a

flux profile. The final tally of these values then represents an estimate of the angular

flux in the spatial and angular element around Ψ(r,Ω).

A sufficiently large number of particles is needed to obtain meaningful results and if

we wanted to increase the detail in our results by choosing a finer mesh, we would need

to increase the number of neutrons. We will consider this question in the numerical

results in Section 4.5.

Remark 4.1. The equation (4.18) also allows a different interpretation of the Monte

Carlo method described above. If we define F (s) := 1− exp(−σs) , then F ′(s) = f(s)

with f defined in (4.15). Now (4.18) becomes after a change of variable with x = F (s)

Ψ(r,Ω) =
1

σ

∫ F (d(r,Ω))

0
Q
(
r− F−1(x)Ω,Ω

)
dx for (r,Ω) ∈ V × S

2 .
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Using Monte Carlo techniques for the evaluation of the right-hand side then gives

Ψ(r,Ω) ∼= 1

σn

n∑

j=1

Q(r− F−1(xj)Ω,Ω) ,

with xj uniformly distributed randomly chosen points, which is very close to the method

described above.

Remark 4.2. When working with large real problems it is very expensive on the com-

puter storage to save all the angular fluxes. As the scalar flux often contains sufficient

information for the engineer, commercial computer codes tend to only store the scalar

flux. In that case only spatial bins exist (see also [80, p. 310]) and the storage demand

is considerably reduced.

Remark 4.3. Source problems with a (partly) negative source (see Chapter 5 for ex-

amples) can be solved efficiently by changing the weight of a particle that represents the

negative source at a position r and direction Ω to

w = − 1

n

∫

V

∫

S2

|Q(r,Ω)| dΩ dr .

Adjusting and scaling the weight of the particles is a frequent method in variance re-

duction techniques (see, for example, [108]), which we mentioned in Section 4.2.

4.3.2 Absorber and scatter case

We now extend the previous results to include isotropic scatter. The source problem

is then

(T − S)Ψ = Q , (4.20)

where the scatter operator is given by

SΨ =
σs
4π

∫

S2

Ψ(r,Ω′) dΩ′ . (4.21)

We demand again vacuum boundary conditions (4.11).

A frequent technique for the solution of source problems of the form (4.20), which is

also used by deterministic solvers (e.g. the method of characteristics, see [8, 115]), is the

so-called source iteration [48, 53]. The scatter “source” SΨ is moved to the right-hand

side and subsequent “transport sweeps” to invert T are performed before adjusting the
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source on the right-hand side, leading to an iteration of the form

T Ψ(i+1) = Q̃(i), where Q̃(i) = Q + SΨ(i) .

The same approach is taken in splitting methods for solving linear systems, as, for

example, in the Jacobi method. Let us assume we want to find the solution of the

linear system

Ax = b , A ∈ R
n×n , b,x ∈ R

n . (4.22)

The matrix A is then split up into its diagonal and lower + upper triangular parts

(A = D + L+ U ) and the linear system is rearranged to formulate the iteration

Dx(i+1) = b− (L+ U)x(i) .

Under certain conditions – the standard criterion is that the spectral radius of D−1(L+

U) is less than unity – this scheme then converges to the solution x of (4.22) (see

e.g. [45, 100] for further details).

In the source iteration for (4.20) the splitting is done by moving the scatter part on to

the right-hand side of the equation. We now give a convergence result for this iteration.

An equivalent result for a 1D discretisation, exploiting the structure of the matrices

involved, has been shown in [48, Theorem 9.2.1].

Lemma 4.4. Suppose that in order to solve the problem

(T − S)Ψ = Q (4.23)

for some fixed source Q ∈ L2(V, L∞(S2)) , we choose a starting guess Ψ(0) and apply

the source iteration

T Ψ(i+1) = Q + SΨ(i) , i = 0, 1, 2, . . . . (4.24)

We then obtain for the corresponding scalar fluxes φ(i) = PΨ(i) , with P defined in

(2.6) that

‖φ− φ(i+1)‖L2(V ) ≤ σs
σ

‖φ− φ(i)‖L2(V ) ,

where φ ∈ L2(V ) is the solution for the scalar flux problem

(I − σsKσ)φ = PT −1Q . (4.25)
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Hence, when 0 < σs < σ , we obtain ‖φ− φ(i)‖L2(V ) → 0 for i → ∞ .

Proof. Using (4.24), the existence of T −1 from Lemma 2.1 and that SΨ = σsPΨ =

σsφ , we have

Ψ−Ψ(i+1) = Ψ− (T −1Q+ T −1SΨ(i))

= Ψ− (T −1(T − S)Ψ + T −1SΨ(i))

= T −1S(Ψ−Ψ(i))

= σsT −1(φ− φ(i)) . (4.26)

Hence applying the operator P from (2.6) and using that PT −1g(r) = Kσg(r) as

shown in Lemma 2.3, we get

‖φ− φ(i+1)‖L2(V ) = ‖σsPT −1(φ− φ(i))‖L2(V ) = ‖σsKσ(φ− φ(i))‖L2(V ) .

The norm estimate from Lemma 2.9 now yields

‖φ− φ(i+1)‖L2(V ) ≤ σs‖Kσ‖L (L2(V ))‖φ− φ(i)‖L2(V ) ≤ σs
σ
‖φ− φ(i)‖L2(V ) .

The convergence of φ(i) to φ for i → ∞ follows from σs/σ < 1 .

Remark 4.5. The assumption 0 < σs < σ is satisfied for physically relevant systems

as for these σc > 0 in the nuclear reactor and therefore (2.1) implies that the scatter

cross-section is strictly smaller than the total cross-section.

However, note that Lemma 4.4 suggests that the convergence of the source iteration

depends on the scattering ratio σs/σ and could be slow for problems where this is close

to unity. We will consider this question numerically in Section 4.5.

In a similar way we can obtain convergence for the angular fluxes Ψ(i).

Corollary 4.6. Under the assumptions of Lemma 4.4, the angular fluxes Ψ(i) generated

by the source iteration (4.24) converge in L2(V, L1(S)) to the solution Ψ of (4.23).

Proof. From (4.26) and Lemma 2.1 we have

Ψ−Ψ(i+1) = σsT −1(φ− φ(i)) = σs

∫ d(r,Ω)

0
exp(−σs)(φ− φ(i))(r− sΩ) ds
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for (r,Ω) ∈ V × S
2 . Now taking the absolute value leads to

|(Ψ−Ψ(i+1))(r,Ω)| ≤ σs

∫ d(r,Ω)

0
exp(−σs)|(φ− φ(i))(r− sΩ)| ds ,

and if we integrate over S
2, we obtain by using analogous steps as in the proof for

Lemma 2.3 ∫

S2

|(Ψ−Ψ(i+1))(r,Ω)| dΩ ≤ σsKσ(|φ− φ(i)|)(r) .

Finally, we take the L2-norm on both sides of this inequality and apply Lemma 2.9 to

get

‖Ψ−Ψ(i+1)‖L2(V,L1(S)) ≤ σs‖Kσ(|φ− φ(i)|)‖L2(V ) ≤ σs
σ
‖φ− φ(i)‖L2(V ) . (4.27)

Since we showed in Lemma 4.24 that ‖φ− φ(i)‖L2(V ) → 0 for i → ∞ , it follows from

(4.27) that under the same assumptions Ψ(i+1) → Ψ for i → ∞ in L2(V, L1(S)).

Furthermore, we have an equivalence between the solution of the angular flux source

problem and its scalar flux counterpart as the following lemma shows.

Lemma 4.7. If Ψ is a solution in L2(V, L1(S2)) of (4.20) with Q ∈ L2(V, L∞(S2))

and vacuum boundary conditions (4.11), then φ = PΨ , is a solution in L2(V ) of the

reduced source problem (4.25). Conversely, if φ ∈ L2(V ) is a solution of problem (4.25),

and if we define Ψ by solving

T Ψ = Q+ σsφ (4.28)

subject to vacuum boundary conditions (4.11), then Ψ ∈ L2(V, L1(S2)) is a solution

for (4.20).

Proof. If Ψ solves (4.20) in L2(V, L1(S2)) , then

T Ψ = Q+ σsφ .

Now applying T −1 via Lemma 2.1 and integrating over Ω ∈ S
2 , we obtain

φ = PT −1Q+ σsPT −1φ .

Since φ ∈ L2(V ) , we can use the same steps in the proof of Lemma 2.3 to obtain that

σsPT −1φ = σsKσφ and therefore (4.25) holds.
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To prove the converse statement, let Ψ be the unique solution of (4.28) with φ solving

(4.25), and set φ̃ := PΨ . Applying PT −1 to (4.28) and using the steps from Lemma

2.3 as well as (4.25), we obtain

φ̃ = PT −1Q+ σsKσφ = φ .

Hence T Ψ = Q+σsφ̃ = Q+SΨ , as required. The fact that Ψ ∈ L2(V, L1(S2)) follows

from the same arguments as in Remark 2.4 with f(r) = ‖Q(r, ·)‖∞ + σsφ(r) .

We now establish a link between the source iteration and a Neumann series solution

for (4.25). This link has been briefly mentioned in [29, §2.2.2] and [31, §3.4], but we

are now able to provide a condition for the convergence of the Neumann series. We

obtain from using (4.24) recursively that

Ψ(i+1) = T −1Q + T −1SΨ(i)

= T −1Q + T −1S(T −1Q + T −1SΨ(i−1))

=
1∑

k=0

(T −1S)kT −1Q + (T −1S)2Ψ(i−1)

...

=
i∑

k=0

(T −1S)kT −1Q + (T −1S)(i+1)Ψ(0) . (4.29)

Hence, after applying P, we get with S = σsP

φ(i+1) =

i∑

k=0

P(T −1S)kT −1Q + P(T −1S)(i+1)Ψ(0)

=
i∑

k=0

(σsPT −1)kPT −1Q + (σsPT −1)(i+1)PΨ(0)

=

i∑

k=0

(σsKσ)
kPT −1Q + (σsKσ)

(i+1)φ(0) .

Now using Lemma 2.9 and that σs < σ , we have ‖σsKσ‖L2(V ) ≤ σs/σ < 1 , and

therefore the last term tends for i → ∞ to zero and we obtain in the limit

φ(∞)(r) =
∞∑

k=0

(σsKσ)
kPT −1Q(r,Ω) .

This is equivalent to applying the Neumann series to solve (4.25) as we shall see now.
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Lemma 4.8. The Neumann series

(I − σsKσ)
−1 =

∞∑

k=0

(σsKσ)
k (4.30)

converges in L2(V ). Hence the solution of (4.25) is given by

φ =
∞∑

k=0

(σsKσ)
kPT −1Q

=
∞∑

k=0

P(T −1S)kT −1Q

= PT −1Q + PT −1ST −1Q + PT −1ST −1ST −1Q + . . . .

Proof. From Lemma 2.9 we know that with σs < σ , we have

‖σsKσ‖L (L2(V )) ≤ σs
σ

< 1 ,

and therefore the series in (4.30) converges in L2(V ). The remainder of this lemma fol-

lows from the application of the Neumann series to (4.25) and recalling that σsKσP =

σsPT −1P = PT −1S .

By Corollary 4.6 we know that the source iteration (4.24) converges for physically

relevant source problems of the form (4.23). We also proved in Lemma 4.8 that for the

corresponding scalar fluxes the source iteration is in the limit equivalent to using the

Neumann series for the analytic solution of (4.25).

We shall now describe a Monte Carlo approach to solve (4.23) which performs the

source iteration (4.24) with starting guess Ψ(0) = 0 and efficiently implements the

iteration process. Instead of rebuilding the source in every step, we use (4.29) which

gives in the limit

Ψ(∞)(r,Ω) =
∞∑

k=0

(T −1S)kT −1Q(r,Ω)

=
∞∑

k=0

Ψ[k](r,Ω) , where (4.31)

Ψ[k](r,Ω) := (T −1S)kT −1Q(r,Ω) .

Interpreting the terms in the sum (4.31) physically, we note that the first term

Ψ[0] = T −1Q is the solution to the source problem (4.10), which we obtained by
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tracking particles from the initial source Q to their first collision. In the second term,

this flux Ψ[0] undergoes a scatter and is then tracked further providing a flux contribu-

tion Ψ[1] = T −1SΨ[0] = T −1ST −1Q . The next term is then a further scatter of Ψ[1]

with subsequent tracking and so on. Hence, Ψ[k−1] denotes the flux contribution from

the k-th collision and the Neumann series can be interpreted as a “collision expansion”

(see also [29, p. 72]).

Let us now consider how to model the application of the scatter operator to a flux in

the Monte Carlo setting. Recalling the relation between the flux Ψ and the collision

density c in (4.19), as well as the definition of the scatter operator in (4.21), we can

write the term SΨ[0] as

SΨ[0] =
1

4π

∫

S2

σs
σ
c[0](r,Ω

′) dΩ′ , (4.32)

where c[0](r,Ω
′) is the number of particles that travelled in direction Ω′ and have

a collision at r. The integral
∫
S2
c[0](r,Ω

′) dΩ′ contains therefore all first collisions

occurring at r.

In Monte Carlo terms the fraction σs/σ can now be interpreted as the probability of

this collision being a scatter. As we are dealing with isotropic scatter, a realisation

of the new travel direction Ω is in this case determined by drawing two new random

numbers and mapping them to µ and ϕ to obtain the particles new polar and azimuthal

angles. The collection of all scattered neutrons then represents the scatter source SΨ.

The evaluation of (4.31) can now be done efficiently using Monte Carlo techniques by

applying the following steps. We start a particle from the initial source Q, track it

to the first collision and add w/(σdV dΩ) to the current bin. This contributes to the

flux Ψ(∞) as part of the term Ψ[0] = T −1Q in (4.31). We now pick a random number

ξ ∈ U(0, 1) to check if the particle is scattered as shown in Figure 4.3.

0 σs

σ
1

no scatterscatter

Figure 4.3: If ξ ≤ σs/σ the collision event is a scatter.

If ξ > σs/σ , we finish tracking the particle and all its contribution to the flux Ψ(∞)

comes from the term Ψ[0] representing the first collisions in the Neumann series. How-

ever, if the random number indicates that a scatter event happened, we draw two

further random numbers to obtain a new travel direction and track the particle to the

next collision where w/(σdV dΩ) is added to the respective bin. This is part of the

contribution of Ψ[1] = T −1ST −1Q to the flux Ψ(∞) in (4.31). Then the same scatter
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or no scatter check is performed and the above steps are repeated until the neutron

eventually stops scattering (which will happen since σs < σ ) or leaves the system.

Hence, we approximate the infinite sum in the collision expansion (4.31) in practice by

a finite number of collision terms.

We note that this is also analogous to the situation in the real world, where particles

start from a given source, travel some distance until they either leave the system or

have a collision. If this collision results in a scatter, the neutron changes its direction

and travels further. By following all neutrons from the source and “counting” where

the neutrons had a collision, we build up a flux profile in the system. The same happens

in a nuclear reactor when detectors are used to obtain a flux estimate. This similarity

is the reason why the method is called “analog” or “simulation” approach. The only

difference of our Monte Carlo approach is that we do not track as many neutrons as

there are in the real world. However, we were able to link this simulation approach

via the source iteration and the relation to the Neumann series to the mathematical

solution of the integral equation.

4.3.3 Absorber, scatter and fission case

The above results can be extended in a straightforward way to problems of the form

(T − S − αF)Ψ = Q , (4.33)

as long as the shift α is chosen such that

‖T −1(S + αF)‖ < 1 . (4.34)

Corollary 4.9. Provided the operators and α in the source problem (4.33) satisfy the

criterion (4.34), then the source iteration

T Ψ(i+1) = Q+ (S + αF)Ψ(i) , i = 0, 1, 2, . . . .

converges to a solution Ψ in L2(V, L1(S2)) of (4.33). A sufficient condition to obtain

convergence in the case of homogeneous problems with isotropic scattering is given by

σs + ανσf
σ

< 1 .

Proof. The result follows analogous to the proofs of Lemma 4.4 and Corollary 4.6.
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Therefore, using the Neumann series expansion and similar steps as above, we can

rearrange (4.33) to

Ψ =

∞∑

k=0

[T −1(S + αF)]kT −1Q

= T −1Q + T −1(S + αF)T −1Q + . . .

= T −1Q + T −1ST −1Q + αT −1FT −1Q + . . . .

The term αT −1FT −1Q is now evaluated similarly to T −1ST −1Q in the previous

section, writing

αFΨ[0] = αν
1

4π

∫

S2

σf
σ
c[0](r,Ω

′) dΩ′ , (4.35)

where c[0](r,Ω
′) is again the number of particles that travelled in direction Ω′ and have

a first collision at r. The fraction σf/σ is the probability that the collision results in a

fission event. If this happens, αν new neutrons are sent off with an equal probability

for every direction and are tracked to their next collision.

4.4 Monte Carlo as a solution method for the criticality

problem

While Monte Carlo methods had initially been used to solve source problems as dis-

cussed in the previous section, during the 1960s the neutron transport community

started to apply them to compute the criticality of nuclear reactors (see, for example,

[81, 84]). One way to solve the eigenvalue problem (1.3) is to use again a simulation

approach and track particles through the system. The estimate for λ is then obtained

by counting how many neutrons are lost and how many are gained during the process.

Although motivated by simply simulating the physical interactions of the particles, the

approach can be considered as an implementation of the power method using Monte

Carlo techniques to solve

(T − S)Ψ̃(i+1) = FΨ(i) .

The right-hand side FΨ(i+1) of the next iteration is obtained by normalising FΨ̃(i+1) .

