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General Principles of Neutron Transport

Abstract: This chapter describes the basic theory underlying the neutron transport equation
and the principal approximations used in this equation’s applications to reactor physics. In addi-
tion to presenting detailed classical derivations of various forms of the transport equation, we
discuss several important topics in a more rigorous manner than is found in typical derivations.
For instance, we include (i) a discussion of the lack of smoothness of the angular flux in multi-
dimensional geometries (this has a negative impact on numerical simulations); (ii) derivations
of the transport equation in specialized 1-D, 2-D, and 3-D geometries; (iii) a derivation of the
time-dependent integral transport equation; (iv) an asymptotic derivation of the point kinet-
ics equation; and (v) an asymptotic derivation of the multigroup P; and diffusion equations.
The basic approach taken by the authors in this chapter is theoretical, in the hope that this
will complement more intuitive presentations of related topics found in other chapters of this
handbook.

1 Introduction

A central problem in the design and analysis of nuclear reactors is the accurate and detailed pre-
diction of the space, angle, energy, and time-dependence of neutron and photon distributions
in all components of the reactor. Neutrons are responsible for propagating the chain reaction
and releasing energy through fission, but neutrons and photons, through fission, capture, scat-
tering, and excitation/ionization interactions, also induce a thermal-mechanical response in
the reactor core and, moreover, cause degradation of structural components, fuel rods, and the
control system, through radiation damage, depletion, and fission product poison buildup. These
consequences, in turn, affect the distribution of the radiation field itself through several feed-
back mechanisms. A synergistic description of all nuclear and nonnuclear processes is therefore
essential for the economic development and safe operation of nuclear power plants, and driv-
ing much of this challenge is the need to have an appropriate mathematical and computational
framework for adequately characterizing the neutron and photon distributions.

The transport of neutral radiation, including but not restricted to neutrons and photons,
through matter is extremely well described by the transport equation, a linear version of
Boltzmann’s celebrated equation originally developed within the framework of the kinetic the-
ory of gases (for this reason, the transport equation is sometimes also referred to as the linear
Boltzmann equation). This equation is an integrodifferential equation having (generally) seven
independent variables, whose solution is not smooth, and which can only be solved exactly for
the simplest of problems. Essentially, all neutron transport problems of practical interest must
be solved either approximately or numerically.

In this chapter, we present the basic theory underlying the neutron transport equation,
and we describe some of this equation’s principal approximations. In € Sect. 2, we derive the
transport equation and discuss some of its general properties. In € Sect. 3, we discuss prob-
lems with special spatial symmetries, which enable the transport equation to be formulated
using fewer independent variables; these formulations are at the heart of all practical 1-D and
2-D computer simulations of neutron transport. In € Sect. 4, we discuss the integral form of
the transport equation, which, under certain conditions, is advantageous for computer simu-
lations. In @ Sect. 5, we describe the adjoint transport equation and some of its applications.
© Sect. 6 describes the standard multigroup approximation to the energy variable, along with
the one-speed transport equation. @ Sect. 7 develops the Age and Wigner approximations,
which enable certain neutron slowing-down problems to be solved analytically. @ Sect. 8 is
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devoted to the diffusion approximation, the most important approximate form of the transport
equation for nuclear reactor core problems. € Sect. 9 describes the point kinetics approxima-
tion, which is used for time-dependent simulations of nuclear reactors. € Sect. 10 provides a
brief discussion of numerical methods for simulating neutron and photon transport problems,
and we close @ Chap. 5 with some concluding remarks in @ Sect. 11.

We have consciously adopted a somewhat theoretical approach to this chapter of the hand-
book, but we have strived for an exposition that presents advanced material in a pedagogical
manner that will hopefully appeal both to the novice and to the expert in the field of neutron
transport. We include detailed, self-contained presentations of classical material, such as the
derivation of the forward and adjoint integrodifferential equations and the forward integral
equation, but also, in several of the sections in this chapter, we present material that is either
not commonly found in standard texts, or represents a different and more rigorous theoreti-
cal approach than standard approaches to the topics under discussion. For instance, @ Sect. 2
includes a discussion of the (lack of) smoothness of the angular flux in multidimensional prob-
lems; this negatively affects the accuracy of numerical solutions of multidimensional transport
problems. Also, €@ Sect. 3 on the different forms of the Boltzmann equation for 1-D, 2-D, and
3-D geometries is exceptionally important in practice, but this material is not found in standard
texts. @ Sect. 9 presents a new asymptotic derivation of the point kinetics equation; formerly,
this equation has been derived by ad hoc, or at best by variational approaches. Also, @ Sect. 7
derives the standard Age and Wigner approximations without introducing the lethargy variable,
and @ Sect. 8 on the diffusion approximation attempts to put some rigor into the standard P,
approximation that leads to the multigroup form of this approximation.

Overall, we have attempted to cover significant material in a way that makes use of theo-
retical approaches that have been developed in recent years, but that has not found its way yet
into standard texts. We hope that this will make the chapter more interesting, and that it will
provide a more fundamental approach to basic material that may be presented more intuitively
in other chapters of this handbook.