An eigenvalue estimate is computed in every iteration by evaluating a certain Rayleigh

quotient. We first describe the method by following the idea of simulating the indi-

vidual neutrons but we will show below that this is equivalent to the above mentioned

implementation of the power method.
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Let us start by motivating how to get an estimate for the criticality value λ from a

Monte Carlo simulation. Consider the original eigenvalue problem

Ω · ∇Ψ(r, E,Ω) + σ(r, E)Ψ(r, E,Ω)

=
1

4π

∫

R+

∫

S2

σs(r, E
′, E,Ω′,Ω)Ψ(r, E′,Ω′) dΩ′ dE′

+ λ
χ(E)

4π

∫

R+

ν(r, E′)σf (r, E
′)
∫

S2

Ψ(r, E′,Ω′) dΩ′ dE′ ,

(4.36)

as given in (1.3), and recall that the total cross-section is defined by

σ(r, E) = σc(r, E) +
1

4π

∫

R+

∫

S2

σs(r, E,E′,Ω,Ω′) dΩ′ dE′ + σf (r, E) .

We insert this expression of σ in the left-hand side of (4.36) and integrate both sides

of the equation over space, energy and direction to get

∫

V

∫

R+

∫

S2

Ω · ∇Ψ(r, E,Ω) dΩ dE dr

+

∫

V

∫

R+

∫

S2

[σc(r, E) + σf (r, E)]Ψ(r, E,Ω) dΩ dE dr

+
1

4π

∫

V

∫

R+

∫

S2

∫

R+

∫

S2

σs(r, E,E′,Ω,Ω′)Ψ(r, E,Ω) dΩ′ dE′ dΩ dE dr

=
1

4π

∫

V

∫

R+

∫

S2

∫

R+

∫

S2

σs(r, E
′, E,Ω′,Ω)Ψ(r, E′,Ω′) dΩ′ dE′ dΩ dE dr

+ λ

∫

V

∫

R+

∫

S2

χ(r, E)

∫

R+

1

4π
ν(r, E′)σf (r, E

′)
∫

S2

Ψ(r, E′,Ω′) dΩ′ dE′ dΩ dE dr .

By changing the order of integration, we see that the two scattering terms are equal and

can be eliminated. The integrand of the fission term is independent of the outgoing

travel direction Ω, allowing us to simplify the integral. Now, assuming the fission

integral is non-zero (this is true for problems of physical interest since the angular flux

is strictly positive in the interior of the reactor and χ, ν and σf are non-negative and

non-zero), we can divide by 〈FΨ〉 to obtain

λ =
〈LΨ〉+ 〈AΨ〉

〈FΨ〉 , (4.37)
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where

〈LΨ〉 :=

∫

V

∫

R+

∫

S2

Ω · ∇Ψ(r, E,Ω) dΩ dE dr ,

〈AΨ〉 :=

∫

V

∫

R+

∫

S2

[σc(r, E) + σf (r, E)]Ψ(r, E,Ω) dΩ dE dr , and

〈FΨ〉 :=

∫

V

∫

R+

χ(r, E)

∫

R+

ν(r, E′)σf (r, E
′)
∫

S2

Ψ(r, E′,Ω′) dΩ′ dE′ dE dr .

An alternative way to look at this estimate for λ is to consider the Rayleigh quotient

ρ =
〈f, (T − S)Ψ〉

〈f,FΨ〉 , (4.38)

where f is the constant function of unity on V × R
+ × S

2 and the inner product is

given by

〈f, g〉 =

∫

V

∫

R+

∫

S2

f(r, E,Ω)g(r, E,Ω)dΩ dE dr .

A different eigenvalue estimate can be obtained by applying f = Ψ∗ , where Ψ∗ is an

approximation to the solution of the adjoint problem. This choice is used in variational

variance reduction (VVR) methods that have been studied, for example, in [11, 27].

We will focus in this chapter on criticality estimates obtained from (4.37) which, as we

show now, can be evaluated easily when using Monte Carlo methods.

To illustrate this we rewrite the term 〈LΨ〉 in the numerator by using that ∇ ·Ω = 0

and applying the divergence theorem (with n(r) denoting the outward normal at r),

such that

〈LΨ〉 =

∫

V

∫

R+

∫

S2

(
Ω · ∇Ψ(r, E,Ω) + Ψ(r, E,Ω)(∇ ·Ω)

)
dΩ dE dr

=

∫

R+

∫

S2

∫

V
∇ ·
(
Ψ(r, E,Ω)Ω

)
dr dΩ dE

=

∫

R+

∫

S2

∫

∂V

(
Ψ(r, E,Ω)Ω

)
· n(r) dr dΩ dE

=

∫

∂V

∫

R+

∫

S2

Ψ(r, E,Ω)
(
Ω · n(r)

)
dΩ dE dr .

This is exactly the amount of flux that crosses the outer boundary. In the case of

vacuum boundary conditions (1.6), where

Ψ(r, E,Ω) = 0 when Ω · n(r) < 0 , r ∈ ∂V ,

〈LΨ〉 consists purely of neutrons that leave the system and is therefore called leakage.
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In the case of reflective boundary conditions (1.7), where

Ψ(r, E,Ω) = Ψ(r, E,Ω′) when Ω · n(r) < 0 , r ∈ ∂V .

the term 〈LΨ〉 becomes zero.

The integral 〈AΨ〉 contains the neutrons that are absorbed due to capture and fission

events. Note that a fission is considered physically as the absorption of a neutron and

the subsequent release of two to four new neutrons.

The denominator 〈FΨ〉 of (4.37) contains the amount of newly produced neutrons from

fission events. Therefore, we can describe λ in words as

λ =
neutrons lost due to leakage + neutrons lost by absorptions

neutrons gained from fission events
. (4.39)

Hence, when using Monte Carlo methods, we are able to obtain an estimate for λ by

simply counting how many neutrons

1. leave the system through the outer boundary (leakage),

2. are absorbed (either due to capture or when causing a fission), and

3. how many neutrons are produced in fission events.

This idea is rather simple but we still need to describe some details as to where to

start neutrons from and when to stop the counting. If we were to follow every starting

neutron and its fission products until they are absorbed or leave the system, we would

expect for (super)critical problems to never finish tracking since the number of neutrons

in the system does not decrease. To avoid this, we introduce a concept of neutron

generations that correspond to different sets of neutrons which we will call batches.

The process can be interpreted as a Monte Carlo way of performing the power method

from Algorithm 1. Algorithm 6 gives an overview of the different steps. We describe

these now in more detail.

We start with an initial source Q(0) which can be obtained from an initial flux distri-

bution Ψ(0). Finding a good initial guess greatly helps to speed the convergence of the

power method up (and hence to reduce the runtime of the Monte Carlo method), but

can sometimes be very difficult. A simple approach is to assume a uniform flux in all

the regions with fissile material. As we are solving an eigenvalue problem, we can scale

the flux arbitrarily. This initial flux then gives rise to the initial source Q(0) = FΨ(0) .
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Algorithm 6 Power method – Monte Carlo approach

Require: Starting guess Q(0) = FΨ(0) .
for i=0,1,2,. . . do

Solve (T − S)Ψ̃(i+1) = Q(i) by computing Ψ̃(i+1) =
∑∞

k=0Ψ
(i+1)
[k] ,

where Ψ
(i+1)
[k] := (T −1S)kT −1Q(i) .

Compute Q̃(i+1) = FΨ̃(i+1) .
Estimate λ(i+1) via (4.39).
Obtain Q(i+1) by normalisation of Q̃(i+1) .

end for

We now pick n neutrons which determine our first batch and distribute them according

to the initial source Q(0). If we are only interested in the criticality value λ and not in

the flux shape Ψ, we can efficiently combine the solution of the source problem

(T − S)Ψ̃(i+1) = Q(i) (4.40)

by the source iteration (4.24), i.e. computing an approximation of

Ψ̃(i+1) =
∞∑

k=0

Ψ
(i+1)
[k] , where Ψ

(i+1)
[k] = (T −1S)kT −1Q(i) , (4.41)

and the computation of the new source

Q̃(i+1) = FΨ̃(i+1) . (4.42)

This is done by using a Monte Carlo approach that models what happens in the real

world. Particles emerge from the source Q(i) according to the source distribution and

are tracked to their first collision. Assuming this collision point lies within the reactor,

we add w/(σdV dΩ) to the flux Ψ̃(i+1). This contribution corresponds to Ψ̃
(i+1)
[0] in

(4.41). Now three different events can happen: (i) the neutron is scattered; (ii) the

neutron causes a fission; and (iii) the neutron is captured.

We saw in (4.32) that the neutrons arriving at r will scatter with probability σs/σ. We

also know from (4.42) that we have to apply the fission operator to the flux Ψ̃(i+1) in

order to obtain the source Q̃(i+1) = FΨ̃(i+1) for the next iteration. We can immediately

evaluate the current particle’s contribution to FΨ̃(i+1) in the way described in (4.35)

by considering the probability σf/σ that the neutron causes a fission event.

We now combine these two steps by picking a random number ξ ∈ U(0, 1) and checking

in which part of the unit interval ξ falls, as shown in Figure 4.4.
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capturescatter fission

Figure 4.4: The location of the random number determines which kind of collision happens.

If a capture occurs, we stop tracking this particle which then only contributed to Ψ̃(i+1)

via the term Ψ̃
(i+1)
[0] = T −1Q(i) in (4.41). If the random number predicted a scatter,

we pick a new travel direction and follow the particle to the next collision where we

repeat the above process. In the case of a fission event we stop tracking this particle but

create ν new neutrons whose exact positions are stored in the new source Q̃(i+1). This

process is repeated until all n particles are either captured, left the system or caused

a fission event. By obtaining the new source Q̃(i+1) we have thus solved (4.40) and

(4.42). Therefore, tracking all particles of one batch can be interpreted as performing

one outer iteration of the power method.

Note also that by storing the exact location of the fission events and restarting the

neutrons from these positions, we remove the dependence on a spatial and angular

mesh for the criticality calculation. The discretisation, i.e. the spatial and angular

bins, are only needed if, in addition to the eigenvalue, an estimate of the angular flux

is desired. If this is not the case, we do not need to compute the flux Ψ̃(i+1) and only

store the exact positions of the new fission neutrons in Q̃(i+1).

We now know that we “lost” n particles and by counting the number of particles in the

source Q̃(i+1), we can obtain an estimate of the criticality via (4.39). In order to easily

compute an estimate for the standard deviation of our results via (4.8), we consider

instead of λ its reciprocal

k =
1

λ
=

neutrons gained from fission events

neutrons lost due to leakage + neutrons lost by absorptions
. (4.43)

We can even obtain for every single simulated particle a (very bad) estimate for k.

Let X denote the discrete random variable that gives via (4.43) for every neutron the

number of secondary particles. If the source is derived from the time-independent flux

distribution, the expectation of this random variable is E[X] = k .

Let x
(i)
j denote now the estimate of k for the simulated neutron j in batch (or iteration)

i. The values that the discrete random variable X
(i)
j can attain are either zero (if the

neutron leaves the system or is captured), or two, three or four, depending on the

number of newly produced neutrons in the case of a fission.
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We now define the average of the i-th batch as

ki =
1

n

n∑

j=1

X
(i)
j .

This sample mean ki is an estimator for k and realisations can be obtained by using the

data, i.e. the number of produced fission neutrons, in the i-th batch. Assuming that the

X
(i)
j are independent and identically distributed with E[X

(i)
j ] = E[X] the probability

theory from Section 4.2 tells us that ki, as a random variable, is for sufficiently large

n approximately Gaussian with variance σ2[ki] = σ2[X]/n and expectation E[ki] =

E[X] . Therefore, if n is large, we expect a realisation of ki, i.e. a realisation of the

sample mean computed from n simulated particles originating from the steady-state

source FΨ, to be a good estimate of E[X] = k .

However, recall that we perform a form of the power method and that the eigenvalue

approximations that we obtain depend on the accuracy of the source Q(i) = FΨ(i) .

As we started the neutrons from an initial distribution that is unlikely to equal the

correct neutron flux, we are not simulating the true behaviour of the physical system

for small i. Therefore our estimate for the criticality will not be correct in those cases.

The physical motivation to overcome this problem is to follow enough batches so that

the particles can move around and cause fissions that represent the time-independent

source “accurately enough”. This corresponds mathematically to the convergence of

the power method to the correct flux shape. In a deterministic solver the iteration

would now be finished and the obtained flux would be used to estimate the eigenvalue

via a Rayleigh quotient.

However, in the Monte Carlo approach these settling stages to “converge the source”

are only the first part of the criticality computation. Knowing how many settling stages

are needed is difficult and poses a major challenge for many practical problems. Several

acceleration techniques have been developed over the years, such as the Wielandt ac-

celeration discussed in [125] (which is related to shifted inverse iteration in Algorithm

2), or schemes that combine the Monte Carlo approach with deterministic methods

(e.g. the p-CMFD method, see [126]). For further information on acceleration methods

for neutron transport criticality problems we refer the reader to the thesis [117].

Assuming that the source is converged to its steady-state form (confirming which is

another major challenge when using Monte Carlo methods), we now reduce the statis-

tical uncertainty in our criticality estimate by averaging the ki from all the following

batches. This part of the calculation is denoted as the scoring stages and assuming we
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use s batches, the final estimate for λ = 1/k is then obtained from the estimator

ks =
1

s

s∑

i=1

ki .

Note that using the fission birth neutrons from the previous iteration as the new source

in the next batch and normalising the source introduces a bias and correlations between

the batches which leads to the underestimation of the confidence intervals. This prob-

lem has been discussed, for example, in [17], where it is shown that the bias in k is of

the order n−1 and the bias in the variance is of the order (ns)−1. The paper [17] also

presents strategies such as superhistory powering to overcome these difficulties.

As we saw in Section 4.2, Monte Carlo methods allow to easily obtain an estimate for

the standard deviation which then gives an indication of the accuracy of the computed

solution. By simply counting the squares of the realisations x
(i)
j of X

(i)
j , we can use

(4.8) to obtain an estimate of σ[X]. This estimate can then be used to get a confi-

dence interval for the criticality estimate via (4.9) as we will show on page 115 for our

numerical results.

In order to normalise the source to start exactly n neutrons in every iteration, we

randomly remove neutrons from Q̃(i+1) (in the case of too many produced neutrons)

or multiply them (if there are too few neutrons). This ensures that we pick physically

sensible positions but also introduces a bias. As we are choosing the direction of travel

randomly in the next step, the new neutrons should travel in different directions so

that we obtain different information from different neutrons.

We claimed above that the biggest strength of the Monte Carlo method is being able to

deal with complicated geometries but so far we have only considered the homogeneous

case. In the following we will describe how heterogeneous problems are dealt with.

Obtaining the travel distance d via (4.17) only holds as long as σ does not change,

i.e. as long as the neutron remains in the same material. We therefore check in the

heterogeneous case if d is larger than the distance from the current position of the

particle to the boundary of the next material. If this happens, we set the neutron

to the intersection point on the material boundary and compute the new distance by

generating a new random number and repeating the above process. The reason that

we can use a new random number is the “memoryless property” of the exponential.

Let again P [X ≥ d] = e−σd be the probability that the neutron travels a distance

X ≥ d without having a collision. We now ask for the probability of travelling a

distance dB + x provided that it already travelled a distance dB. This conditional
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probability is denoted by P [X ≥ dB + x | X ≥ dB] and can be computed as

P [X ≥ dB + x | X ≥ dB] =
P [{X ≥ dB + x} ∩ {X ≥ dB}]

P [X ≥ dB]

=
P [X ≥ dB + x]

P [X ≥ dB]

=
e−σ(dB+x)

e−σdB
= e−σx = P [X ≥ x] .

So if we know that the particle reached the next boundary (i.e. that it travelled a

distance dB), the probability that it then travels a further distance x is the same as

if we restarted the particle at the new boundary. For the next material we now use

the new σ and repeat the tracking process from the new point on the boundary. This

approach can be very slow for complicated geometries with rapidly varying material

zones. To avoid this problem commercial codes use an acceleration scheme called

Woodcock tracking (see [123] for the original reference).

Other extensions of the above Monte Carlo approach, such as including the energy

dependence, are also reasonably straightforward but will not be discussed here.

4.5 Numerical results

The numerical results for the Monte Carlo method that we present here use the same

data as the discrete ordinates method. This allows us to compare the Monte Carlo

results to the discrete ordinates results since we expect both methods to converge to

the same results when the number of spatial and angular mesh points, as well as the

batch size, tend to infinity.

We choose the same spatial and angular mesh for the statistical sampling of the flux

that we use for the deterministic method. Despite this, we cannot expect the two

approaches to give the same results for a given number of spatial and angular intervals,

as they are very different methods.

4.5.1 Numerical results for source problems

We start with comparing the numerical solutions for a 1D source problem T Ψ = Q

when applying the discrete ordinates method from Section 3.3.3 and the analog Monte

Carlo approach discussed in Section 4.3.1. We test different numbers of spatial and

angular bins against varying numbers of particles that we sent off. We also change the
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source Q to allow for a partly negative source to simulate problems that will occur in

an iterative method discussed in Chapter 5.