2 Derivation of the Neutron Transport (Linear Boltzmann)
Equation

Neutron transport is the process in which neutrons propagate through the atoms in a physical
system. This includes the streaming of neutrons from one collision site (an atomic nucleus) to the
next, the scattering of neutrons off nuclei, the capture of neutrons by nuclei, and the initiation by
neutrons of fission events, in which a nucleus splits and two or more neutrons are emitted. In this
chapter, we develop the mathematical equations that describe the neutron transport process. We
begin by defining the necessary independent variables. Then we (i) outline the relevant physics,
(ii) define the relevant unknowns (angular flux, precursor densities - for problems with delayed
neutrons), and (iii) derive the appropriate mathematical equations for these unknowns. (Our
derivation is patterned closely on previous derivations in classic texts [Bell and Glasstone 1970;
Case and Zweifel 1967; Henry 1975; Weinberg and Wigner 1958].) Finally, we discuss conditions
under which the transport equation is valid and some properties of its solution.
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X
X
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@ Figure 1
The spatial (x), direction-of-flight or angular (), and energy (E) variables

2.1 Independent Variables

To characterize a general 3-D neutron transport process, seven independent variables are
required: three components of the position vector x, two angles to specify the unit vector Q
denoting the direction of flight, the kinetic energy E, and time t. These variables enable one to
specify the population of neutrons (i) at an arbitrary point x in the system, (ii) traveling in an
arbitrary direction of flight €, (iii) with any energy E, and (iv) at any time ¢ (@ Fig. I).

In steady-state problems, the time variable is extraneous, and in problems with spatial
symmetries (discussed in € Sect. 3), fewer spatial and/or angular variables are required.

To derive the 3-D transport equation, it is convenient to use the familiar Cartesian coordi-
nates, defined in the usual manner by:

x=xi+yj+zk, 1)

where i, j, and k are mutually orthogonal unit vectors.

The direction-of-flight vector £, a unit vector (|| = 1), is specified using a polar angle 0,
defined relative to the z-axis, and an azimuthal angle w, defined relative to the x-axis (@ Fig. 2).
In terms of the direction cosines projected onto the three Cartesian axes, we have:

Q=0yi+0Q,j+ Q.k, (2a)

where:

Qy =1l =+/1- 2 cos w, (2b)
Qy =1y =+/1-p? sinw, (2¢)

QZ = l] = ‘Ll (Zd)
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The polar angle 0 and azimuthal angle w
(x+dx,y,z) dz
dx
av
(*y.2) x,y,z+dz)

X ay
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@ Figure 3

Incremental volume dV

If we independently displace the spatial variables x, y, and z by incremental (very small)
amounts dx, dy,and dz, the spatial variable x will sweep out an incremental hexahedral volume
dV = dxdydz about x (see @ Fig. 3).

Similarly, if we independently displace the angular variables y and w by incremental
amounts dy and dw, then the unit vector © will sweep out an incremental, rectangular,
dimensionless element of area or solid angle dQ) = dsd¢ on the unit sphere (see @ Fig. 4).

© Figure 4 shows that ds = dw+/1 - y?, and @ Fig 5, drawn in the plane generated by Q
and k, shows that d¢ = du/\/1 - p?. Thus, d() is given by:

d0 = dsde = (do\/1-p?) (d—“2) =dudw. 3)

l-p

For example, the surface area of the entire unit sphere is then:

2n 1
Area = f dQ = f f dudw = 4,
dn 0o J-
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@ Figure 4
Solid angle dQ
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112
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u du k
@ Figure 5

Relationship between du and d¢

where integration over the unit sphere is denoted by:

[ sao= [T [ p@yiuda= [T [ f(wa)dudo

2.2 The Basic Physics of Neutron Transport

Let us consider a neutron, streaming with direction 2 and energy E inside a material with
known physical properties. As the neutron travels an incremental distance ds, there is an
incremental probability dp that the neutron will interact with a nucleus. To determine the
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relationship between dp and ds, let us consider the neutron to be normally incident, at an
arbitrary point, on a target of area A and incremental thickness ds (see @ Fig. 6).

We assume that the microscopic cross-sectional area of a target nucleus o (E) (cm?) and the
number density of target nuclei N (cm™>) are known. The neutron’s-eye-view of the target is
depicted in @ Fig. 7.

If the target is sufficiently thin that one target nucleus does not shield another, then the
probability of a collision is:

_ total area of nuclei

area of target
no

= 7) (4)

where n = NdV = N(Ads) = the number of nuclei in the target. Equation (4) gives:

N (A
dp = M = (Ng‘)dg.
A
Therefore, dp is proportional to ds:
Q

@ Figure 6
Incrementally thin neutron target

o= Cross-sectional area of a target nucleus

A = Area of the target

@ Figure 7
Neutron’s-eye-view of the target
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dp = Z+(E)ds, (5a)

where the “constant” of proportionality is:
3((E) = No(E) = total macroscopic cross section (cm™ ). (5b)

When a neutron collides with a nucleus, it is captured with probability p, (E), scatters with
probability ps(E), or initiates a fission event with probability p s(E). (We ignore other possible,
but generally rare, events such as (n, a), (1, p), and (n,2n).) Then:

Py(E) +ps(E) + ps(E) = 1. (6)
With r = (y, s, f), the probabilities also define the macroscopic cross sections 2, (E), such that:
2.(E)ds = 2:(E)ds p,(E) (7)

is the probability that a neutron with energy E, while traveling a distance ds, will experience a
collision of type r. The total macroscopic cross section then satisfies:

3i(E) = 3,(E) + Z,(E) + Z(E). (8)

If the neutron is captured, it is considered to be removed from the system. If the neutron
(with direction 2 and energy E) scatters, it emerges from the scattering event with a new direc-
tion Q' and energy E’. We assume that the distribution of post-collision directions 2’ and
energies E’ is known and can be expressed as:

p(Q-Q',E - E')dQ'dE’ = probability that the scattered neutron
has direction in Q" about Q' and
energy in dE’ about E'. 9)

In writing p as p(2 - Q',E — E’), we indicate that scattering in media with randomly
distributed scattering centers (nuclei) is rotationally invariant. That is, the probability that a
neutron will scatter from direction Q to direction Q' depends only on the scattering angle 6,
between Q and Q' (or, on the cosine of this angle, yo = cos 8y = Q- Q'). Thus, all scattered
directions of flight Q' on the cone of equal scattering angle are equally probable (€ Fig. 8).

The distribution function for elastic s-wave neutron scattering, which is isotropic in the
center-of-mass frame, can be shown from kinematics (Duderstadt and Hamilton 1976) to be
given by:

[0~ uo(E > E)]

p(Q-QE—E)=py(E—E) g - . (10a)

Here, po(E — E’) is a histogram distribution function for outgoing energies E:

, o ifaE < E' <E,
po(E—-E)={(1-a)E (10b)

0 otherwise,
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where:

oc:(f‘;i)z, (10¢)

and A is the nucleus-to-neutron mass ratio (A > 1). Also, ¢ is the familiar delta-function, and
po(E — E") is the scattering cosine for a neutron, initially with energy E, that elastically scatters

into energy E':
A+1 E’ A-1 E
e-e) - (W5 - (5 )V e 10d
pol =17 E \ 2 E (104

Thus, the outgoing neutron energy E’ is random and uniformly distributed between o E and
E. Once E’ is known, the scattering cosine y;(E — E’) is uniquely specified by (10d), but
the scattering azimuthal angle @’ is random and uniformly distributed on 0 < @’ < 27. As
depicted in @ Fig. 9, the minimum neutron energy loss is associated with the minimal change
in direction of the neutron (“forward” scattering, s = +1), while the maximum neutron energy
loss is associated with the maximum change in direction of the neutron (“backward” scattering,
ps = -1).

We now define the macroscopic differential scattering cross section as:

(-0 E-E)=2(E)p(Q-Q,E~E), (1)

@ Figure 8
Scattering angle 0,

A to(E—E)

Uo=+1 (“forward” scattering)
E’ = E (no energy loss)

Uo=—1 (“backward” scattering)
E' = oE (maximum energy loss)

@ Figure 9
Scattering cosine as a function of the outgoing energy E’
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which has dimension cm™ MeV ™. Then:

Z(2-Q', E - E')dsdQ'dE’ = probability that a neutron, with direction £ and energy E

and traveling a distance ds, will scatter into

dQ' about Q' and dE" about E’. (12)

Equations (9)-11 imply:
/Omj;ﬂp(.() Q' E— E)dQdE =1, (13a)
fow /4n >(Q-Q,E - E"dQ'dE" = 3,(E). (13b)

If a neutron with energy E initiates a fission event, the target nucleus splits into two smaller
daughter nuclei,and on the average, v( E ) neutrons are released. Of this number, v(E)[1-S(E) ]
are prompt (emitted within 107 s of the fission event) and v(E)B(E) are delayed (emitted
roughly 0.1-60's after the fission event). Thus, the delayed neutron fraction f(E) is the prob-
ability that a fission neutron, created by a neutron with energy E, is delayed (8 ~ 0.01). Delayed
fission neutrons are created from the radioactive decay of unstable daughter nuclei, which can
be produced during fission events.

Prompt fission neutrons are born at the location of the fission event, their initial direction of
flight is isotropic (uniformly distributed on the unit sphere), and their initial energy is consistent
with the prompt fission spectrum x,(E"), defined by:

xp(E")dE" = the probability that a prompt fission neutron
has energy in dE” about E'. (14a)

This definition implies:

fom xo(E)AE = 1. (14b)

The unstable daughter nuclei are often grouped into six precursor groups, each with its
own radioactive decay constant Aj, delayed fraction f3;(E), and delayed neutron fission spectrum
Xj(E), where1< j < 6. The functions f3;(E) satisfy:

> Bi(E) = B(E). (15)
j=1

To conclude this discussion, we introduce the notion of the neutron mean free path. Let us
consider a large number (No) of neutrons, all emitted in the same direction of flight, with the
same energy E, and from the same spatial point within a large homogeneous region. Each neu-
tron travels along the same flight path within the system and eventually undergoes a collision
with a nucleus. Let N (s, E) be the number of neutrons that penetrate to depth s without expe-
riencing a collision. Clearly, N (s, E) is a decreasing function of s, starting with the initial value
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N(0,E) = Ny. For s > 0 and an incremental distance ds > 0, the number of neutron-nucleus
collisions between s and s + ds is given by:

N(s,E) = N(s+ ds, E) ~ N(s, E) - (N(S,E) . ds%—lj(s,E))

oON
:—dsg(s,E). (16)

Dividing by N (s, E) and noting that the left side becomes the probability that a neutron will
have a collision while traveling a distance ds, we have from (5a):

1

SOF (—%—tj(s,E)ds) _ 5.(E) ds.

This relationship can be rearranged to yield the differential equation:
oN
a—(s,E) +2(E)N(s,E)=0, N(0,E)= Ny,
s
which has the solution:

N(s,E) = Nge > (B, (17)

Next, defining P(s, E)ds as the probability that an uncollided neutron will collide with a
nucleus between s and s + ds, we have:

P(s, E)ds - the number of collisions between s and s + ds

the initial number of neutrons (at s = 0)
L (—a—N(s E)ds) (by [16])
B No as ’ Y

= 3(E)e > B gs (by [17]).
Thus,
P(s,E) = Sy(E)e > F). (18a)
We note that P satisfies the normalization [, P(s, E)ds = [, Z:(E)e > F)*ds = 1, which
simply states that in an infinite medium, a neutron must collide somewhere.