Let us begin with considering how the accuracy of the Monte Carlo method for a source

problem depends on the number of mesh elements chosen. The graphs in Figure 4.5

show the scalar fluxes that we obtain when using Monte Carlo (φMC) and a discrete

ordinates approach (φSN) for different numbers of spatial intervals (M) and angular

directions (2N). The problem that is solved is

T Ψ(z, µ) = Q(z, µ)

with a uniform and isotropic source Q(z, µ) = 1/2 for all z ∈ [0, L] and µ ∈ [−1, 1] ,

where the cross-section data is again taken from the Los Alamos benchmark test set

problem number 2 which we introduced in Section 3.3.1.
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(c) M = 64, N = 32, n = 227
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Figure 4.5: Shape of the scalar flux when using a Monte Carlo (φMC) and a discrete ordinates
(φSN) approach for different discretisations.
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The plots suggest that for small M and N , the two methods give noticeably different

results, but that the two curves get closer together when the mesh is refined. Note that

we used for the Monte Carlo method n/(2MN) = 32768 particles per mesh element

to produce the graphs. We now show that the accuracy of the Monte Carlo solution

depends strongly on the number of particles that are used. The plots in Figure 4.6

indicate that for small numbers of particles per mesh element the results contain a

large amount of uncertainty.
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Figure 4.6: Shape of the scalar flux when using a Monte Carlo (φMC) and a discrete ordinates
(φSN) approach for different numbers of particles.

Table 4.7 emphasises that the results improve for growing M , N and n. The entries in

the table represent ∫ L

0
|φMC(z)− φSN(z)| dz

for different mesh refinement numbers M and N and varying numbers of particles n.

Comparing the values for a fixedM and N , say M = 512 and N = 256 with increasing
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M N n = 213 215 217 219 221 223 225 227

8 4 0.4537 0.4878 0.4538 0.4619 0.4669 0.4683 0.4643 0.4650

16 8 0.3325 0.2801 0.2577 0.2536 0.2607 0.2626 0.2624 0.2615

32 16 0.5989 0.2247 0.1989 0.1596 0.1402 0.1415 0.1429 0.1416

64 32 0.7371 0.3354 0.1656 0.1061 0.0817 0.0722 0.0752 0.0736

128 64 1.1173 0.5309 0.2654 0.1469 0.0753 0.0455 0.0388 0.0375

256 128 1.5672 0.7232 0.3966 0.1786 0.0915 0.0482 0.0262 0.0221

512 256 2.1006 1.0703 0.5031 0.2653 0.1252 0.0652 0.0334 0.0184

1024 512 2.8476 1.4301 0.7621 0.3627 0.1858 0.0938 0.0478 0.0237

Table 4.7: Size of the integral between the scalar fluxes obtained using a discrete ordinates
and a Monte Carlo approach for different mesh refinements and different numbers of particles.

n, we see that the difference between the two results roughly halves when we quadruple

the number of particles. This agrees with the result (4.9) for the “convergence” of Monte

Carlo, which says that the expected error should decrease with order n− 1
2 .

On the other hand, for smaller mesh numbers such as M = 32 and N = 16 , the terms

decrease initially but then stagnate at about 0.14, even if we keep increasing the batch

size. This is due to the discretisation error in φSN.

Looking at the final column in the table we note that the difference between the two

approaches roughly halves when doubling the number of spatial and angular points.

The increase from the penultimate to the final row is most likely due to the larger

uncertainty in the Monte Carlo solution resulting from not starting enough particles

to reduce the variance sufficiently.

Table 4.8 shows that the computing time of the Monte Carlo method grows linearly

with the number of particles. If we want to double the number of spatial and angular

intervals, we need to take four times as many neutrons in our Monte Carlo implemen-

tation to keep the variance of the solution at the same level. This leads to a growth of

the computing time of roughly four.

On the other hand, if we apply the same mesh refinement in our discrete ordinates

approach, the growth in computing time for the solution of the linear system is bigger

than a factor of four. In our example we used GMRES with an LU preconditioner (t
(i)
SN1)

which gave a growth factor of about 16 for larger problems. Using GMRES without

a preconditioner (t
(i)
SN2) but restarts after 1000 iterations, lead for some i to a smaller

growth factor but overall to longer run times. These results suggest that for very high

levels of detail the Monte Carlo solution will be computationally more efficient than a

discrete ordinates approach.
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i M N n t
(i)
MC

t
(i)
SN1

t
(i)
SN2

t
(i)
MC

t
(i−1)
MC

t
(i)
SN1

t
(i−1)
SN1

t
(i)
SN2

t
(i−1)
SN2

1 8 4 213 0.7 0.1 0.1

2 16 8 215 2.3 0.0 0.3 3.36 0.09 2.76

3 32 16 217 9.1 0.0 3.1 3.93 2.70 12.06

4 64 32 219 36.8 0.2 99.8 4.06 15.43 31.93

5 128 64 221 148.5 3.6 1915.9 4.03 15.66 19.20

6 256 128 223 604.8 55.1 20822.8 4.07 15.20 10.87

7 512 256 225 2512.4 875.9 231638.8 4.15 15.90 11.12

8 1024 512 227 10691.4 13879.9 4.26 15.85

Table 4.8: Comparison of the computing times needed (in seconds) to solve the source problem
T Ψ = Q for increasing levels of detail.

The next results in Figure 4.9 are for different isotropic sources. The first source Q1 is

the Heaviside function

Q1(z, µ) =

{
1/2 if z ≤ L/2

0 if z > L/2 .

The second test case considers an approximation of the δ-function to represent a point

source at the centre of the reactor with
∫ L
0

∫ 1
−1Q2(z, µ) dµ dz = 1 , given by

Q2(z, µ) =

{
M/2 if L/2− 1/(2M) ≤ z ≤ L/2 + 1/(2M)

0 otherwise .

We also test a source that contains negative components denoted by

Q3(z, µ) =





1/2 if 0 ≤ z ≤ L/4

−1/2 if L/4 < z ≤ L/2

1/2 if L/2 < z ≤ 3L/4

−1/2 if 3L/4 < z ≤ L .

The very good results for the point source Q2 are due to all neutrons starting from the

interval around L/2. Similarly, the results for Q1 are better than for Q3 since in the

first case particles are only started from the left half of the slab while the same number

of neutrons is distributed over the full slab in the final example.

4.5.2 Convergence of source iteration

We will now consider the convergence properties of the source iteration defined in (4.24)

for problems of the form

(T − S)Ψ = Q .
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Figure 4.9: Spatial shapes
∫ 1

−1
Qi(z, µ) dµ for the sources Qi (left) and the scalar fluxes (right)

obtained from the solution to the source problems TΨ = Qi when using a Monte Carlo (φMC)
and a discrete ordinates (φSN) approach.
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In Lemma 4.4 we showed that

‖φ− φ(i+1)‖L2(V ) ≤ σs
σ

‖φ− φ(i)‖L2(V ) .

This suggests that the scattering ratio σs/σ might influence the convergence of the

iterative scheme. We now provide numerical results for different scattering ratios when

using the discrete ordinates scheme from Section 3.3.3 to arrive at a matrix form of the

source iteration, i.e.

TΨ(i+1) = Q+ SΨ(i) . (4.44)

As solver for the linear problems we use again the GMRES function in Matlab with an

LU factorisation as preconditioner and demand an inner tolerance of 10−14. We stop

the source iteration when the norm of the residual res(i) = (T − S)Ψ(i) − Q is less

than 10−10. As starting guess we use Ψ(0) = 0 .

Table 4.10 shows results for different ratios σs/σ . The column i denotes the iteration

number in which the norm ‖res(i)‖ , stated in the last column, was obtained. The

entries r∞ and r2 are the mean values of the ratios

‖PΨ− PΨ(i+1)‖∞
‖PΨ− PΨ(i)‖∞

and
‖PΨ− PΨ(i+1)‖2
‖PΨ− PΨ(i)‖2

,

where P is the discrete version of the projection operator and Ψ is the solution of the

source problem.

M N σs/σ i r∞ r2 ‖res(i)‖

128 64 0.0100 7 0.0067 0.0067 1.65E-11

128 64 0.1000 12 0.0666 0.0665 2.07E-11

128 64 0.5000 27 0.3337 0.3336 7.07E-11

128 64 0.9000 57 0.6002 0.6001 6.74E-11

128 64 0.9500 63 0.6335 0.6334 9.09E-11

128 64 0.9900 69 0.6601 0.6601 9.58E-11

128 64 0.9990 71 0.6662 0.6661 7.93E-11

128 64 1.0000 71 0.6669 0.6668 8.51E-11

128 64 1.1000 92 0.7334 0.7334 9.95E-11

128 64 2.0000 1000 1.3333 1.3333 1.53E+127

Table 4.10: Convergence results of the source iteration (4.44) for different ratios σs/σ .

The results in Table 4.10 show that the rate of decrease in the norm of the error from

one iteration to the next, indicated by r∞ and r2, does depend on the ratio σs/σ. This

leads for the (nonphysical) case σs = 2σ to a failure of the source iteration to converge

(see the final row of the table).

We now briefly indicate the convergence difficulties when σ → ∞ and σs/σ → 1 .
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This situation is known as the diffusion limit as (4.20) becomes singular and its solution

tends to a solution of a diffusion equation [73, 82]. The physical equivalent is a problem

with a strong scatterer and small capture probability. We simulated the problem by

multiplying σ and σs each with the scaling factor β, keeping the ratios σs/σ as in Table

4.10. Table 4.11 shows the results for a fixed value of β = 100 .

M N β σs/σ i r∞ r2 ‖res(i)‖

128 64 100 0.0100 8 0.1469 0.0268 1.95E-12

128 64 100 0.1000 14 0.1663 0.0971 1.72E-11

128 64 100 0.5000 42 0.5045 0.4972 7.86E-11

128 64 100 0.9000 268 0.8997 0.8992 9.82E-11

128 64 100 0.9500 548 0.9499 0.9495 9.78E-11

128 64 100 0.9900 1000 0.9900 0.9897 5.69E-03

128 64 100 0.9990 1000 0.9989 0.9988 4.85E+01

128 64 100 1.0000 1000 0.9998 0.9998 1.32E+02

128 64 100 1.1000 1000 1.0993 1.0995 3.26E+43

128 64 100 2.0000 1000 1.9989 1.9991 1.41E+303

Table 4.11: Convergence results of the source iteration (4.44) for different ratios σs/σ and a
scaling factor β = 100 to model the difficulties for problems with strong scatterers.

When σs/σ → 1 the values for r∞ and r2 in the table get close to the scattering

ratio σs/σ and lead to very slow convergence as indicated by the theory. A popular

acceleration method to overcome this problem is diffusion synthetic acceleration (DSA)

which uses a diffusion equation to compute a correction term to the source iteration

solution (see [3, 7, 19] and references therein). In [34] it is shown that diffusion synthetic

acceleration for the scalar flux problem is equivalent to applying a preconditioner based

on the Green’s function of a diffusion operator to the Neumann series solution of (4.25).

4.5.3 Numerical results for criticality computations

We now consider numerical results when the Monte Carlo method is used to estimate

the criticality as described in Section 4.4. We use again the Los Alamos model problem

number 2.

The first example considers a batch size of n = 1000 while the number of settling and

scoring stages are set to ss = 20 and sc = 200 respectively. The left plot of Figure

4.12 shows the estimated λi = 1/ki for each of the 220 batches. The dashed vertical

line denotes the end of the 20 settling and the begin of the 200 scoring stages while the

horizontal dashed line denotes the true eigenvalue λ∗ = 1 of the problem.
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Figure 4.12: Results for the individual λi and cumulative λs criticality estimates for n = 1000 ,
ss = 20 settling and sc = 200 scoring stages.

The right plot contains the cumulative criticality value λs = 1/ks during the settling

and scoring stages, computed from

ks =
1

s

s∑

i=1

ki .

The individual λi vary around the true λ∗ and the cumulative λs seems to settle. The

final estimate is λ = 1.0029 and the estimate for the standard deviation from (4.8)

gives S ≈ 1.79 . Analogously to (4.9) (and ignoring any bias), we can use these values

to construct a 99.7% confidence interval of [1.0029 − 0.0121, 1.0029 + 0.0121] . This

means that, in the long run, 99.7% of intervals constructed in this way will contain the

true value λ∗. We shall denote this in the future as λMC = 1.0029± 0.0121 .

We now vary the number of particles n in each batch to 100, 10000 and 100000. Figure

4.13 contains the plots of the results.

As expected the estimates improve for larger batch sizes (note the scaling of the y-axis).

The final approximations λMC for different values of n, together with the dimensions of

the corresponding confidence intervals, are given in Table 4.14.

n ss sc λMC |λ∗ − λMC| S 3S√
n·sc

100 20 200 1.025326 0.025326 1.80 0.038119

1000 20 200 0.999196 0.000804 1.79 0.012026

10000 20 200 1.000155 0.000155 1.79 0.003793

100000 20 200 1.000201 0.000201 1.78 0.001194

1000000 20 200 0.999983 0.000017 1.79 0.000380

Table 4.14: Criticality estimates from Monte Carlo calculations for different batch sizes n.
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(b) n = 100, ss = 20, sc = 200
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(c) n = 10000, ss = 20, sc = 200
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(d) n = 10000, ss = 20, sc = 200
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(e) n = 100000, ss = 20, sc = 200
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(f) n = 100000, ss = 20, sc = 200

Figure 4.13: Results for the individual λi and cumulative λs criticality estimates using dif-
ferent batch sizes.
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Instead of increasing the batch size, we can also increase the number of scoring stages

to reduce the uncertainty on the result. Figure 4.15 considers the case n = 1000, ss =

20, sc = 10000 . The final result is λMC = 1.000049± 0.0017 .
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(a) n = 1000, ss = 20, sc = 10000
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(b) n = 1000, ss = 20, sc = 10000

Figure 4.15: With growing number of scoring stages the eigenvalue estimate λs becomes more
accurate.

Table 4.16 contains criticality estimates from Monte Carlo calculations and includes the

computing times needed. The table focusses on the case when the number of particles

in each batch, as well as the number of scoring stages, is doubled from one row to the

next.

n ss sc λMC |λ∗ − λMC| S 3S√
n·sc

t
(i)
MC

t
(i)
MC

t
(i−1)
MC

20 100 20 0.930233 0.069767 1.78 0.266722 0.5

40 100 40 1.040312 0.040312 1.81 0.136114 0.6 1.3

80 100 80 1.005657 0.005657 1.85 0.069466 1.5 2.4

160 100 160 0.986095 0.013905 1.78 0.033292 4.0 2.7

320 100 320 1.006279 0.006279 1.78 0.016706 12.7 3.1

640 100 640 1.000836 0.000836 1.78 0.008364 42.9 3.4

1280 100 1280 0.999427 0.000573 1.78 0.004178 160.6 3.7

2560 100 2560 0.999114 0.000886 1.78 0.002091 626.9 3.9

5120 100 5120 0.999787 0.000213 1.79 0.001046 2446.2 3.9

10240 100 10240 1.000167 0.000167 1.79 0.000523 10232.0 4.2

20480 100 20480 1.000076 0.000076 1.79 0.000262 42820.4 4.2

Table 4.16: Criticality estimates from Monte Carlo calculations for different batch sizes n and
increasing numbers of scoring stages sc.

The size of the estimate S/
√
n · sc , which determines the width of the confidence

interval, halves, as expected, with every test, but the actual error |λ∗ − λMC| does

not follow such a strict reduction. It even increases twice when doubling n and sc

compared to the previous test. This is typical for Monte Carlo calculations and is a

major difference to working with deterministic methods. If we wanted to observe a

117



Chapter 4. Monte Carlo methods in neutron transport theory

more reliable decrease in the actual error, we would need to repeat the tests several

times and take the average of the results.

We will now finish this chapter by comparing the computing time and obtained accuracy

of the Monte Carlo method to the discrete ordinates schemes that we introduced in

Section 2.4.1 and 2.4.2. For the deterministic methods the resulting matrix eigenvalue

problem is solved by inexact inverse iteration using the special Rayleigh quotient ρ̃.

The inner and outer tolerances were set to 10−10 and 10−14 respectively. To solve

the arising linear systems we used again GMRES with an LU factorisation of T as

preconditioner.

Table 4.17 contains the observed error in the results of the discrete ordinates methods

with respect to the number of spatial and angular intervals for the Los Alamos test

problem, as well as the computing time that was needed to solve the eigenvalue problem.

M N |λ∗ − λSE

SN| t
(i)
SE

t
(i)
SE

t
(i−1)
SE

|λ∗ − λCN

SN| t
(i)
CN

t
(i)
CN

t
(i−1)
CN

4 2 0.124067 0.1 0.070584 0.3

8 4 0.068751 0.1 1.0 0.011292 0.1 0.2

16 8 0.034248 0.1 1.4 0.002248 0.1 1.4

32 16 0.017137 0.2 1.9 0.000537 0.2 2.0

64 32 0.008588 0.7 3.2 0.000133 0.7 3.9

128 64 0.004301 4.7 6.8 0.000034 4.6 7.0

256 128 0.002152 56.3 12.0 0.000010 55.5 12.0

512 256 0.001076 819.5 14.5 0.000004 858.4 15.5

1024 512 0.000537 12291.0 15.0 0.000002 12376.7 14.4

Table 4.17: Comparison of the discretisation error of the symmetry preserving Euler scheme
λSE

SN
and the Crank-Nicolson scheme λCN

SN
for the Los Alamos problem.

The table shows that the discretisation error halves for the symmetry preserving Euler

scheme when the number of spatial and angular mesh points are doubled, i.e. that

we obtain linear convergence for this scheme. For the Crank-Nicolson approach the

convergence of the discretisation error is quadratic which agrees with the discretisation

error estimate in Theorem 2.38.

Let us now compare the error of the deterministic methods for the finest mesh M =

1024 , N = 512 with the Monte Carlo result corresponding to a similar amount of

computing time (n = ss = 10240 ). We observe that the Crank-Nicolson scheme yields

the most accurate result, while the actual errors in the Monte Carlo and symmetry

preserving Euler methods are of similar sizes. Comparing the growth in time in Tables

4.16 and 4.17, we note that the times for the Monte Carlo computations are multiplied

by four from one row to the next. The growth for the deterministic approaches lies
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between 12 and 16 for large systems. We observed the same situation in Table 4.8 for

the solution of a source problem, where the growth factor appeared to approximate 16.