The probability density P(s, E) can be used to obtain the mean distance-to-collision, or the
mean free path:

A(E) = fooosP(s,E)ds: ﬁ (18b)

Thus, the mean free path of a neutron with energy E is equal to the inverse of the macroscopic
total cross section at that energy.
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av

@ Figure 10
dV about x, dQ about , and dE about E

23 The Angular Neutron Density and Angular Flux

We now define the physical quantities needed to describe the neutron population. We consider
all neutrons that, at time t, (i) are geometrically located in a volume increment d V about a point
x, (ii) travel within a solid angle dQ about the direction £2, and (iii) have energies between E
and E + dE (see @ Fig. 10). The angular neutron density N (x,Q, E, t), a function of (generally)
seven independent variables, is defined by:

N(x,0,E,t) dVdQdE = the number of neutrons in d VdQdE

about (x, 2, E) at time . (19)

This definition implies that the value of N is independent of the increments dV, d(2, and dE.
Also, N is a phase space density; it has the dimensions cm ™ MeV ™.

Knowledge of N(x,Q, E, t) enables one to calculate the number of neutrons that exist in
any “volume” of 6-D phase space (x, 2, E) at any time ¢. For example, for any E; < E; and any
subregion R of the physical system V, we have:

E;
/ f / N(x,9Q,E,t)dVdQdE = n(t) = the number of neutrons in R,
E, 4nJ R

with energies between E; and E,, at time t.

Next, let us consider a planar surface area element d§, located at any point x in V, with a
unit normal vector n (@ Fig. 1I). We consider neutrons located near x, traveling in directions
in dQ about £, with energies in dE about E, at time t. What is the rate (number per second) at
which these neutrons flow through d§ at time £?

In the plane generated by Q2 and n, and with v = neutron speed = \/2E/m, we consider

a volume dV obtained by sweeping dS a distance ds = vdt along the direction of flight 2

© Fig. 12):
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@ Figure 11
Neutron flow through dS

%:cos 6=Q-n
ds

Y

av

dl = ds (2-n) = vdi(2- n)

@ Figure 12
Volume increment dV

In time increment dt, neutrons travel the distance ds = vdt. Thus, in time d¢, among all neu-
trons traveling in dQ about 2 and dE about E, only those physically located in the incremental
volume d'V will flow through dS.

The volume of dV is:

dV =(dS)(d¢) =dS(vdt)(Q-n).
Thus, the number of neutrons located within d VdQdE about (x, Q, E) is:
NdVAQAE = NdS(vdt)(Q- n)dQdE = [(Q- n)vN]dSdQdEdt,

and this is the number of neutrons traveling in d QdE about (2, E) that pass through d$ during
time dt about ¢. Dividing by dt, we obtain:

(2-n)vN(x,0Q,E,t)dSAQdE = the rate (number per second) at which neutrons,
traveling in dQdE about (2, E),
flow through 4§ at time ¢. (20)

Each incremental surface dS has two normal vectors, n and —n. The choice of n determines
“positive” and “negative” directions of flow through dS. A positive (negative) rate indicates flow
through dS in the hemisphere of directions 2-n > 0 (2 - n < 0). (see @ Fig. 13).
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@ Figure 13
“Positive” and “negative” directions of neutron flow through dS

The angular flux (or fluence rate) y(x, Q, E, t) is defined by:

v(x,Q,E, t)=vN(x,Q,E,t), (21)

where v = \/2E/m is the neutron speed. The dimensions of y are cm™> MeV ™' s™". A physical
interpretation for v is obtained by considering neutrons in d VdQdE about (x, 2, E) at time .
During a time increment dt about ¢,

ydVdQdEdt = v(NdVAQdE)dt

(vdt)(NdVdQdE)

[ distance (path length) traveled by one neutron in time dt |
x [ number of neutrons in d VdQdE about (x,Q,E) ]

= total path length traveled by neutrons, in d VdQdE

about (x, 2, E), during time increment dt about ¢.

Dividing by dt, we obtain the following volume-based interpretation for y:

v(x,0Q,E,t)dVdQdE = rate at which path length is generated by neutrons in
dVdQdE about (x, Q, E) at time ¢. (22)

(Hence, y is sometimes called the path length density.) Also, (20) implies the following surface-
based interpretation for y:

|2 nly(x, Q,E, t)dSdQdE = the absolute rate at which neutrons, traveling in dQdE
about (£, E), flow through d§ at time ¢. (23)

If the surface increment dS is perpendicular to the direction of neutron travel
(ie.,if n = Q) (@ Fig. 14),
then (23) reduces to:

y(x, Q,E, t)dSdQdE = the absolute rate at which neutrons, traveling in
dQdE about (2, E), flow through a surface

increment dS perpendicular to Q at time . (24)
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@ Figure 14
Neutron flow through dS in the direction Q = n

Equation (22) defines y in terms of a volume element d V, while (23) and (24) define y in terms
of a surface element dS. Both interpretations are useful.

For example, if R is a subregion of V and # is the unit outer normal vector on dR, then (23)
implies:

Ji(t) = fowfaanMQ~nw(x,n,E,t)deSdE

= the rate at which neutrons flow (leak) out of R at time t, (25a)

]R(t)zfo faan_M Q- nly(x, O, E, t)dQdSdE

= the rate at which neutrons flow into R at time ¢. (25b)

Therefore,
Tr(t) = Ji () = Jr (1)
B fo faRfM(Q -n)y(x, Q,E, t)dQdSdE

= the net rate at which neutrons flow (leak) out of R at time ¢. (26)

Using the divergence theorem,

x)dS = / Vi(x)dV, 27
AR nf(x) R @) @7)
we obtain from (26) the equivalent result:

Jr(t) = Jr(t) = Jx(f)
:[0°°/Rf4 (Q-V)y(x, Q,E t)dQdVdE

= the net rate at which neutrons flow (leak) out of R at time . (28)

Thus, the “surface” definition (23) of y can be used to determine the rates at which neutrons
flow across surfaces. (Equations (25) also hold for surfaces that are not closed, i.e., that do not
enclose a volume.)

The “volume” definition (22) of y is useful because the number of collisions with nuclei that
neutrons experience in an incremental time interval is proportional to the incremental distance
that the neutrons travel during that time interval. Thus, the rate at which neutrons interact with
nuclei in a volume is proportional to the rate at which the neutrons generate path length in the
volume. The constants of proportionality are the macroscopic cross sections.
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In addition to the neutron angular flux y(x, 2, E, t), the precursor densities C;(x, t) for the
six delayed neutron precursor groups are also required. For 1 < j < 6 and for an incremental
volume dV about x, these are defined by:

Cj(x,t)dV = the number of group- j precursor nuclei

in dV about x at time . (29)
Each precursor nucleus will eventually decay and emit one delayed neutron. Thus, the rate at

which group-j precursor nuclei experience radioactive decay equals the rate at which delayed
neutrons are emitted by these nuclei.

24 Internal and Boundary Sources

In addition to the physical data described above, neutron sources must be prescribed. These
exist in two categories: internal sources and boundary sources.

An internal neutron source Q(x, E, t), generally produced by radioactive decay, is located
inside the physical system V" and is usually isotropic (in radioactive decay, neutrons are emitted
in all directions 2 with equal probability). Q is defined by:

,E t . .
%d VdQdE = the incremental rate at which neutrons
/A

are produced in d VdQdE about (x, Q,E)

from an internal source, at time ¢. (30a)

This definition implies that the numerical value of Q is independent of dV, dQ, and dE. The fac-
tor 47 is included so that integration of (30a) over the unit sphere gives the following equivalent
(for an isotropic source) definition:

Q(x, E, t)d VAE = the incremental rate at which neutrons are
isotropically introduced into d VAE about (x, E)

from an internal source, at time . (30b)

Q(x, E, t) must be specified for all points x in V, all energies E, and all times after the initial
time.

Boundary sources are specified neutron fluxes that enter the physical system V through
its outer boundary 0V. V is usually assumed to be convex; then neutrons leaking out of V'
cannot reenter through dV. The boundary angular flux ¥’ (x, 2, E, t) is an external source,
independent of the flux within the system, which must be specified for: (i) all points on the
outer boundary of the system (x € dV), (ii) all directions of flight pointing into the system
(2-n < 0, where n is the unit outer normal vector at x € dV), (iii) all energies, and (iv) all times
after the initial time. The angular flux is required to satisfy:

tp(x,.Q,E,t):wb(x,Q,E,t), x€dV, 2:-n<0, 0<E<oo, 0<t. (31

If y* = 0, 9V is called a vacuum boundary (@ Fig. 15).
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@ Figure 15
Incident directions of flight on oV

The internal and boundary neutron sources are specified and independent of the neu-
tron distribution within V. Generally, neutron transport problems are driven by these known
sources, which generate the “original” neutrons in the problem. After neutrons are introduced
into V by the internal or boundary sources, they “transport” within V according to the physical
processes of streaming, absorption, scattering, and fission, discussed above.

In nuclear reactor problems, the term fission source describes the neutrons that are produced
by fission events in V. This “source” directly depends on ¥ and must be calculated. Likewise,
the scattering source of neutrons emitted from scattering events also directly depends on y and
must be calculated. (Thus, the term “source” sometimes describes a quantity that depends on
y.) However, to repeat, the internal and boundary sources are independent of y and must be
specified.

2.5 The Time-Dependent Equations of Neutron Transport

Next, we derive seven mathematical equations that determine the neutron angular flux
v(x,Q,E, t) and the six neutron precursor densities C;(x,t). Each of these seven equations
is a conservation equation — each is based on the simple physical concept that the rate of change
(of neutrons and precursor densities within increments of phase space) equals the rate of gain
minus the rate of loss.

WEe first consider the incremental population of neutrons within d Vd QdE about (x, 2, E)
at time ¢. By (19), the number of these neutrons is:

dN = N(x, 9, E, )dVAQdE = ~y(x, 0, E, 1)dVdQdE.
v

Thus, the time rate of change of dN is:
N _ 10y
ot v ot
= (rate of gain) — (rate of loss). (32a)

(x,Q,E, t)dVdQdE
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From our discussion of neutron physics, we have:

Rate of loss = (collision rate + net leakage rate)
in dVdQdE about (x,Q, E) at time ¢, (32b)

and:

Rate of gain = (in-scattering rate + prompt fission rate + delayed fission rate

+ source rate) in d VdQdE about (x, Q, E) at time ¢. (32¢)

First, we consider the “loss” terms in (32a) and (32b). From (5a) and (19) we have, using
v = ds/dt, for neutrons in d VdQdE about (x, 2, E):

S(E)y(x, Q,E, t)dVdQdE = Z,(E)%N(x, Q,E, t)dVdQdE

1
T dt
1
T dt

[2:(E)ds]|[N(x,Q,E, t)dVdQdE]

[the probability that a (single) neutron with energy E
will undergo a collision in time interval d t]
X [the number of neutrons in d Vd QdE about
(x,Q,E, t) at time t]
:i [the number of collisions in d VdQdE about (x, 2, E)

in time interval dt about t]