Therefore, we expect that in order to obtain very accurate results the Monte Carlo

method will be more efficient than using the symmetry preserving Euler scheme. In

addition, the Monte Carlo computations can be performed easily and efficiently in

parallel while this is a more challenging task for the deterministic methods.

Note that, while we get from a deterministic calculation the same result every time we

run the problem, the Monte Carlo method gives us an expected value and a confidence

interval which will include the true value with a certain probability (99.7% in our case).

Even if we reduced the width of the interval to an acceptable size for our problem, there

is a 0.3% chance that the true value will lie outside this range. Hence to be sure that

the obtained estimate for the criticality value is accurate, we would need to repeat

the experiment several times. Therefore, getting accurate results from Monte Carlo

computations is computationally very expensive. As we will see in the next Chapter,

this property of Monte Carlo methods can lead to difficulties if we are interested in the

difference in the criticality between two similar problems.
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Method of perturbation

In this chapter we discuss a new iterative method to compute the criticality of a nu-

clear reactor. The idea is to compute the change in the eigenvalue and corresponding

eigenfunction as a perturbation from a known eigenpair of a previously solved problem,

rather than solving directly for the eigenpair of the new problem.

First and second order perturbation theory has been applied to neutron transport

problems for many years (e.g. [54]) and an extensive review and summary on this topic

is given in [49]. The perturbation approach considered here, the so-called “method of

perturbation”, differs from standard perturbation techniques in the sense that we work

with exact rearrangements of the governing equations and do not drop higher order

terms. For this reason there is no a priori requirement that the perturbation should be

“small”. The resulting new iterative method, which was developed at Serco Technical

and Assurance Services, has been presented briefly in [59].

We motivate and describe the method of perturbation in the first section before relat-

ing it in the following section to standard eigenvalue methods from Section 3.1. By

applying a similar convergence analysis as in Section 3.2 to a variation of shifted inverse

iteration, and using its relation to the method of perturbation, convergence results for

the new method are obtained. These show how guaranteed convergence of the method

of perturbation does depend (despite using exact equations) on the size of the pertur-

bation as well as the accuracy of the solutions for the inner problems. We will show

that even for exact solves convergence is only guaranteed if the perturbations are not

too large.

We then describe a variation of the method that is used in practice, before giving

numerical results to support the theory. We suggest, motivated by the analysis, an
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adjustment to the method of perturbation, which resulted in practice in less restrictive

demands on the accuracy of the inner solves for the numerical examples considered. We

finish the chapter with some remarks on efficient implementations of the inner solver.

5.1 Motivation of the method of perturbation

The main motivation for the following approach results from the high computational

costs when Monte Carlo methods are used to solve two similar criticality problems.

Nuclear engineers are frequently interested in the change of criticality (i.e. the change

in the principal eigenvalue λ) due to modifications of a certain reactor design. This

usually requires computing solutions to many perturbed problems.

One popular example for such a situation is the testing of different material compo-

sitions in a part of the reactor. The control rod problem from Section 3.3.2 may be

considered as such a case: When the absorber rods are lowered into the water channels,

the resulting variation in the material composition leads to a change in the criticality

and the shape of the flux distribution. The nuclear engineer wants to be able to predict

these changes for different insertion depths.

As discussed in Section 4.4, when using the Monte Carlo method to compute the

eigenvalue, the engineer obtains a confidence interval for the true λ. To solve the

(unperturbed) base problem and the perturbed problem independently, and to then

compute a meaningful difference between the confidence intervals for the eigenvalues,

demands large sample sizes and therefore long computing times. The idea of the method

of perturbation is to solve “explicitly” for the change in the eigenvalue, i.e. without

computing the eigenpair of the base problem and the perturbed problems individually

and then taking the difference. We now describe the method in more detail.

Let us assume that we know the principal eigenpair (λ0,Ψ0) , with real and strictly

positive λ0 and Ψ0, for the base problem

(T0 − S0)Ψ0 = λ0F0Ψ0 ,

subject to suitable boundary conditions. Then equivalently,

(T0 − S0 − λ0F0)Ψ0 = 0 . (5.1)

We proved in Corollary 2.35 that for the model problems in Section 2.1 such an eigenpair

exists and that this eigenpair is also simple. The more general case is covered in [86].
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We can now consider any other eigenvalue problem

(T − S − λF)Ψ = 0 (5.2)

as a perturbation of the base problem. Denoting the (known) changes in the operators

by ∆T , ∆S and ∆F , the operators of the perturbed problem (5.2) can be expressed as

T = T0 +∆T , (5.3)

S = S0 +∆S , and (5.4)

F = F0 +∆F . (5.5)

Let us write the principal eigenpair (λ,Ψ) of the perturbed problem as

λ = λ0 +∆λ , (5.6)

Ψ = Ψ0 +∆Ψ , (5.7)

where ∆λ and ∆Ψ are to be found.

Furthermore, we assume that we also know the principal eigenpair (λ∗
0,Ψ

∗
0), with real

and positive λ∗
0 and Ψ∗

0, of the adjoint problem to (5.1), i.e. that we have

(T ∗
0 − S∗

0 − λ∗
0F∗

0 )Ψ
∗
0 = 0 . (5.8)

First note that λ0 = λ∗
0 (see also [80, p. 53]). To obtain this result, we multiply (5.1)

with Ψ∗
0, and then integrate over all independent variables, which we denote by the

inner product 〈 · , · 〉 . In addition, we take the inner product of (5.8) with Ψ0, and

then subtract this from the former equation to obtain

0 = 〈Ψ∗
0, (T0 − S0 − λ0F0)Ψ0〉 − 〈Ψ0, (T ∗

0 − S∗
0 − λ∗

0F∗
0 )Ψ

∗
0〉

= 〈Ψ∗
0, (T0 − S0)Ψ0〉 − 〈Ψ0, (T ∗

0 − S∗
0 )Ψ

∗
0〉 − λ0 〈Ψ∗

0,F0Ψ0〉+ λ∗
0 〈Ψ0,F∗

0Ψ
∗
0〉

= (λ∗
0 − λ0)〈Ψ∗

0,F0Ψ0〉 .

However, as Ψ0 and Ψ∗
0 are real and strictly positive, the inner product on the right

is positive for reactors containing fissile material, so that the eigenvalues of the two

problems must agree.

We now use (5.1) to (5.8) to generate two equations for the unknowns ∆λ and ∆Ψ .

122



Chapter 5. Method of perturbation

Proposition 5.1. Assuming 〈Ψ∗
0,F(Ψ0 +∆Ψ)〉 6= 0 , then

(
T − S − (λ0 +∆λ)F

)
∆Ψ = −(∆T −∆S − λ0∆F)Ψ0 + ∆λFΨ0 , and (5.9)

∆λ =
〈Ψ∗

0, (∆T −∆S − λ0∆F)(Ψ0 +∆Ψ)〉
〈Ψ∗

0,F(Ψ0 +∆Ψ)〉 . (5.10)

Proof. From (5.2), and using (5.3) to (5.7), we obtain

0 = (T − S − λF)(Ψ0 +∆Ψ)

= (T0 − S0 − λ0F0)Ψ0 + (∆T −∆S − λ0∆F)Ψ0 −∆λFΨ0 + (T − S − λF)∆Ψ .

Now by applying (5.1) and rearranging the resulting equation, we obtain (5.9). Equa-

tion (5.10) for ∆λ is obtained as follows. From (5.2), and using again (5.1), we get

0 =
(
T − S − (λ0 +∆λ)F

)
Ψ

= (T0 − S0 − λ0F0)(Ψ0 +∆Ψ) + (∆T −∆S − λ0∆F)Ψ−∆λFΨ

= (T0 − S0 − λ0F0)∆Ψ + (∆T −∆S − λ0∆F)Ψ−∆λFΨ .

Moving the last term to the left-hand side and taking the inner product with the adjoint

solution Ψ∗
0 then gives

∆λ〈Ψ∗
0,FΨ〉 = 〈Ψ∗

0, (T0 − S0 − λ0F0)∆Ψ〉 + 〈Ψ∗
0, (∆T −∆S − λ0∆F)Ψ〉

= 〈(T ∗
0 − S∗

0 − λ∗
0F∗

0 )Ψ
∗
0,∆Ψ〉 + 〈Ψ∗

0, (∆T −∆S − λ0∆F)Ψ〉 .

Hence, by using (5.8) and dividing by 〈Ψ∗
0,FΨ〉 6= 0 , we obtain (5.10).

Note that no higher order terms were dropped in the derivation of Proposition 5.1, and

that (5.9) and (5.10) are exact.

We can now use (5.9) and (5.10) to construct iterative schemes. Starting with a guess

for ∆Ψ(0) a new ∆λ(1) can be computed from (5.10). This can then be inserted for

∆λ on the left-hand side of (5.9), while we use for the ∆λ on the right an initial guess

∆λ(0). Solving the resulting equation for ∆Ψ gives an update ∆Ψ(1) which can then

be used to obtain a new ∆λ(2) from (5.10), and the iteration can be continued. The

resulting method is given in Algorithm 7.

The iteration in this, and all following algorithms in this chapter, is again stopped

when the eigenvalue residual

res(i) = (T − S − ρ(i)F)Ψ(i)
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Algorithm 7 Method of perturbation – first version

Require: Base problem solutions λ0, Ψ0, Ψ
∗
0, starting guesses ∆Ψ(0), ∆λ(0).

for i=0,1,2,. . . do

Compute ∆λ(i+1) =
〈Ψ∗

0,(∆T −∆S−λ0∆F)(Ψ0+∆Ψ(i))〉
〈Ψ∗

0,F(Ψ0+∆Ψ(i))〉 .

Obtain ∆Ψ(i+1) by solving(
T − S − (λ0 +∆λ(i+1))F

)
∆Ψ(i+1) = −(∆T −∆S − λ0∆F)Ψ0 +∆λ(i)FΨ0 .

Define Ψ̃(i+1) = Ψ0 +∆Ψ(i+1) .
Obtain Ψ(i+1) by normalisation of Ψ̃(i+1) .

end for

is sufficiently small in some suitable norm, where ρ(i) is the Rayleigh quotient defined

in (3.4).

We observed in the proof of Proposition 5.1 that the right-hand side of (5.9) is just a

rearrangement of −
(
T − S − (λ0 + ∆λ)F

)
Ψ0 . It is therefore important that we do

not use the same estimate for ∆λ on the left and on the right of equation (5.10), since

this would result, for example for ∆λ(i), in a linear system which is equivalent to

(
T − S − (λ0 +∆λ(i))F

)
∆Ψ(i+1) = −

(
T − S − (λ0 +∆λ(i))F

)
Ψ0 .

The unique solution to this problem is ∆Ψ(i+1) = −Ψ0 and the next iterate becomes

then, in the case of an exact solve, Ψ(i+1) = 0 . This constraint is similar to the

situation for inverse correction in Section 3.1.3, where we avoided using the exact

Rayleigh quotient as the shift. We establish in the next section how Algorithm 7

relates to a variation of inverse correction and inverse iteration. Before we do this, let

us consider Figure 5.1 which contains a visualisation of the different methods described

so far.

The major difference between the method of perturbation and the other iterative

schemes lies in the fact that all standard schemes use the current iterate as a basis

to compute the next estimate, while Algorithm 7 always computes corrections to the

initial guess Ψ0 (the base problem solution). The perturbation method solves itera-

tively for ∆Ψ(i) and the hope is that ∆Ψ(i) → ∆Ψ such that Ψ0 + ∆Ψ = Ψ . We

now construct variations of the inverse correction and inverse iteration approach which

produce, under certain conditions, the same iterates as the method of perturbation.

This then allows us to obtain convergence results via a similar analysis as in Section

3.2.
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Figure 5.1: Visualisation of the different iterative methods discussed in Section 3.1 and the
method of perturbation from Algorithm 7.

5.2 Relation to shifted inverse iteration with a fixed right-

hand side

In order to explain the relation between the method of perturbation (Algorithm 7) and

a form of inverse iteration (Algorithm 2, page 53), we use the following variation of

inverse correction (Algorithm 3) as an intermediate step.

Algorithm 8 Inverse correction with a fixed right-hand side

Require: Base problem solution Ψ0, shift α
(0).

for i=0,1,2,. . . do

Choose a shift α(i+1) .
Obtain ∆Ψ(i+1) by solving
(T − S − α(i+1)F)∆Ψ(i+1) = −(T − S − α(i)F)Ψ0 .
Define Ψ̃(i+1) = Ψ0 +∆Ψ(i+1) .
Obtain Ψ(i+1) by normalisation of Ψ̃(i+1) .

end for

Lemma 5.2. Assume ∆Ψ(0) and ∆λ(0) are as in Algorithm 7. If Algorithm 8 uses the

shifts α(0) := λ0 +∆λ(0) and

α(i+1) :=
〈Ψ∗

0, (T − S)(Ψ0 +∆Ψ(i))〉
〈Ψ∗

0,F(Ψ0 +∆Ψ(i))〉 , i = 0, 1, 2, . . . , (5.11)

then Algorithms 7 and 8 produce the same iterates.

Proof. We prove this result by showing that the linear systems in both algorithms
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agree. Let us first compare the shifts that are used in the two methods. For the claim

to hold we need to show that α(i+1) = λ0 + ∆λ(i+1) . Starting with the definition of

α(i+1) in (5.11), and subtracting and adding λ0, we get

α(i+1) =
〈Ψ∗

0, (T − S)(Ψ0 +∆Ψ(i))〉 − λ0〈Ψ∗
0,F(Ψ0 +∆Ψ(i))〉

〈Ψ∗
0,F(Ψ0 +∆Ψ(i))〉 + λ0

=
〈Ψ∗

0, (T − S − λ0F)(Ψ0 +∆Ψ(i))〉
〈Ψ∗

0,F(Ψ0 +∆Ψ(i))〉 + λ0 .

Hence, we have to show that the first term on the right-hand side is equal to

∆λ(i+1) =
〈Ψ∗

0, (∆T −∆S − λ0∆F)(Ψ0 +∆Ψ(i))〉
〈Ψ∗

0,F(Ψ0 +∆Ψ(i))〉 .

Using (5.8) and (5.1) we get

0 = 〈(T ∗
0 − S∗

0 − λ∗
0F∗

0 )Ψ
∗
0,∆Ψ(i)〉

= 〈Ψ∗
0, (T0 − S0 − λ0F0)∆Ψ(i)〉+ 〈Ψ∗

0, (T0 − S0 − λ0F0)Ψ0〉
= 〈Ψ∗

0, (T0 − S0 − λ0F0)(Ψ0 +∆Ψ(i))〉+ 〈Ψ∗
0, (∆T −∆S − λ0∆F)(Ψ0 +∆Ψ(i))〉

−〈Ψ∗
0, (∆T −∆S − λ0∆F)(Ψ0 +∆Ψ(i))〉

= 〈Ψ∗
0, (T − S − λ0F)(Ψ0 +∆Ψ(i))〉 − 〈Ψ∗

0, (∆T −∆S − λ0∆F)(Ψ0 +∆Ψ(i))〉 ,

and, under the assumption 〈Ψ∗
0,F(Ψ0 +∆Ψ(i))〉 6= 0 , we then obtain

〈Ψ∗
0, (T − S − λ0F)(Ψ0 +∆Ψ(i))〉

〈Ψ∗
0,F(Ψ0 +∆Ψ(i))〉 =

〈Ψ∗
0, (∆T −∆S − λ0∆F)(Ψ0 +∆Ψ(i))〉

〈Ψ∗
0,F(Ψ0 +∆Ψ(i))〉

= ∆λ(i+1) .

Therefore,

α(i+1) = λ0 +∆λ(i+1) ,

and the shifts agree. Hence, the operators on the left-hand sides of the linear systems

are the same. We now compare the right-hand sides. Starting with the right-hand side

of the linear system in Algorithm 8, and using again (5.1), we have

−(T − S − α(i)F)Ψ0 = −
(
T − S − (λ0 +∆λ(i))F

)
Ψ0

= −(T0 − S0 − λ0F0)Ψ0 − (∆T −∆S − λ0∆F)Ψ0 +∆λ(i)FΨ0

= −(∆T −∆S − λ0∆F)Ψ0 +∆λ(i)FΨ0 .
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Hence, both algorithms solve the same linear systems and therefore produce the same

iterates.

Next we show that Algorithm 8 is equivalent to inverse iteration in Algorithm 2 with

a fixed right-hand side defined as follows.

Algorithm 9 Shifted inverse iteration with a fixed right-hand side

Require: Base problem solution Ψ0.
for i=0,1,2,. . . do

Choose a shift α(i+1) .
Compute Ψ̃(i+1) such that (T − S − α(i+1)F)Ψ̃(i+1) = FΨ0 .
Obtain Ψ(i+1) by normalisation of Ψ̃(i+1) .

end for

To avoid confusion we denote the next iterate before normalisation of Algorithm 8

(inverse correction with a fixed right-hand side) by Ψ̃
(i+1)
IC , and denote the result of the

linear system in Algorithm 9 by Ψ̃
(i+1)
II . We obtain, similar to Lemma 3.1, the following

result.

Lemma 5.3. If we use in Algorithms 8 and 9 the same shifts α(i), solve the linear

systems exactly and apply the same normalisation, then Algorithms 8 and 9 produce,

up to a different sign, the same iterates.

Proof. By the definition of the next iterate of Algorithm 8, we have

Ψ̃
(i+1)
IC = Ψ0 +∆Ψ(i)

= Ψ0 − (T − S − α(i+1)F)−1(T − S − α(i)F)Ψ0

= Ψ0 − (T − S − α(i+1)F)−1[(T − S − α(i+1)F)Ψ0 + (α(i+1) − α(i))FΨ0]

= (α(i) − α(i+1))(T − S − α(i+1)F)−1FΨ0

= (α(i) − α(i+1))Ψ̃
(i+1)
II . (5.12)

If the same normalisation is used in both methods, we therefore get

Ψ
(i+1)
IC =

Ψ̃
(i+1)
IC

‖Ψ̃(i+1)
IC ‖

=
α(i) − α(i+1)

|α(i) − α(i+1)|
Ψ̃

(i+1)
II

‖Ψ̃(i+1)
II ‖

= ±Ψ
(i+1)
II .

Hence, Algorithms 8 and 9 with equal shifts produce, up to a different sign, the same

iterates if the same normalisation is applied.
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Remark 5.4. Note that usually the previous iterate is used to compute the new shift

α(i+1) via some form of Rayleigh quotient. In this case the different signs in Ψ(i+1)

cancel out in the computation of α(i+1) since Ψ(i+1) appears in the numerator and de-

nominator of the Rayleigh quotient. Hence, both algorithms produce the same sequence

of eigenpair approximations.

Remark 5.5. From (5.12) we observe that we might encounter numerical problems

when (α(i)−α(i+1)) → 0 . On page 150 in Section 5.6 we suggest an adjustment to the

shift α(i) on the right-hand side of the linear system in Algorithm 8 in order to prevent

these problems.

Let us now consider the case when the linear systems are not solved exactly, i.e. the

solution of the linear system in Algorithm 8 satisfies

‖(T − S − α(i+1)F)∆Ψ(i+1) + (T − S − α(i)F)Ψ0‖ ≤ τ (i) , (5.13)

and for the next iterate in Algorithm 9 we have

‖(T − S − α(i+1)F)Ψ̃
(i+1)
II −FΨ0‖ ≤ τ (i) . (5.14)

Assumption 5.6. We assume in the following that we use a fixed (iterative) solver for

all linear systems and that this solver yields for problems of the form Ax = b , where

A ∈ R
n×n , b,x ∈ R

n , a unique approximate solution x(τ) ∈ R
n satisfying

‖Ax(τ)− b‖ ≤ τ , for all τ ≥ 0 . (5.15)

Furthermore, we assume that the approximate solution y(τ) ∈ R
n of Ay = −b , which

satisfies

‖Ay + b‖ ≤ τ , (5.16)

with the same τ as in (5.15), lies in the one-dimensional subspace spanned by the

solution x(τ) of (5.15), i.e. y(τ) ∈ span{x(τ)} := {βx(τ) , β ∈ R} .

Remark 5.7. Assumption 5.6 is, for example, satisfied by Krylov subspace based

solvers such as GMRES (see e.g. [100] for further details of Krylov subspace meth-

ods). These solvers search for solutions x to Ax = b in subspaces that are spanned (in

the simplest case) by vectors obtained by repeatedly applying the matrix A to the right-

hand side b (or −b in the case of (5.16)). Hence, for the problems (5.15) and (5.16),

the same subspaces are constructed and therefore y(τ) ∈ span{x(τ)} . The uniqueness

of the obtained solution follows from the deterministic nature of the methods.
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Using this assumption we can now show the following relation between Algorithms 8

and 9 for inexact solves of the linear systems.

Lemma 5.8. Let Algorithms 8 and 9 use the same shifts α(i) and let the inner toler-

ances of Algorithm 9 be given by τ (i). Assume that the tolerances for the linear system

of Algorithm 8 are set to

τ̃ (i) := |α(i) − α(i+1)| τ (i) , (5.17)

and that the same normalisation is applied. If, in addition, a linear solver that satisfies

Assumption 5.6 is used, then both algorithms produce, up to a different sign, the same

iterates.

Proof. After rearranging and applying the adjusted tolerances τ̃ (i) from (5.17), the

inner problem (5.13) for Algorithm 8 becomes

‖(T − S − α(i+1)F)Ψ̃
(i+1)
IC − (α(i) − α(i+1))FΨ0‖ ≤ |α(i) − α(i+1)| τ (i) ,

where Ψ̃
(i+1)
IC = Ψ0 +∆Ψ(i+1) . Dividing this equation by |α(i) − α(i+1)| then gives

∥∥∥∥∥(T − S − α(i+1)F)
1

|α(i) − α(i+1)|
Ψ̃

(i+1)
IC ±FΨ0

∥∥∥∥∥ ≤ τ (i) . (5.18)

If we now compare (5.18) with (5.14) and use that the inner solver satisfies Assumption

5.6, we obtain that Ψ̃
(i+1)
II = ± β

|α(i)−α(i+1)|Ψ̃
(i+1)
IC for some β ∈ R . Hence, provided the

same normalisation is used for both methods,

Ψ
(i+1)
II =

Ψ̃
(i+1)
II

‖Ψ̃(i+1)
II ‖

= ±|β|
β

|α(i) − α(i+1)|
|α(i) − α(i+1)|

Ψ̃
(i+1)
IC

‖Ψ̃(i+1)
IC ‖

= ±Ψ
(i+1)
IC .

Corollary 5.9. The inexact versions of Algorithms 7 and 9 produce, up to a different

sign, the same iterates, provided Algorithm 9 uses the shifts (5.11), the inner tolerances

for Algorithm 7 are given by (5.17), the same normalisation is applied, and the inner

solver satisfies Assumption 5.6. (The inexact version of Algorithm 9 is stated below as

Algorithm 10.)

Proof. Lemma 5.2 showed that for shifts (5.11) Algorithm 8 agrees with Algorithm

7. Lemma 5.8 now establishes the relation between Algorithm 8 and Algorithm 9 for

inexact solves with adjusted tolerances (5.17) which finishes the proof.
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Note that this result also includes the equivalence in the case of exact solves, i.e. τ (i) =

τ̃ (i) = 0 . In the next section we will provide convergence results for the variation of

shifted inverse iteration given in Algorithm 9.

5.3 Convergence of inexact shifted inverse iteration with

a fixed right-hand side

The analysis for this method is analogous to the convergence analysis in Section 3.2. We

consider again the homogeneous monoenergetic model problems with isotropic scatter

from Section 2.1, and use the relation to the scalar flux problem given in Corollary 2.5.

As before we allow for inexact solves of the linear system and make use of the ∗-norm
defined in (3.12). The method that we are analysing is given by the following inexact

version of Algorithm 9.

Algorithm 10 Inexact shifted inverse iteration with a fixed right-hand side

Require: Fixed right-hand side (base problem solution) Ψ0.
for i=0,1,2,. . . do

Choose a shift α(i+1) and an inner tolerance τ (i) ≥ 0 .
Compute Ψ̃(i+1) such that ‖(T −S −α(i+1)F)Ψ̃(i+1) − FΨ0‖∗ ≤ τ (i) . (††)
Normalise Ψ(i+1) = Ψ̃(i+1)/‖PΨ̃(i+1)‖L2(V ) .

end for

Again, we implicitly require Ψ(i), Ψ̃(i) ∈ L2(V, L1(S2)) . Using the same approach as

in Section 3.2, we can apply Lemma 2.3 to get the following result.

Lemma 5.10. If Ψ̃(i) and Ψ(i) are computed by Algorithm 10, and if we introduce the

corresponding scalar fluxes φ̃(i) := PΨ̃(i) and φ(i) := PΨ(i) , then

‖(I − (σs + α(i+1)νσf )Kσ)φ̃
(i+1) − νσfKσφ0‖L2(V ) ≤ τ (i) , and

φ(i+1) =
φ̃(i+1)

‖φ̃(i+1)‖L2(V )

,

where φ0 := PΨ0 .

Using Lemma 5.10 and a proof that is analogous to the proof of Theorem 3.3, we obtain

the following result.
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Theorem 5.11. Suppose s(φ0) 6= 0 ,

‖(I − (σs + α(i+1) νσf )Kσ)φ̃
(i+1) − νσfKσφ0‖L2(V ) ≤ τ (i) ,

and set φ(i+1) =
φ̃(i+1)

‖φ̃(i+1)‖L2(V )

.

Then, if τ (i) < νσfω1c(φ0) , we have with constant C1 = 1/(νσfω2) ,

t(φ(i+1)) ≤
(
s(φ0) + C1 τ

(i)

c(φ0)− C1 τ (i)

)∣∣∣∣∣
λ1 − α(i+1)

λ2 − α(i+1)

∣∣∣∣∣ . (5.19)

The inequality (5.19) shows immediately that convergence of Algorithm 10 can only be

guaranteed if the shifts α(i+1) approach λ1 and that in general decreasing tolerances to

zero does not necessarily guarantee convergence.

Corollary 5.12. Suppose that for every step in Algorithm 10 the conditions of Theorem

5.11 are satisfied, and that shifts α(i+1) are applied with

α(i+1) = λ1 +O(s(φ(i))k) . (5.20)

Then,

t(φ(i+1)) ≤
(
s(φ0) + C1 τ

(i)

c(φ0)− C1 τ (i)

)∣∣∣∣
C2

λ2 − λ1

∣∣∣∣ t(φ(i))k , C1, C2 constant . (5.21)

Hence, Algorithm 10 converges with rate k.

If we apply Algorithm 10 with sufficiently small fixed inner tolerances and the shifts

α(i+1) are the Rayleigh quotients ρ̃(i) defined in Lemma 3.4, i.e.

ρ̃(i) =
(PΨ(i),PT −1(T − S)Ψ(i))L2(V )

(PΨ(i),PT −1FΨ(i))L2(V )

=
(φ(i), (I − σsKσ)φ

(i))L2(V )

(φ(i), νσfKσφ(i))L2(V )

,

then we obtain quadratic convergence. This is the same convergence rate that we

obtained for the standard shifted inverse iteration method in Algorithm 5 on page 62

when using constant tolerances.

To guarantee linear convergence in the case when k = 1 in (5.20), the coefficient in

(5.21) must satisfy

(
s(φ0) + C1 τ

(i)

c(φ0)− C1 τ (i)

)∣∣∣∣
C2

λ2 − λ1

∣∣∣∣ < 1 for all i = 0, 1, 2, . . . . (5.22)
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This requires sufficiently small inner tolerances τ (i) and a sufficiently “close” (base

problem solution) Ψ0 as approximation of the eigenfunction. The condition (5.22) can

be considered to determine a ball of convergence which depends on the choice of the

fixed right-hand side Ψ0 and the tolerances τ (i) for the inner solves.

Contrary to the case of the standard inverse iteration in Section 3.2, using decreasing

tolerances, given by

τ (i) ≤ C3s(φ
(i)) , C3 constant , (5.23)

does not improve the convergence rate in theory since the initial error s(φ0)/c(φ0)

remains present. In particular, for fixed shifts we get the following result.

Corollary 5.13. If in every iteration of Algorithm 10 the conditions of Theorem 5.11

are met and fixed shifts α(i+1) = α0 are used, then

t(φ(i+1)) ≤
(
s(φ0) + C1τ

(i)

c(φ0)− C1τ (i)

)∣∣∣∣
λ1 − α0

λ2 − α0

∣∣∣∣ .

The corollary clearly shows that there is no guaranteed convergence for fixed shifts,

even if the solves were performed exactly (τ (i) = 0). This is not surprising as in this

case the linear systems that are solved remain the same in every iteration.

Tables 3.1 and 3.2 contained numerical results for Algorithms 1 to 4 (the standard

iterative methods, i.e. power method, shifted inverse iteration, inverse correction and

simplified Jacobi-Davidson) which we described in Chapter 3. We showed that these

methods are related and discussed that, under certain conditions, they are equivalent.

Table 5.2 now summarises the variations of the standard iterative methods that we

introduced in this chapter. We investigated the relation of the different schemes which

we will use in the next section to obtain a form of the method of perturbation in

Algorithm 7 (using a special shift and adjusted tolerances) for which linear convergence

of the method can be shown. This is done by exploiting the convergence properties

of shifted inverse iteration with a fixed right-hand side which we established in this

section.

Algorithms with a fixed right-hand side

method of perturbation Algorithm 7

inverse correction with a fixed right-hand side Algorithm 8

shifted inverse iteration with a fixed right-hand side Algorithms 9 & 10

Table 5.2: Overview of the different algorithms considered in Chapter 5.
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5.4 Convergence theory for the method of perturbation

In order to analyse the convergence of the method of perturbation, we use the relation

to the shifted inverse iteration approach with a fixed right-hand side from Section 5.2

and the convergence analysis from Section 5.3. Recall that by Corollary 5.12, the

convergence rate of Algorithm 10 is determined by the convergence of the shift α(i+1)

to the true eigenvalue.

As shown in Corollary 5.9, Algorithm 10 with shifts from (5.11), i.e.

α(i+1) =
〈Ψ∗

0, (T − S)(Ψ0 +∆Ψ(i))〉
〈Ψ∗

0,F(Ψ0 +∆Ψ(i))〉 ,

produces the same iterates as the inexact version of the method of perturbation in

Algorithm 7, provided the latter uses the adjusted inner tolerances τ̃ (i) defined in

(5.17). Hence, the convergence of Algorithm 7 is determined by how well the shifts

α(i+1) approximate the smallest eigenvalue λ1.

In the same way as in Lemma 3.4, we consider special versions of the shifts α(i+1).

Lemma 5.14. Given Ψ(i) ∈ L2(V, L1(S2)) , consider the shift

α̃(i+1) :=
(PΨ∗

0,PT −1(T − S)Ψ(i))L2(V )

(PΨ∗
0,PT −1FΨ(i))L2(V )

=
(φ∗

0, (I − σsKσ)φ
(i))L2(V )

(φ∗
0, νσfKσφ(i))L2(V )

. (5.24)

Then,

α̃(i+1) = λ1 + O(s(φ(i))) .

Proof. We use again the orthogonal splitting

φ(i) = c(φ(i))e1 + s(φ(i))u(i) ,

where ‖u(i)‖L2(V ) = 1 and (u(i), e1)L2(V ) = 0 , as well as φ∗
0 = c∗0e1 + s∗0u

∗
0 , where

‖u∗0‖L2(V ) = 1 and (u∗0, e1)L2(V ) = 0 . Since (1− σsω1) = λ1 νσfω1 , as given in (2.24),

we get

α̃(i+1) =
(1− σsω1) c

∗
0c(φ

(i)) + O(s(φ(i)))

νσfω1 c∗0c(φ
(i)) + O(s(φ(i)))

= λ1 + O(s(φ(i))) .

Hence α̃(i+1) approximates λ1 linearly.

Combining the above results, we can construct the following version of the method of

perturbation and give an estimate for the convergence rate.
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Algorithm 11 Method of perturbation with linear convergence rate

Require: Base problem solutions λ0, Ψ0, Ψ
∗
0, starting guesses ∆Ψ(0), ∆λ(0).

for i=0,1,2,. . . do

Compute ∆λ̃(i+1) =
(PΨ∗

0,PT −1(∆T −∆S−λ0∆F)(Ψ0+∆Ψ(i)))
L2(V )

(PΨ∗
0,PT −1F(Ψ0+∆Ψ(i)))

L2(V )

.

Obtain ∆Ψ(i+1) such that∥∥(T −S−(λ0+∆λ̃(i+1))F
)
∆Ψ(i+1)+(∆T −∆S−λ0∆F)Ψ0−∆λ̃(i)FΨ0

∥∥
∗ ≤ τ̃ (i) .

Define Ψ̃(i+1) = Ψ0 +∆Ψ(i+1) .
Obtain Ψ(i+1) by normalisation of Ψ̃(i+1) .

end for

We can now prove the following convergence result.

Theorem 5.15. The method of perturbation as given in Algorithm 11 converges linearly

if the solution Ψ0 of the base problem is close enough to the required eigendirection

(i.e. if the perturbation is not too large) and the tolerances for the linear systems are

given by

τ̃ (i) := |α̃(i) − α̃(i+1)| τ (i) = |∆λ̃(i) −∆λ̃(i+1)| τ (i) , (5.25)

with τ (i) sufficiently small and α̃(i) given by (5.24).

Proof. Analogous to the proof of Lemma 5.2 it can be shown that α̃(i+1) = λ0+∆λ̃(i+1) .

The same arguments as used in Section 5.2 to obtain Corollary 5.9 can be used, for the

shifts (5.24) and tolerances (5.25), to give that Algorithm 11 produces, up to a different

sign, the same iterates as Algorithm 10 with shifts (5.24). By (5.21) and Lemma 5.14

we then obtain

t(φ(i+1)) ≤
(
s(φ0) + C1 τ

(i)

c(φ0)− C1 τ (i)

)∣∣∣∣
C2

λ2 − λ1

∣∣∣∣ t(φ(i)) , C1, C2 constant . (5.26)

Now, for a suitable Ψ0, the corresponding φ0, together with sufficiently small inner

tolerances τ (i), satisfies the condition (5.22), and therefore the method converges lin-

early.

Note that, even for exact solves, the coefficient s(φ0)
c(φ0)

∣∣∣ C2
λ2−λ1

∣∣∣ in (5.26) can be larger

than one if the base problem solution (and right-hand side) Ψ0 leads to a φ0 = PΨ0

that is a poor approximation of the eigenfunction e1. This suggests that for large

perturbations, where s(φ0)/c(φ0) is not small (and when additionally λ1 is close to

λ2), the method of perturbation might not converge.

However, by dividing the large perturbation up into a sequence of smaller perturbations,

and solving the problems in succession, using the latest solution as the fixed right-hand
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side Ψ0 of the next problem, convergence can possibly be regained. Note also that the

inner tolerances τ (i) in (5.26) (and hence τ̃ (i) via (5.25)) have to be sufficiently small

in order to guarantee convergence.