= Collision rate (in [32b]). (33a)
Also, in (28), we let R shrink to an incremental volume dV and directly get:
Q-Vy(x,9,E,t)dVdQdE = Net leakage rate (in [32b]). (33b)
Introducing (33) into (32b), we obtain:
Rate of loss = [Z+(E)y(x,Q,E, )+ Q- Vy(x,0,E, t)]dVAdQJE. (34)

The derivation of (33b) relies on the use of the divergence theorem (27) to convert a sur-
face integral into a volume integral. A more physically intuitive understanding of (33b) can be
obtained by considering d'V to be a special cylindrical volume. Specifically, let us consider neu-
trons in dVdQdE about (x, 2, E), where dV is an incremental cylindrical volume of length
ds and cross-sectional area dA, centered at x and oriented in the direction (2, as depicted in
© Fig I6.
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Q

@ Figure 16
Cylindrical incremental volume dV

Then dV = dsdA, and neutrons in dQdE about (£, E) flow into dV through the surface
dAatx — (ds/2)£, and flow out of d V through the surface dA at x + (ds/2) Q. Hence, by (24),
we have:

Net rate at which neutrons in dQdE about (£, E) leak out of dV
- [v/ (x . %Q,E) _y (x - %Q,E)] dAdQdE

_ |:1//(x+%.(),E)—1//(x—%.Q,E)

VAdQdE
Is dvdQd

= [ Vy(x, Q,E)|dVdQdE. (35)

Next, we consider the “gain” terms in (32a) and (32c). From (12) and (19), we have for
neutrons in d VdQ'dE’ about (x, Q',E’):

(Q - QE - E)y(x,Q,E,t)dVdQ'dE'dQdE
=3(Q - Q,F - E)%N(x, Q' E' t)dVdQ'dE' dQdE

[N(x, 2", E',t)dVdQ'dE'|[2,(Q"- Q,E' -~ E)dsd QdE]

[ the number of neutrons in dVdQ'dE’ about (x, Q', E") at time t ]

X B~ %]~

[ the probability that one of these neutrons will scatter into

dQdE about (Q, E) during time interval d¢ ]
1
= E[ the number of neutrons in d V' about x that scatter from

dQ'dE" about (Q',E") into dQdE about (£, E)

during time interval dt about ¢ ]
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=the rate at which neutrons in d V about x scatter from dQ’dE’

= the rate at which neutrons in d V' about x scatter from dQ'dE’

about (2', E") into dQdE about (£, E) at time ¢.

Integrating this expression over all initial directions Q" and energies E’, we obtain:

[ [ - [ (@ -Q.F - E)y(x, Q. F, t)dQ'dE']dVd.QdE
0 4

= the rate at which neutrons in dV about x scatter
into dQdE about (Q, E) at time ¢
= In-scattering rate (in [32c]) . (36a)

Similarly, the rate at which prompt fission neutrons are produced in dVdQ'dE’ about
(x,Q',E") is given by:

[1-B(EN]v(ENZ/(E)y(x, Q' E, t)dVdQ'dE’.

Integrating this expression over all initial directions 2 and energies E’, and multiplying by
[xp(E)/4m]dQdE, we obtain:

[XP(E)f f - BEN|v(E"2/(E y(x, Q" E', t)dQ'dE’ |[dVAQdE

= the rate at which prompt fission neutrons are
produced in d VdQdE about (x, 2, E) at time ¢. (36b)

Also,

(=)

t)dVAQdE = the rate at which delayed neutrons

are emitted into d VdQdE
about (x, Q, E) at time ¢. (36¢)
Finally, by (30a), we have:
JE  t
%dVdeE = source rate (in [32c]). (37)
A

Introducing (36) and (37) into (32c), we obtain:

Rate of gain :I:/wf Q" Q,F - E)y(x,QE,t)dQ'dE’
4m

Xp(E)

f f [1-B(EN|vZ (E ) y(x, Q" E', t)dQ'dE’

+ E ; Xi(E)A;Ci(x,t) + EQ(x, E, t)]dVd.QdE. (38)
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Introducing the rate of loss terms (34) and the rate of gain terms (38) into the general
conservation equation (32a), we get:

1 81// bt r gt XP ° _ Iyt
~Lavqde - [ fo SydQ/dE' + 2 fo [1- BvZ,ydQ'dE

4m 4m

6
* i,, 2 xiAiCi+ ﬁQ ]dVdeE_[M +0- Vw]dVdeE.
j=1

Dividing by d VdQdE and rearranging, we obtain the following first-order integro-differential
equation:

iav/(x.() Et)+ Q- Vy(x, QE t) + Z(E)y(x Q. 1)
:f f 5.0 Q,E — E)y(x, @, E', 1)dQ'dE’
XP(E)/ f 1- B(E) [vZ,(E')y(x, @', E, t)dQ' dE’

+ E ;Xj(E)Ajcj(x, t) + EQ(x, E,t). (39)

This is the time-dependent neutron transport equation (with delayed neutron precursors), also
called the linear Boltzmann equation. The derivation of this equation shows that each of its terms
describes a specific physical process that causes a gain or loss of neutrons in each increment of
phase space.

We must also derive an equation for each precursor density. The time rate of change of the
species- j precursor density may be expressed as:

aC;
a—t] (x,t)dV = the rate of change of the number of group- j

precursor nuclei in dV about x at time ¢

= (Rate of gain) — (rate of loss). (40)
The rate of loss (due to decay) of these precursors is given by:

A;Cj(x,t)dV = the rate at which group- j precursor nuclei undergo

radioactive decay in dV about x at time ¢. (41)
On the other hand,

Bi(EWE(ENy(x, 2 E', t)dVdQ'dE’
= the rate at which group-j precursor nuclei are produced
by neutrons in d VdQ'dE" about (x, Q', E") at time t.
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Integrating over Q' and E’, we get the total rate of gain of the group-j precursor nuclei:

[ f0°°f4 Bi(E)vEs(E )y (x, @ E, t)dQ’dE’]dV

= the rate at which group-j precursor nuclei

are produced in dV about x at time ¢. (42)

After some rearrangement, (40-42) give for 1 < j < 6 the following equations for the precursor
densities:

aCj e / ’ I I
W(x,t)+)tjcj(x,t)_f0 f4nﬂj(E YEr(E)y(x, @, E, 0)dQ'dE.  (43)

As with the transport equation, each term in these equations describes a physical process that
causes a gain or loss of group-j neutron precursor nuclei.

Equation (43) must be solved jointly with the neutron transport equation (39). In addition,
y must satisfy the boundary condition:

v(x, Q,E 1) =y"(x,Q,E 1), x€dV, Q-n<0, 0<E<oo, 0<t,  (44)
and y and C; must satisfy the initial conditions:

v(x,Q,E0) =y (x,Q,E), xcV, Qedn, 0<E< oo, (45a)
Cj(x,0) = Cj(x), xeV, (45b)

where y’, v/, and Cj- are specified.

In full generality, the neutron angular flux y(x, 2, E, t) and the precursor densities C;(x, t)
are obtained by solving (39) and (43), subject to the boundary condition stated in (44) and the
initial conditions stated in (45). The subject of nuclear reactor kinetics is based on this system of
equations.

2.6 Time-Dependent Neutron Transport Without Delayed Neutrons

In some time-dependent problems, the relatively small value of 8 (~ 0.01) justifies the neglect
of the delayed neutron terms. In such problems one can set 3; = C; = 0 in (39). The resulting
single transport equation for y:

%aa—‘t”(x, O 1)+ Q- Vy(x, O, E 1) + S.(E)y(x O, E, 1)

:[ f Z(Q"0,F - E)y(x,Q E,t)dQ'dE’
0 4m

N xp(E)

° 7 I A 12 7 1
o fo f4ﬂ"2f(E Yu(x, Q' E' t)dQ'dE +EQ(x,E,t), (46a)
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is solved subject to the boundary condition (44) and initial condition (45a):

v(x%, QE t)=y" (x,2,E, 1), x€dV, Q-n<0, 0<E<oo, 0<t, (46b)
v(x, Q,E0)=y'(x,Q,E), xcV, Qecdn, 0<E<oo. (46¢)

2.7 The Steady-State Neutron Transport Equation

In steady-state problems, the precursor densities can be eliminated to obtain a single equation
for y. Setting 9C;/dt = 0, in (43), we get:

ACix) = [T [ BBz (B )y(x 0 F) daE,
and introducing these expressions into the steady-state equation (39), we obtain:
Q-vy(x,2,E) + 2(E)y(x,Q,E)
:fmf (0 - Q.F - E)y(x, @, E')dQ dE’
X"(E) L7 - vy 0 B0
+ E;XJ(E)fO [ BiE I (0L ENAQAE s Q(E). @)

Since 8 = 3 B; ~ 0.0, it is often acceptable to set §; = 0. In this case, (47) simplifies to:

Q-Vy(x,2,E) + Z«(E)y(x,Q,E)
:fmf >(Q - QF - E)y(x,Q,E"dQ'dE’
4

X"(E)f f v (E )y(x, @, E')dQ dE'

+4—Q(x,E), xeV, Qednr, 0<E<oo. (48a)
m

The first term on the right side of this equation is often called the scattering source. The second
term is the fission source; this is isotropic and separable in space and energy - it is the product of
a (known) function of energy and an (unknown) function only of space. (This separable form of
the fission source is useful in developing strategies to solve [48a].) The third term is the specified
internal source.

Equation (48a) must be solved subject to the steady-state boundary condition:

y(x, Q,E) = y"(x,Q,E), x€dV, 2-n<0, 0<E< oo, (48b)

which is obtained from (44). As before, if the specified incident boundary flux y* = 0, then 9V
is called a vacuum boundary.
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2.8 k-Eigenvalue Problems

In steady-state reactor calculations, one often sees the following version of (48) in which the
inhomogeneous source Q and the boundary source y? are set to zero, and the fission source is
modified by a constant factor 1/k:

r).vv,(x,n,E)+zt(E)y/(x,Q,E):fomf4 5(Q - OE > E)y(x, Q' E)dQ dE’

—XP(E) = ! a— ’ ’
" ank fo le,T"Zf(E )y (x,Q,E)dQ'dE’,

xeV,Q¢ed4n, 0<E < oo, (49a)
v(x,Q,E)=0, x€dV, Q-n<0,0<E < oo. (49b)

These equations always have the zero solution: ¥ = 0. The goal is to find the largest value of k
such that a nonzero solution y exists. This k is called the criticality (or criticality eigenvalue) of
the system V; the corresponding  is called the eigenfunction or fundamental mode.

Ifa system V has a fissile region, then it can be shown that the criticality eigenvalue k always
exists, and the corresponding eigenfunction y is unique (up to a multiplicative constant) and
positive. (If V has no fissile region, then we adopt the convention that k = 0.)