5.5 A modified version of the method of perturbation as

used in industry

In practice it can be very expensive to solve problems of the form

(T − S − αF)Ψ = Q , (5.27)

with the transport, scatter and fission operator on the left-hand side. However, it is

comparably cheap (especially when using Monte Carlo methods, as we saw in Chapter

4) to solve a problem that only contains the transport operator on the left, i.e.

T Ψ = Q .

We discussed in Section 4.3.2 a splitting approach, the source iteration, that makes

use of these cheap “transport sweeps” to solve iteratively for the solution of (5.27).

In the following we describe how this technique has been applied in practice at Serco

Technical and Assurance Services, resulting in an alternative version of the method of

perturbation.

An approximation of the solution for

(
T − S − (λ0 +∆λ(i+1))F

)
∆Ψ(i+1) = −(∆T −∆S − λ0∆F)Ψ0 +∆λ(i)FΨ0 (5.28)

can be obtained by solving

T ∆Ψ
(i+1)
k = −(∆T −∆S−λ0∆F)Ψ0+∆λ(i)FΨ0+(S+(λ0+∆λ(i+1))F)∆Ψ

(i)
k−1 (5.29)

for k = 1, 2, . . . . However, in practice the problem (5.29) is not solved repeatedly for

k = 1, 2, . . . up to convergence. Instead, only one iteration is performed before (5.10)

is used to update ∆λ. This is an example where the outer (eigenvalue) iteration is

intertwined with an inexact inner iteration. The algorithm is stated below.

Algorithm 12 also differs from Algorithm 7 in the sense that the linear system (5.29)

contains the same current approximation ∆λ(i+1) twice on the right-hand side while we

used ∆λ(i) and ∆λ(i+1) in the first version of the method of perturbation. The reason

135



Chapter 5. Method of perturbation

Algorithm 12 Method of perturbation – second version

Require: Base problem solutions λ0, Ψ0, Ψ
∗
0, starting guess ∆Ψ(0).

for i=0,1,2,. . . do

Compute ∆λ(i+1) =
〈Ψ∗

0,(∆T −∆S−λ0∆F)(Ψ0+∆Ψ(i))〉
〈Ψ∗

0,F(Ψ0+∆Ψ(i))〉 .

Obtain Ψ(i+1) by solving
T ∆Ψ(i+1) = −(∆T −∆S−λ0∆F)Ψ0+∆λ(i+1)FΨ0+(S+(λ0+∆λ(i+1))F)∆Ψ(i) .
Define Ψ̃(i+1) = Ψ0 +∆Ψ(i+1) .
Obtain Ψ(i+1) by normalisation of Ψ̃(i+1) .

end for

for this was that, for exact solves, the solution of the linear system is ∆Ψ(i+1) = −Ψ0

which would lead to Ψ̃(i+1) = 0 . By moving the scatter and fission terms together with

∆Ψ(i) to the right-hand side, and only performing one transport sweep, this problem

for exact solves is avoided.

Remark 5.16. We have no guarantee that this algorithm converges. If the shift in

front of the FΨ0 term had remained ∆λ(i) and the inner problems (5.29) were solved

repeatedly until

∥∥∥
(
T − S − (λ0 +∆λ(i+1))F

)
∆Ψ(i+1) + (∆T −∆S − λ0∆F)Ψ0 −∆λ(i)FΨ0

∥∥∥ ≤ τ (i) ,

the method would just be a certain implementation of Algorithm 7, where an operator

splitting approach is used to provide an inner solver. Unfortunately, by mixing the

inner solves with the outer eigenvalue iterations our analysis above no longer applies.

We investigate convergence of Algorithm 12 numerically at the end of Section 5.6,

where we will observe that it is possible to reduce the number of outer iterations by

doing several “transport sweeps” (i.e. solving (5.29)) before updating the eigenvalue.

5.6 Numerical results

We now discuss numerical experiments for the two model problems described in Section

3.3 and start with results for the inexact shifted inverse iteration method with a fixed

right-hand side as described in Algorithm 10.

5.6.1 Los Alamos benchmark test set problem

Let us consider again the problem number 2 of the Los Alamos benchmark test set [109]

which corresponds to the 1D problem (2.4), (2.5). In order to preserve the underlying
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symmetry, we employ the Euler scheme discussed in Section 2.4.2.

As in Chapter 3 we use M = 128 equally sized spatial intervals and 2N = 128 angular

Gauss points leading to a non-symmetric generalised matrix eigenvalue problem of

dimension 16384 × 16384. The eigenvalues nearest zero of the discrete problem are

λ1 ≈ 0.99570 and λ2 ≈ 2.60907 .

The stopping criterion for the outer iteration demands again that ‖res(i)‖2 < 10−14 ,

where res(i) = (T −S − ρ(i)F )Ψ(i) with T , S, F , and Ψ being the discrete versions of

T , S, F , and Ψ, respectively. The eigenvalue approximation is given by ρ(i) = ρ(Ψ(i)) ,

where

ρ(Ψ(i)) =
〈Ψ(i), (T − S)Ψ(i)〉

〈Ψ(i), FΨ(i)〉 (5.30)

is the standard Rayleigh quotient with 〈 · , · 〉 representing the `2 inner product over

all spatial and angular discrete variables.

Problem (††) in Algorithm 10 is solved using the GMRES function in MATLAB 2009b

with an LU factorisation of T as preconditioner. As fixed right-hand side Ψ0 we use

a normalised vector with equal positive entries. To measure the convergence rate of

Algorithm 10, we consider again the eigenvalue error ∆(i) = |λ1−ρ(i)| , where λ1 is the

computed eigenvalue that satisfies the stopping criterion.

Our first test uses fixed shifts and decreasing tolerances τ (i) ≤ 0.1 ‖PT−1 res(i)‖2 for

the inner solves, where P denotes the discrete version of the projection operator P.

The standard inverse iteration in Chapter 3 converged linearly for fixed shifts α0 = 0.9

and α0 = 0.99 and decreasing tolerances, but, as already predicted by Corollary 5.13,

the Table 5.3 shows that the fixed right-hand side inverse iteration in Algorithm 10

does not converge for fixed shifts.

α0 = 0.9 α0 = 0.99

i ∆(i) ‖res(i)‖2 ∆(i) ‖res(i)‖2
0 3.28E-02 6.20E-02 3.28E-02 6.20E-02

1 2.63E-04 1.11E-04 1.39E-05 6.74E-06

2 2.63E-04 1.11E-04 1.38E-05 6.73E-06

3 2.63E-04 1.11E-04 1.38E-05 6.73E-06

2000 2.63E-04 1.11E-04 1.38E-05 6.73E-06

Table 5.3: Numerical results of Algorithm 10 for fixed shifts and decreasing tolerances τ (i) ≤
0.1 ‖PT−1

res
(i)‖2 .

However, Corollary 5.12 suggests that the method will converge, provided the applied

shifts approach the eigenvalue λ1 and the initial guess is “close enough” to the true

eigenvector. We now investigate this by testing different choices for the shift. The first

variable shift that we test is the standard Rayleigh quotient ρ(i) given in (5.30). The
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second shift is the discrete version of the non-standard Rayleigh quotient

ρ̃(i) =
(PΨ(i),PT −1(T − S)Ψ(i))L2(V )

(PΨ(i),PT −1FΨ(i))L2(V )

=
(φ(i), (I − σsKσ)φ

(i))L2(V )

(φ(i), νσfKσφ(i))L2(V )

. (5.31)

For constant tolerances τ0 = 0.1 , Table 5.4 shows that Algorithm 10 converges linearly

when using the standard Rayleigh quotient ρ(i), and the table suggests quadratic con-

vergence for the non-standard Rayleigh quotient ρ̃(i). These are the same convergence

rates that we observed for the standard inexact inverse iteration approach in Algorithm

5 with constant tolerances (see Table 3.8).

α(i+1) = ρ(i) α(i+1) = ρ̃(i)

i ∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2

0 3.3E-02 3.3E-02

1 9.7E-05 3.0E-03 9.1E-02 9.4E-05 2.9E-03 8.8E-02

2 2.7E-07 2.8E-03 2.9E+01 4.7E-09 5.0E-05 5.3E-01

3 7.1E-10 2.6E-03 9.6E+03 0.0E+00 0.0E+00 0.0E+00

4 1.8E-12 2.5E-03 3.6E+06

5 0.0E+00 0.0E+00 0.0E+00

Table 5.4: Numerical results for Algorithm 10 with constant tolerances τ0 = 0.1 and two
different Rayleigh quotient shifts ρ(i) and ρ̃(i) defined in (5.30) and (5.31) for matrices arising
from the application of the symmetry preserving Euler scheme described in Section 2.4.2.

We saw in Section 3.2 that Algorithm 5 was able to gain an additional order in the

convergence rate when demanding decreasing tolerances satisfying (5.23). However, we

also noted in Corollary 5.13 that this is not guaranteed for Algorithm 10 as the error

from the initial guess remains present. Table 5.5 confirms that there is no further im-

provement in the convergence rate of Algorithm 10 compared to the constant tolerance

case in Table 5.4.

α(i+1) = ρ(i) α(i+1) = ρ̃(i)

i ∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2

0 3.3E-02 3.3E-02

1 7.5E-05 2.3E-03 7.0E-02 7.2E-05 2.2E-03 6.7E-02

2 1.8E-07 2.4E-03 3.2E+01 4.4E-09 6.1E-05 8.5E-01

3 4.3E-10 2.4E-03 1.3E+04 0.0E+00 0.0E+00 0.0E+00

4 1.0E-12 2.4E-03 5.6E+06

5 0.0E+00 0.0E+00 0.0E+00

Table 5.5: Numerical results for the fixed right-hand side shifted inverse iteration method
in Algorithm 10 with decreasing tolerances τ (i) ≤ 0.1 ‖PT−1 res(i)‖2 and the two Rayleigh
quotient shifts ρ(i) and ρ̃(i).

Note that when using Monte Carlo methods to solve the linear systems, the accuracy

of the solutions is in general fixed and does not decrease to zero. In this case the linear
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α(i+1) = ρ
(i)
0 α(i+1) = ρ̃

(i)
0

i ∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2

0 3.3E-02 3.3E-02

1 9.7E-05 3.0E-03 9.1E-02 9.4E-05 2.9E-03 8.8E-02

2 1.4E-06 1.4E-02 1.5E+02 6.1E-07 6.4E-03 6.8E+01

3 3.4E-08 2.5E-02 1.8E+04 3.9E-09 6.5E-03 1.1E+04

4 7.1E-10 2.1E-02 6.1E+05 2.8E-11 7.2E-03 1.8E+06

5 1.6E-11 2.3E-02 3.3E+07 1.8E-13 6.5E-03 2.3E+08

6 5.3E-13 3.3E-02 2.0E+09 0.0E+00 0.0E+00 0.0E+00

7 1.1E-14 2.0E-02 3.7E+10

8 0.0E+00 0.0E+00 0.0E+00

Table 5.6: Numerical results for Algorithm 10 with constant tolerances τ0 = 0.1 and the two

shifts ρ
(i)
0 and ρ̃

(i)
0 defined in (5.32) and (5.33).

systems in Algorithm 5 are not solved with decreasing tolerances (or even exactly) to

achieve an additional order in the convergence rate. Therefore, Algorithms 5 and 10

are likely to obtain the same convergence rates when Monte Carlo techniques are used

to solve the linear systems.

In addition, for deterministic methods that use GMRES or other Krylov subspace

based methods as an inner solver, Algorithm 10 can provide computational benefits

over Algorithm 5 if the inner solver is adjusted. We will describe this briefly in Section

5.6.3.

In order to test now a shift that is similar to the shift (5.11), for which we established

the equivalence between Algorithm 10 and Algorithm 11, we use the discrete versions

of the two shifts

ρ
(i)
0 :=

〈Ψ0, (T − S)Ψ(i)〉
〈Ψ0,FΨ(i)〉 , (5.32)

and its scalar flux counterpart, defined by

ρ̃
(i)
0 :=

(PΨ0,PT −1(T − S)Ψ(i))L2(V )

(PΨ0,PT −1FΨ(i))L2(V )

=
(φ0, (I − σsKσ)φ

(i))L2(V )

(φ0, νσfKσφ(i))L2(V )

. (5.33)

Using a proof that is analogous to the proof of Lemma 5.14, we obtain that this lat-

ter shift also approximates the dominant eigenvalue to first order, and therefore we

expect linear convergence of Algorithm 10 in this case. Table 5.6 confirms the linear

convergence rate (for both shifts) when a constant tolerance τ0 = 0.1 is used.

As in the case for the Rayleigh quotient shifts, using decreasing tolerances, instead of a

constant tolerance τ0, does not improve the convergence rate. Table 5.7 confirms that

this is also the case for the shifts ρ
(i)
0 and ρ̃

(i)
0 .
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α(i+1) = ρ
(i)
0 α(i+1) = ρ̃

(i)
0

i ∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2

0 3.3E-02 3.3E-02

1 7.5E-05 2.3E-03 7.0E-02 7.2E-05 2.2E-03 6.7E-02

2 1.9E-06 2.5E-02 3.4E+02 5.2E-07 7.2E-03 1.0E+02

3 4.5E-08 2.4E-02 1.3E+04 3.5E-09 6.8E-03 1.3E+04

4 1.1E-09 2.4E-02 5.3E+05 2.4E-11 6.8E-03 1.9E+06

5 2.6E-11 2.4E-02 2.2E+07 1.6E-13 6.8E-03 2.9E+08

6 6.3E-13 2.5E-02 9.5E+08 0.0E+00 0.0E+00 0.0E+00

7 0.0E+00 0.0E+00 0.0E+00

Table 5.7: Numerical results for Algorithm 10 with the two shifts ρ
(i)
0 and ρ̃

(i)
0 defined in (5.32)

and (5.33) and decreasing tolerances τ (i) ≤ 0.1 ‖PT−1 res(i)‖2 .

5.6.2 Control rod insertion model problem

For the next tests we consider the control rod model problem described in Section

3.3.2 which we also used for the numerical results in Section 3.4.2. We apply a Gauss

quadrature and Crank-Nicolson scheme with 128 uniform spatial intervals in the fuel

region and 8 equally sized intervals in the absorber part of the problem (resolving

the material boundary). For the angular discretisation we consider again 128 angular

directions.

As before, three different material compositions in the absorber region are investigated:

(i) The pure absorber case; (ii) a mix of 10% absorber and 90% water; and (iii) the

homogeneous case, where the absorber and fuel region have the same cross-sections.

The principal eigenvalues in cases (i) to (iii) are λ1 ≈ 1.18, 0.92, and 0.85, respectively.

The cross-section details and the problem dimensions were given in Table 3.11. For

the fixed Ψ0 on the right-hand side (the base problem solution), we use, in the first

test, a vector with entries that are chosen randomly from a uniform distribution on

the interval (0, 1). As already noted before, our theory does not apply directly to this

problem since, in particular, no underlying symmetry is known.

When we use a fixed shift and fixed (as well as decreasing) tolerances in Algorithm 10,

the method stagnates. However, by applying the standard Rayleigh quotient ρ(i) from

(5.30) instead of a fixed shift, Table 5.8 shows that we obtain linear convergence of the

method.

While we observed quadratic convergence for the Los Alamos problem in the previous

section when using the special Rayleigh quotient ρ̃(i) in (5.31), we now obtain only

linear convergence (see Table 5.9). This agrees with the results in Table 3.14 for the

standard shifted inverse iteration approach.
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pure absorber 10% absorber, 90% water homogeneous material

i ∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2

0 9.0E-01 8.9E-01 8.5E-01

1 3.1E-03 3.4E-03 3.8E-03 8.9E-03 1.0E-02 1.1E-02 3.1E-03 3.6E-03 4.3E-03

2 9.4E-05 3.1E-02 1.0E+01 8.6E-05 9.6E-03 1.1E+00 2.4E-06 7.9E-04 2.6E-01

3 2.2E-06 2.3E-02 2.5E+02 1.6E-06 1.9E-02 2.2E+02 3.6E-10 1.5E-04 6.3E+01

4 7.4E-09 3.4E-03 1.6E+03 1.1E-09 6.8E-04 4.3E+02 4.2E-12 1.2E-02 3.2E+07

5 1.8E-11 2.4E-03 3.2E+05 6.1E-12 5.6E-03 5.2E+06 0.0E+00 0.0E+00 0.0E+00

6 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

Table 5.8: Numerical results for Algorithm 10 with α(i+1) = ρ(i) and constant tolerances
τ0 = 0.1 .

pure absorber 10% absorber, 90% water homogeneous material

i ∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2

0 9.0E-01 8.9E-01 8.5E-01

1 1.1E-02 1.3E-02 1.4E-02 1.7E-05 1.9E-05 2.2E-05 1.9E-05 2.3E-05 2.7E-05

2 2.4E-04 2.1E-02 1.9E+00 1.0E-06 5.9E-02 3.4E+03 1.1E-07 5.8E-03 3.0E+02

3 3.3E-07 1.4E-03 5.6E+00 6.6E-08 6.6E-02 6.5E+04 3.0E-09 2.7E-02 2.4E+05

4 9.5E-08 2.9E-01 8.9E+05 1.1E-09 1.7E-02 2.6E+05 3.2E-11 1.1E-02 3.7E+06

5 1.5E-09 1.6E-02 1.6E+05 7.2E-12 6.5E-03 5.9E+06 0.0E+00 0.0E+00 0.0E+00

6 4.3E-11 2.9E-02 2.0E+07 0.0E+00 0.0E+00 0.0E+00

7 0.0E+00 0.0E+00 0.0E+00

Table 5.9: Numerical results for Algorithm 10 with shifts α(i+1) = ρ̃(i) and constant tolerances
τ0 = 0.1 .

Table 5.10 suggests that applying decreasing tolerances does in this case reduce the

number of iterations needed compared to Table 5.8, but the convergence rate appears to

remain linear and the faster convergence is only due to smaller convergence coefficients.

pure absorber 10% absorber, 90% water homogeneous material

i ∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2

0 9.0E-01 8.9E-01 8.5E-01

1 1.3E-05 1.5E-05 1.6E-05 2.7E-05 3.0E-05 3.4E-05 1.0E-05 1.2E-05 1.4E-05

2 1.7E-09 1.3E-04 9.8E+00 8.2E-10 3.1E-05 1.1E+00 2.5E-12 2.4E-07 2.3E-02

3 2.7E-13 1.6E-04 9.2E+04 1.3E-14 1.6E-05 2.0E+04 0.0E+00 0.0E+00 0.0E+00

4 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

Table 5.10: Numerical results for Algorithm 10 with α(i+1) = ρ(i) and decreasing tolerances
τ (i) ≤ 0.1 ‖PT−1 res(i)‖2 .

Next we apply the shifts ρ
(i)
0 and ρ̃

(i)
0 from (5.32) and (5.33). Note that the right-

hand side Ψ0 is now a vector with random entries, while for the benchmark test in

Section 5.6.1 we used a vector with equal entries. Table 5.11 shows that the method

still converges linearly for shifts ρ
(i)
0 . We obtained similar numerical results with linear

convergence for shifts ρ̃
(i)
0 .
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pure absorber 10% absorber, 90% water homogeneous material

i ∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2

0 9.0E-01 8.9E-01 8.5E-01

1 3.1E-03 3.4E-03 3.8E-03 8.9E-03 1.0E-02 1.1E-02 3.1E-03 3.6E-03 4.3E-03

2 3.8E-04 1.2E-01 4.1E+01 9.4E-05 1.1E-02 1.2E+00 2.9E-05 9.5E-03 3.1E+00

3 1.7E-06 4.4E-03 1.2E+01 1.5E-06 1.6E-02 1.7E+02 1.0E-07 3.6E-03 1.2E+02

4 1.7E-08 1.0E-02 6.1E+03 1.2E-09 8.0E-04 5.4E+02 1.7E-10 1.6E-03 1.5E+04

5 2.1E-11 1.2E-03 7.1E+04 9.4E-12 7.8E-03 6.5E+06 0.0E+00 0.0E+00 0.0E+00

6 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

Table 5.11: Numerical results for Algorithm 10 with constant tolerances τ0 = 0.1 and shifts

α(i+1) = ρ
(i)
0 defined in (5.32).

In order to compare the numerical results for the control rod problem with those from

Table 5.6 for the Los Alamos test problem above, we construct the shift

ρ
(i)
1 :=

〈f1, (T − S)Ψ(i)〉
〈f1,FΨ(i)〉 (5.34)

with f1 ≡ 1 . Note that this is also the Rayleigh quotient (4.38) that is used in the

Monte Carlo calculations to obtain an estimate for the eigenvalue λ1.

We additionally test the discrete version of the scalar flux counterpart of ρ
(i)
1 , which is

defined by

ρ̃
(i)
1 :=

(Pf1,PT −1(T − S)Ψ(i))L2(V )

(Pf1,PT −1FΨ(i))L2(V )

. (5.35)

Table 5.12 shows that Algorithm 10 shifts with α(i+1) = ρ
(i)
1 converges linearly.

pure absorber 10% absorber, 90% water homogeneous material

i ∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2

0 9.0E-01 8.9E-01 8.5E-01

1 2.0E-04 2.2E-04 2.5E-04 6.1E-05 6.9E-05 7.8E-05 6.5E-06 7.7E-06 9.1E-06

2 2.7E-06 1.3E-02 6.6E+01 3.1E-07 5.1E-03 8.3E+01 5.6E-09 8.6E-04 1.3E+02

3 1.3E-08 4.8E-03 1.8E+03 1.6E-09 5.1E-03 1.6E+04 2.2E-11 3.8E-03 6.8E+05

4 2.1E-11 1.7E-03 1.3E+05 8.0E-12 5.1E-03 3.2E+06 0.0E+00 0.0E+00 0.0E+00

5 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

Table 5.12: Numerical results for Algorithm 10 with constant tolerances τ0 = 0.1 and discrete

versions of the shifts α(i+1) = ρ
(i)
1 defined in (5.34).

For α(i+1) = ρ̃
(i)
1 , we obtain again a linear convergence rate but more iterations are

needed (see Table 5.13). These are the same convergence rates that we observed for

the Los Alamos benchmark test set problem in Table 5.6.

For the next test we use the shift α(i+1) from (5.11) in Algorithm 10. We also change
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pure absorber 10% absorber, 90% water homogeneous material

i ∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2

0 9.0E-01 8.9E-01 8.5E-01

1 1.1E-02 1.2E-02 1.4E-02 1.4E-05 1.5E-05 1.7E-05 1.1E-04 1.3E-04 1.5E-04

2 2.5E-04 2.3E-02 2.1E+00 1.0E-04 7.3E+00 5.4E+05 2.7E-07 2.5E-03 2.2E+01

3 8.3E-07 3.3E-03 1.3E+01 1.9E-06 1.9E-02 1.9E+02 2.5E-09 9.3E-03 3.4E+04

4 9.3E-09 1.1E-02 1.3E+04 5.4E-08 2.9E-02 1.5E+04 1.4E-11 5.6E-03 2.2E+06

5 3.7E-10 4.0E-02 4.3E+06 9.9E-10 1.9E-02 3.4E+05 1.8E-13 1.3E-02 9.4E+08

6 2.6E-12 7.0E-03 1.9E+07 6.1E-13 6.2E-04 6.2E+05 0.0E+00 0.0E+00 0.0E+00

7 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

Table 5.13: Numerical results for Algorithm 10 with constant tolerances τ0 = 0.1 and shifts

α(i+1) = ρ̃
(i)
1 defined in (5.35).

the vector Ψ0 that is used to compute the fixed right-hand side to the more realistic

solution of a control rod base problem with pure water in the absorber region.

We showed in Corollary 5.9 that this method is then equivalent to the method of

perturbation in Algorithm 7 if the latter uses the adjusted tolerances τ (i) in (5.17). We

will discuss this relationship further below in more detail. Table 5.14, indicating a fast

linear convergence rate, describes the convergence properties of Algorithm 10 for this

new fixed right-hand side and constant tolerances of τ0 = 0.1 .

pure absorber 10% absorber, 90% water homogeneous material

i ∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2

0 9.0E-01 8.9E-01 8.5E-01

1 2.2E-03 2.4E-03 2.7E-03 4.6E-07 5.2E-07 5.9E-07 6.3E-07 7.4E-07 8.8E-07

2 1.5E-06 7.0E-04 3.3E-01 1.8E-10 3.8E-04 8.1E+02 1.2E-10 1.9E-04 3.0E+02

3 1.0E-10 6.8E-05 4.5E+01 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

4 2.5E-14 2.4E-04 2.4E+06

5 0.0E+00 0.0E+00 0.0E+00

Table 5.14: Numerical results for Algorithm 10 with constant tolerances τ0 = 0.1 and shifts
α(i+1) defined in (5.11), when using a base problem solution for Ψ0.

When we apply a very small tolerance τ0 = 10−14 , we obtain almost identical results

to the ones given in Table 5.15, where the decreasing tolerances case is treated. The

convergence – particularly for the more homogeneous cases with smaller or no jumps in

the material cross-sections – is very fast. Especially the accuracy of the first iterate is

extremely good and outperforms all the other initial approximations that we considered

so far. This is probably due to the good guess that the new Ψ0 provides.

As we already observed for the other numerical results in this subsection, using a shift

that is computed from the scalar fluxes does not improve the convergence for this test

problem, but actually results in the need for slightly more iterations. Table 5.16 shows

the results when the shifts α̃(i+1) from (5.24) and decreasing tolerances are used.
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pure absorber 10% absorber, 90% water homogeneous material

i ∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2

0 0.0E+00 0.0E+00 0.0E+00

1 2.0E-06 2.2E-06 2.5E-06 2.6E-08 2.9E-08 3.3E-08 2.0E-09 2.3E-09 2.8E-09

2 3.5E-09 1.8E-03 9.1E+02 4.3E-13 1.6E-05 6.2E+02 5.2E-14 2.7E-05 1.4E+04

3 2.1E-12 5.8E-04 1.6E+05 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

4 0.0E+00 0.0E+00 0.0E+00

Table 5.15: Numerical results for Algorithm 10 with shifts α(i+1) defined in (5.11) and de-
creasing tolerances τ (i) ≤ 0.1 ‖PT−1 res(i)‖2 .

pure absorber 10% absorber, 90% water homogeneous material

i ∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2
∆(i) ∆(i)

∆(i−1)
∆(i)

(∆(i−1))2

0 9.0E-01 8.9E-01 8.5E-01

1 5.3E-05 5.9E-05 6.6E-05 1.3E-06 1.4E-06 1.6E-06 3.0E-08 3.5E-08 4.2E-08

2 8.3E-07 1.6E-02 2.9E+02 3.5E-09 2.8E-03 2.2E+03 1.8E-13 6.0E-06 2.0E+02

3 1.8E-08 2.2E-02 2.7E+04 8.0E-12 2.3E-03 6.4E+05 5.4E-15 3.0E-02 1.7E+11

4 4.1E-10 2.2E-02 1.2E+06 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

5 9.1E-12 2.2E-02 5.5E+07

6 2.4E-13 2.7E-02 2.9E+09

7 0.0E+00 0.0E+00 0.0E+00

Table 5.16: Numerical results for Algorithm 10 with shifts α̃(i+1) defined in (5.24) and de-
creasing tolerances τ (i) ≤ 0.1 ‖PT−1 res(i)‖2 .

In all tables in this subsection the case (iii) with a homogeneous material mix and no

jumps in the cross-sections converged fastest, suggesting that heterogeneity introduces

additional difficulties to the problem and might have an impact on the convergence of

the method.

Numerical results for the first version of the method of perturbation

Let us now consider the convergence properties of an inexact version of the method

of perturbation described in Algorithm 7 with respect to the accuracy of the inner

solves. We will see that the method fails to converge unless the inner solve tolerance

τ0 is small enough. We noted in (5.26) that the base problem solution Ψ0 must be

sufficiently close to the perturbed solution, and that the inner tolerances have to be

sufficiently small, to obtain

(
s(φ0) + C1 τ

(i)

c(φ0)− C1 τ (i)

)∣∣∣∣
C2

λ2 − λ1

∣∣∣∣ < 1 , i = 0, 1, 2, . . . (5.36)

and to therefore guarantee convergence. This criterion appears to be violated for large

inner tolerances τ0.

Table 5.17 gives details for the perturbation from a base problem with pure water in
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the absorber region to the three cases (i) to (iii). The first column denotes the inner

tolerance τ0, which was used in the GMRES solver at each step of the algorithm and

also when computing the solution Ψ0 of the base problem and the solution Ψ∗
0 of

its adjoint problem. We remark here that fixing the tolerance of the computation of

the base problem solutions to a tolerance of 10−14, did not have any influence on the

convergence behaviour in our tests.

The column “outer” in Table 5.17 contains the number of outer iterations needed by the

method of perturbation to converge to the desired outer tolerance ‖res(i)‖2 < 10−14 . A

“-” indicates that the method stagnated and did not converge (the iteration was stopped

after 50 outer iterations as closer investigations showed that for our problems the

method either converged within 10 iterations or stagnated). The next column “inner”

contains the average number of inner iterations that GMRES needed to solve the linear

systems to the desired accuracy. The last column for each problem contains the average

computing time in seconds which was calculated from 10 consecutive computations.

pure absorber 10% absorber, 90% water homogeneous material

τ0 outer inner time outer inner time outer inner time

10−1 - 4 - - 5 - - 4 -

10−2 - 7 - - 8 - - 7 -

10−3 - 9 - - 10 - - 9 -

10−4 - 11 - - 11 - - 11 -

10−5 - 12 - - 12 - - 12 -

10−6 - 13 - - 13 - - 13 -

10−7 - 14 - - 15 - - 15 -

10−8 - 15 - 3 25 55 3 25 56

10−9 4 24 57 3 26 56 3 25 57

10−10 4 28 58 3 28 57 3 26 57

10−11 4 26 59 3 27 57 3 27 58

10−12 4 26 60 3 28 58 3 28 60

10−13 4 27 62 3 29 59 3 29 61

10−14 4 28 62 3 29 60 3 29 61

Table 5.17: Convergence of the inexact version of the method of perturbation in Algorithm 7
with respect to different fixed inner tolerances τ0 for the linear solver.

The table shows that the method fails to converge for large inner tolerances. For the

pure absorber case the inner tolerance had to be 10−9 or smaller to achieve convergence.

Reducing the inner tolerance further below 10−9 did not reduce the number of outer

iterations, but it did slightly increase the number of inner iterations required by the

GMRES solver, leading to longer computing times. These results appear to suggest

that for large inner tolerances we can be outside the ball of convergence described in

(5.36), i.e.
(
s(φ0)+C1 τ0
c(φ0)−C1 τ0

) ∣∣∣ C2
λ2−λ1

∣∣∣ ≥ 1 , but manage to satisfy (5.36), and therefore to

regain convergence, if we decrease the inner tolerances sufficiently.
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Table 5.18 now considers the convergence behaviour and computing times of Algorithm

10 for the sameΨ0 with respect to different fixed inner tolerances. The shifts are chosen

according to (5.11).

pure absorber 10% absorber, 90% water homogeneous material

τ0 outer inner time outer inner time outer inner time

10−1 5 16 58 3 17 55 3 17 55

10−2 4 16 54 3 19 54 3 19 54

10−3 4 17 55 3 20 53 3 20 53

10−4 4 18 55 3 21 54 3 21 54

10−5 4 19 54 3 22 53 3 22 53

10−6 4 20 55 3 22 53 3 22 53

10−7 4 21 56 3 23 55 3 23 55

10−8 4 22 57 3 24 56 3 24 56

10−9 4 22 58 3 25 56 3 25 57

10−10 4 23 59 3 27 57 3 27 57

10−11 4 24 60 3 26 58 3 26 58

10−12 4 25 61 3 27 59 3 27 59

10−13 4 25 63 3 28 60 3 28 61

10−14 4 26 62 3 29 60 3 29 60

Table 5.18: Convergence of Algorithm 10 with respect to different fixed inner tolerances τ0 for
the shifts α(i+1) defined in (5.11).

Comparing Tables 5.17 and 5.18, we observe that when Algorithm 7 converges (for the

case of small inner tolerances) the number of GMRES iterations is comparable to the

inner iterations needed for Algorithm 10. However, we note a considerable difference

in the number of GMRES iterations between the two tables for larger inner tolerances

which indicates that the work needed to solve the inner problems in Algorithm 10 is

bigger than the work for the solves in Algorithm 7. The resulting additional iterations

in the inner solver seem to lead to better iterates and finally convergence of the overall

method already for larger tolerances.

We saw in Corollary 5.9 that for inexact solves Algorithms 10 and 7 only produce

the same iterates if the inner tolerances of the method of perturbation are adjusted

according to (5.17). Table 5.19 now contains the results for the inexact version of

Algorithm 7 with the adjusted tolerances τ̃ (i) := |α(i) − α(i+1)| τ0 , showing that the

method of perturbation regains convergence in all cases with these adjusted tolerances.

Numerical results for the second version of the method of perturbation

We now consider the convergence of the second version of the method of perturba-

tion given in Algorithm 12 with inexact solves. As for Algorithm 7, we encounter

convergence problems if the inner tolerances are not adjusted according to (5.17).
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pure absorber 10% absorber, 90% water homogeneous material

τ0 outer inner time outer inner time outer inner time

10−1 4 19 55 3 22 55 3 23 55

10−2 4 21 54 3 23 53 3 23 53

10−3 4 22 55 3 24 53 3 24 53

10−4 4 23 55 3 25 53 3 25 54

10−5 4 23 54 3 26 53 3 27 53

10−6 4 25 55 3 27 53 3 26 54

10−7 4 25 56 3 27 54 3 27 55

10−8 4 26 57 3 28 55 3 28 56

10−9 4 27 58 3 28 57 3 29 57

10−10 4 27 58 3 29 57 3 30 58

10−11 4 27 59 3 29 57 3 29 60

10−12 4 28 60 3 30 58 3 30 61

10−13 4 28 61 3 30 59 3 30 61

10−14 4 28 62 3 31 58 3 31 61

Table 5.19: Convergence of the inexact version of Algorithm 7 with respect to tolerances
τ̃ (i) := |α(i) − α(i+1)| τ0 using the shifts α(i+1) defined in (5.11).

Table 5.20 gives further details of the numerical results for Algorithm 12 when using

fixed tolerances τ (i) = τ0 . Note that this method needs more outer iterations to

converge (if it converges) than the first version of the method of perturbation.

pure absorber 10% absorber, 90% water homogeneous material

τ0 outer inner time outer inner time outer inner time

10−1 - 2 - - 2 - - 2 -

10−2 - 3 - - 3 - - 3 -

10−3 - 3 - - 3 - - 3 -

10−4 - 4 - - 4 - - 4 -

10−5 - 5 - - 5 - - 5 -

10−6 - 5 - - 5 - - 5 -

10−7 - 6 - - 6 - - 6 -

10−8 - 7 - - 7 - - 6 -

10−9 - 7 - - 7 - - 7 -

10−10 - 8 - - 8 - - 8 -

10−11 - 9 - 164 9 182 - 8 -

10−12 - 9 - 164 9 185 171 9 185

10−13 171 10 201 164 10 192 171 10 191

10−14 171 11 215 164 11 205 171 11 207

Table 5.20: Convergence of Algorithm 12 with respect to different fixed tolerances τ0.

The results in Table 5.20 show that, compared to the other approaches considered so

far, Algorithm 12 needs fewer inner iterations to solve the linear systems. However,

due to the large number of outer iterations the overall computing time is longer than,

for example, in the case of Algorithm 7 and the method is therefore not competitive in

this deterministic case. The main advantage of this approach occurs when Monte Carlo

methods are used for the solution of the inner problems since inverting the transport

operator is then significantly faster than solving a source problem with the transport,
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scatter and fission operator on the left-hand side (see Section 4.3). This reduces the

computational cost of each outer iteration and Algorithm 12 becomes more competitive.

Let us consider the convergence of Algorithm 12 for two different inner tolerances

in some detail. Figure 5.21 shows how the residual and the eigenvalue error behave

during the iteration process. The base problem with pure water in the control rod

region is perturbed to a mix of 10% absorber material and 90% water. For the larger

inner tolerance of τ0 = 10−5 the norm of the outer residual stops decreasing after

approximately 80 iterations. If the inner systems are solved to higher accuracy (such

as τ0 = 10−11 ), the residual norm continues to decrease until the stopping criterion is

satisfied (here after 164 iterations).
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Figure 5.21: Convergence of the residual and eigenvalue error when applying Algorithm 12
for two different inner tolerances.

We now increase the “separation” of the inner and outer iteration in Algorithm 12 by

performing several solves for the inner system (5.29), before updating the eigenvalue

approximation and continuing the outer iterations. This reduces the number of outer

iterations as Table 5.22 shows, where the inner tolerances for all problems are set to

τ0 = 10−12 but the number of transport sweeps is varied.

We observe that performing between 1 and 30 transport sweeps before continuing the

outer iteration results in roughly the same total number of solves for the linear system

(5.29). The results show that the best computing times for the cases (i) and (iii) occur

when 15−20 transport sweeps were used before updating the eigenvalue and stepping to

the next outer iterate. For the problem (ii) the minimal computing time was achieved

for 35 solves of (5.29) before continuing the outer iteration.
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pure absorber 10% absorber, 90% water homogeneous material

sweeps outer inner time outer inner time outer inner time

1 171 10 188 164 10 182 171 10 185

2 86 10 151 82 10 141 86 10 149

3 58 10 142 55 10 132 58 10 137

4 43 10 130 41 10 127 43 10 127

5 35 10 129 33 10 122 35 10 125

10 18 10 123 17 10 114 18 10 118

15 11 10 114 12 10 116 12 10 118

20 10 10 129 9 10 117 9 10 116

25 9 10 134 7 10 114 8 10 128

30 9 10 155 6 10 117 7 10 126

35 8 10 155 5 10 112 6 10 128

40 8 10 168 5 10 123 6 10 136

45 8 10 189 5 10 129 5 10 133

50 8 10 198 5 10 138 5 10 139

100 8 10 343 5 10 220 5 10 226

Table 5.22: Convergence of Algorithm 12 for varying numbers of “transport sweeps” and inner
tolerances τ0 = 10−12 .

Other variations of the method of perturbation

There are several other variations of the method of perturbation that can be applied.

For example, instead of moving the scatter and fission contribution to the right-hand

side, as we did in Algorithm 12, only the fission part could be moved to the right. This

would increase the work needed to invert the operator on the left-hand side compared

to Algorithm 12, but it would still be cheaper than inverting the full transport, scatter

and fission operator as is done in Algorithm 7.

Another variation is a perturbation method stated in [49, eq. (35), p. 194]. The resulting

algorithm, using our notation, is given by Algorithm 13.

Algorithm 13 Perturbation method from [49]

Require: Unperturbed solutions λ0, Ψ0, Ψ
∗
0, initial guess ∆Ψ(0).

for i=0,1,2,. . . do

Compute ∆λ(i+1) =
〈Ψ∗

0,(∆T −∆S−λ0∆F)(Ψ0+∆Ψ(i))〉
〈Ψ∗

0,F(Ψ0+∆Ψ(i))〉 .

Obtain ∆Ψ(i+1) by solving
(T − S − λ0F)∆Ψ(i+1) = −(∆T −∆S − λ0∆F)Ψ0 +∆λ(i+1)F(Ψ0 +∆Ψ(i)) .
Define Ψ̃(i+1) = Ψ0 +∆Ψ(i+1) .
Obtain Ψ(i+1) by normalisation of Ψ̃(i+1) .

end for

We can interpret this scheme again as a way to obtain an approximate solution to (5.28)

by using another variation of operator splitting, i.e. moving the term ∆λF∆Ψ to the

right-hand side. As in Algorithm 12 the resulting form of “source iteration” is not
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performed until convergence, but the inner iteration is intertwined with the eigenvalue

update in the outer iteration. Since in this method the transport, scatter and fission

operators are all still present on the left-hand side, we do not expect to gain the same

benefits when solving the linear systems using Monte Carlo techniques as we expected

for the previous two approaches, where only the transport, or the transport and scatter,

operators remained on the left-hand side.

However, for matrix-based methods this scheme provides an advantage since the oper-

ator on the left of the linear system remains fixed during the outer iteration process.

This makes the computation of a good (fixed) preconditioner very attractive and should

then result in comparatively cheap solutions of the linear system.

Table 5.23 now looks at the convergence behaviour of this method with respect to

different tolerances for the solution of the linear system. Comparing the table to the

results from Algorithm 7 in Table 5.17, we note that this method needs smaller inner

tolerances to converge than the method of perturbation. However, if convergence is

achieved, the computing times are similar.

pure absorber 10% absorber, 90% water homogeneous material

τ0 outer inner time outer inner time outer inner time

10−1 - 4 - - 5 - - 4 -

10−2 - 8 - - 8 - - 7 -

10−3 - 13 - - 14 - - 9 -

10−4 - 14 - - 15 - - 16 -

10−5 - 15 - - 17 - - 17 -

10−6 - 17 - - 18 - - 18 -

10−7 - 18 - - 19 - - 19 -

10−8 - 18 - - 20 - - 20 -

10−9 - 19 - - 21 - - 21 -

10−10 - 20 - - 21 - - 22 -

10−11 - 21 - 4 22 56 3 23 54

10−12 5 22 59 4 23 57 3 24 55

10−13 5 23 59 4 24 58 3 25 56

10−14 5 25 61 4 25 60 3 29 57

Table 5.23: Convergence of Algorithm 13 with respect to fixed tolerances τ0.

Finally, we now consider a variation of the method of perturbation that aims to improve

the stability of the approach. We observed in (5.12) in the proof of Lemma 5.3 that

Ψ̃
(i+1)
IC = (α(i) − α(i+1))Ψ̃

(i+1)
II .

In Remark 5.5 we noted that this might lead to numerical problems as (α(i)−α(i+1)) →
0 when the method converges. To avoid these problems we use, following the idea

of Rüde and Schmid for inverse correction in [96], 0.95∆λ(i+1) instead of ∆λ(i) on
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the right-hand side of the linear system in Algorithm 7. This leads to Ψ̃
(i+1)
IC =

0.05∆λ(i+1)Ψ̃
(i+1)
II and in practice to more robust numerical results as Table 5.24 shows.

The approach converges for less accurate inner solves than those in Table 5.17 where

the original method of perturbation was considered, making this variation a viable

computational alternative.

pure absorber 10% absorber, 90% water homogeneous material

τ0 outer inner time outer inner time outer inner time

10−1 - 4 - - 5 - - 4 -

10−2 - 7 - 4 17 53 - 7 -

10−3 4 19 54 3 21 52 4 22 54

10−4 4 20 56 3 22 52 3 22 53

10−5 4 20 54 3 23 51 3 22 51

10−6 4 21 55 3 24 51 3 23 51

10−7 4 22 55 3 24 53 3 24 52

10−8 4 23 55 3 25 54 3 25 54

10−9 4 24 56 3 26 54 3 26 54

10−10 4 25 56 3 26 54 3 26 55

10−11 4 25 57 3 27 55 3 27 55

10−12 4 26 58 3 28 56 3 28 56

10−13 4 27 59 3 29 57 3 30 57

10−14 4 29 60 3 29 58 3 29 57

Table 5.24: Convergence of Algorithm 7 with respect to fixed tolerances τ (i) = τ0 and when
replacing ∆λ(i) on the right-hand side of the linear system with 0.95∆λ(i+1) .

A final variation of the method of perturbation, that similarly aims to avoid the nu-

merical problems arising from (α(i) − α(i+1)) → 0 when the method converges, sets

∆λ(i) on the right-hand side of the linear system to zero (instead of 0.95∆λ(i+1) ). This

approach resulted in very good numerical results as Table 5.25 shows.

pure absorber 10% absorber, 90% water homogeneous material

τ0 outer inner time outer inner time outer inner time

10−1 9 17 64 4 18 56 - 4 -

10−2 4 18 54 3 18 53 4 19 55

10−3 4 20 54 3 20 53 3 20 52

10−4 4 20 55 3 21 54 3 21 54

10−5 4 21 54 3 22 52 3 22 52

10−6 4 23 55 3 23 53 3 23 53

10−7 4 23 56 3 23 54 3 25 55

10−8 4 23 57 3 24 55 3 24 55

10−9 4 24 59 3 25 56 3 25 56

10−10 4 25 59 3 25 57 3 26 57

10−11 4 26 60 3 28 58 3 27 57

10−12 4 27 62 3 27 59 3 29 59

10−13 4 27 63 3 28 60 3 28 60

10−14 4 28 63 3 29 59 3 29 60

Table 5.25: Convergence of Algorithm 7 with respect to different fixed tolerances τ0 when using
∆λ(i) = 0 on the right-hand side of the linear system.
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5.6.3 Efficient GMRES implementation

We observed that Algorithm 10 with fixed inner tolerances obtained the same conver-

gence rate as the standard shifted inverse iteration in Algorithm 5 with fixed tolerances.

Due to the constant right-hand side in Algorithm 10, a computationally more efficient

version of GMRES can be implemented. We now briefly describe the concept for such

a method.

As many other iterative methods for solving linear systems, GMRES is based on the

construction of so-called Krylov subspaces. Let us consider a linear problem arising

from Algorithm 5, i.e.

(T − S − α(i)F)Ψ(i+1) = FΨ(i) .

The Krylov subspaces that GMRES constructs are, in the simplest case,

KJ

(
(T − S − α(i)F),FΨ(i)

)
:= span{ (T − S − α(i)F)jFΨ(i) , j = 0, . . . , J } .

Clearly, if Ψ(i) changes from one outer iteration to the next, then these Krylov spaces

will change as well.

In the case of Algorithm 10, however, the linear systems are

(T − S − α(i)F)Ψ(i+1) = FΨ0 (5.37)

with constant right-hand sides. Multiplying (or in the context of linear solvers, precon-

ditioning) this problem with (T −S)−1 and defining C := (T −S)−1F , (5.37) becomes

(I − α(i)C)Ψ(i+1) = CΨ0 . (5.38)

Now the corresponding Krylov subspaces for (5.38) are (using analogous arguments as

in the proof of Lemma 4.1 in [113])

KJ

(
(I − α(i)C), CΨ0

)
= span{ (I − α(i)C)jCΨ0 , j = 0, . . . , J }
= span{ CjCΨ0 , j = 0, . . . , J } ,

which do not depend on the iteration index i and therefore do not change from one

outer iteration to the next.

Hence an optimised GMRES method that makes use of these fixed Krylov spaces

could be implemented and might lead to a computationally more efficient Algorithm
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10 compared to the standard inexact inverse iteration given in Algorithm 5. However,

further investigations are needed to ensure that the solutions of the linear systems

guarantee convergence of the overall method towards the true eigenfunction and not

to an eigenfunction of a problem in a lower dimensional subspace determined by the

(fixed) Krylov spaces used to solve the inner problems.
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This thesis studied the criticality problem in neutron transport theory using the ex-

ample of monoenergetic homogeneous model problems with isotropic scattering. A

rigorous mathematical foundation was provided in the space of square-integrable func-

tions. We showed for the model cases that, using the scalar flux and the integral form

of the neutron transport equation, the unsymmetric eigenvalue problem for the angular

flux is equivalent to a symmetric problem in a space of reduced dimension.

As well as proving that the integral operator in the problem of reduced dimension is

self-adjoint and compact, we also established a norm estimate for it. This allowed us to

show in Section 2.3 that the criticality problem is well-defined in the sense that a unique

smallest positive real eigenvalue exists. In addition, we proved that the corresponding

square-integrable eigenfunction is strictly positive in the interior of the reactor. The

proof used the Krein-Rutman theorem and properties of positive operators on cones.

Furthermore, we discussed in Section 2.4 discretisations of the neutron transport equa-

tion, emphasising the danger of losing the underlying symmetry in the reduction to a

matrix problem. Symmetry preserving discretisations were presented and the second

chapter concluded with discretisation error estimates for both the solution of source

problems and the eigenvalue.

Chapter 3 considered iterative methods for the solution of the criticality problem with

an emphasis on the fact that the inner problems are in practice only solved inexactly.

We applied four different eigenvalue solvers (power method, inverse iteration, inverse

correction, and simplified Jacobi-Davidson) and gave numerical results comparing these

methods for a discrete ordinates discretisation using small and large inner tolerances.

A convergence analysis for inexact shifted inverse iteration was also presented in Chap-
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ter 3. This provided conditions on the accuracy of the inner solves to guarantee con-

vergence of the eigenvalue iteration. It is important to note that the analysis was done

for the original continuous problem. We considered different shift strategies and sug-

gested a non-standard Rayleigh quotient shift on L2(V, L∞(S2)) . Numerical results

showed that this shift gained an additional order in the convergence rate compared

to the standard Rayleigh quotient shift on the same space, provided a symmetry pre-

serving discretisation was used. Several additional numerical tests were performed and

showed good agreement with the theory, while emphasising the need for symmetry

preserving discretisations to obtain optimal convergence rates for iterative eigenvalue

solvers. Some experiments lay outside the regime of applicability of the theory, but the

non-standard Rayleigh quotient turned out to be still useful in this case.

In Chapter 4 Monte Carlo methods were discussed and motivated by establishing links

to the mathematics of the problem without the use of advanced probability theory. We

considered their application to source problems with and without scatter and fission,

as well as, by using a variation of the power method, to the criticality problem. For

the latter we noted that the Monte Carlo approach does not need a spatial or angular

mesh if the interest is only in the eigenvalue and no flux estimate is needed. Therefore,

Monte Carlo results are, in this case, not affected by discretisation errors.

However, due to the statistical nature of the Monte Carlo method the results contain

statistical uncertainties and reliable solutions can only be obtained if sufficiently many

particles are simulated. We showed in Chapter 4 how to obtain confidence intervals and

how their size depends on the number of simulations and scoring stages that are used.

The numerical results of our Monte Carlo implementation showed good agreement with

reference solutions. We remarked that possibly the biggest advantage of the Monte

Carlo approach is the ability to model very complex geometries. On the other hand,

the method has a major drawback of being slow to converge (order n−1/2 where n is

the total number of simulated neutrons). This leads to the need for simulating many

particles in order to reduce the statistical uncertainties. Although the method can

be easily parallelised, performing reliable computations for the difference between two

similar model problems, for example, demands long computing times. Note that in

this thesis we have not included discussions of the many variance reduction techniques

which are vital for commercial particle transport codes. These are believed to reduce

the computational cost but do not increase the order of the convergence rate.

We presented in Chapter 5 a new approach, the method of perturbation, that computes

the differences in the eigenvalue and eigenfunction between two problems directly. The

goal of this method is, when applying Monte Carlo techniques for the steps in Algorithm
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7, to reduce the computing time compared to using Monte Carlo calculations for each

of the problems individually. We provided a convergence analysis for the method of

perturbation by establishing links between this new approach and variations of inverse

correction and inverse iteration. The analysis allowed for inexact solves of the arising

linear problem and we showed that the new method obtained, for sufficiently large fixed

inner tolerances and variable shifts, the same convergence rates as standard inexact

inverse iteration with an equivalent shift. We gave numerical results that supported

the theory and indicated the existence of a radius of convergence that depends on

the accuracy of the inner solves as well as on the solution to the base problem. We

identified examples where the new approach failed to converge and recommended an

adjustment to the method that resulted in more robust convergence for the numerical

tests. Finally, we suggested an efficient inner solver for the linear problems in the new

method and other approaches that use a fixed right-hand side.

By presenting a systematic theoretical study of inexact iterative methods for the criti-

cality problem this thesis closes an open gap in neutron transport theory. The conver-

gence results of the iterative methods for the continuous problem are new and provide

a foundation for investigating more complicated eigenvalue solvers. The highlighted

links between the Monte Carlo method and the underlying mathematics emphasise the

existing connections between statistical and deterministic approaches, two areas that

evolved independently and have only recently been combined in the use of automatic

variance reduction (hybrid) methods (see [52] and references therein).

Finally, we suggest three possible directions for further studies that arise from this

thesis.

• Further investigation of the method of perturbation, in particular in combination

with the use of Monte Carlo methods. The computational and theoretical gains

of the new iterative scheme, when using Monte Carlo techniques to solve for

the difference between two similar problems, could be established. In addition

variance reduction techniques can be considered.

• Implementation and further investigation of the efficient Krylov subspace based

solver for the linear systems in the method of perturbation or fixed right-hand

side iterative solvers as suggested in Section 5.6.3.

• Extension of the analysis in Chapter 2 (and subsequently of the convergence anal-

ysis for iterative methods in Chapters 3 and 5) to heterogeneous problems. A

self-adjoint problem can be obtained by symmetrising the operator using tech-

niques similar to those applied in [21].
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