The motivation for defining k in the above manner is as follows. In any system V with fis-
sion, neutrons are lost due to capture and leakage, and are produced by fission. If the production
of neutrons due to fission exactly balances the loss of neutrons due to capture and leakage, then
a nonzero, steady-state neutron flux is possible. (This concept underlies a steady-state power
reactor.) By adjusting the magnitude of the fission source through the eigenvalue k, one can
make this exact balance occur. If k < 1, the fission source must be increased for a steady-state
solution to exist; this implies that capture and leakage dominate fission, and the reactor is sub-
critical. If k > 1, the fission source must be decreased for a steady-state solution to exist; this
implies that fission dominates capture and leakage, and the reactor is supercritical. If k = 1,
capture and leakage exactly balance fission, and the reactor is critical. The calculation of k for
differing reactor configurations is one of the most important and ubiquitous calculations in the
design and operation of nuclear reactors.

In some problems (in particular, the field of reactor kinetics), the criticality k is replaced by
the reactivity p, defined by

A reactor is subcritical if p < 0, critical if p = 0, and supercritical if p > 0.

29 The Monoenergetic Neutron Transport Equation

A common simplifying assumption is to ignore energy dependence altogether, giving the
so-called one-speed or monoenergetic form of the transport equation. Despite an apparently
drastic approximation of the physics, this equation has been, and continues to be, the sub-
ject of much investigation, for several reasons. Under certain circumstances, the absence of
the energy variable promotes a rigorous mathematical analysis of the transport equation, in
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particular the establishment of existence, uniqueness, and completeness theorems for elemen-
tary solutions of the transport equation. Also, in special geometries, it is sometimes possible
to construct analytic solutions to the one-speed transport equation. These solutions serve as
benchmarks against which approximation methods and numerical solution techniques can be
evaluated, and they provide insight into the nature of the transport process. In addition, in the
widely used multigroup treatment of the energy variable in numerical work, the group-wise
equations for the group-averaged angular fluxes are of one-speed form. Neutron transfers into
a given energy group from all other groups appear only as sources in that group. Thus, methods
developed for the solution of the one-speed transport equation can be applicable even when the
energy variable is retained.

The monoenergetic transport equation can be derived from first principles, as we did above
for the energy-dependent case, but with the one-speed assumption introduced at the outset.
Alternatively, the energy-dependent transport equation (48a), in the steady-state case, can be
manipulated to obtain the same result. We do this next.

The restriction of (48a) to single-energy neutrons requires the following assumptions:

1. The angular deflection of neutrons during scattering occurs without energy loss. In this case
the differential cross section given in (11) can be expressed as:

(2 -QE-E)=3(E,2-Q")6(E -E). (51a)
2. The internal and boundary sources are monoenergetic at some characteristic energy Eo:
Q(x,E) = Q(x) 6(E - Eo), (51b)
v’ (x,Q,E) = y"(x, Q) 8(E - Eo). (51¢)
3. All fission neutrons are born at the charateristic energy Eo:

xp(E) = 6(E - Eq). (51d)

Then, since all neutrons are “born” with energy Eo and cannot change their energy through
scattering, the angular flux must contain only neutrons with energy Ej:

w(x, Q.E) = y(x,0Q) 8(E - Eo). (52)

Introducing (51-52) into (48a), we find that y(x, 2) satisfies the following energy-independent
equation:

Q-Vy(x, Q)+ Z(Eo)y(x,Q) = f 3:(Eo, Q- Q)y(x,0")dQ’

vzf(EO)f v(x,Q)dQ’ +Q() xeV, Qedn,

(53)
with boundary condition:

v(x%02)=y"(x,Q), xcdV, Q-n<0. (54)
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The energy variable appears here only as a parameter, serving to fix the numerical values of the
scattering, fission, and total cross section.

Further simplification ensues when scattering is isotropic in the laboratory frame, for then
the differential cross section in (53) can be written as:

S(Eo, Q' Q) = 5(Eo) p(En, Q- Q) = Zsif"), (55)
and (53) becomes:
Zs+vZ NP
Q-Vy(x Q) + Su(x, Q) = % fM v(x,0)dQ + %. (56)

Finally, when the system is homogeneous (the cross sections are independent of x) and the
dimensionless optical depth variable is introduced:

T=x24 (57)

then distance becomes measured in units of mean free paths and (56) assumes the following
simpler form:

0 vy(n )+ () - = [ prna)aa+ LY Qlr) (58)
4m 4m
Here, Qo = Q/Z; and c is the mean number of secondary neutrons produced per collision:
s+ v2
_ vy (59)
2

If voy = 0, then ¢ = X/, is also called the scattering ratio.
Monoenergetic eigenvalue problems can be formulated by setting ¥” = 0 in (54), Q = 0 in
(56), and letting c be the eigenvalue. The k-eigenvalue is then given in terms of this eigenvalue,

or critical value of ¢, by: 5
ves

-

2.10 Mathematical Issues

Next, we briefly discuss some fundamental (mathematical) questions. Specifically:

Do solutions y(x, 2, E, t) and C;(x, t) of the neutron transport equations exist?
Are the solutions unique?

Are the solutions nonnegative (as they should be, physically)?

What can be said about the smoothness of these solutions?

B W =

In our discussion of these questions, we make a few basic and practically relevant assump-
tions: the physical system V is specified and finite and has at most a finite number of subregions,
each having its own material cross sections. (The cross sections are histogram functions of x.)
The prescribed internal source, the prescribed incident boundary fluxes, and the prescribed
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neutron flux and precursor densities at the initial time (¢ = 0) are all specified and nonnega-
tive. The eigenvalue k of V has been calculated (see @ sect. 2.5.4), and V is either subcritical
(0 < k < 1), critical (k = 1), or supercritical (k > 1). In the following, we attempt to state the
basic results with a minimum of mathematical detail.

2.10.1  Existence, Uniqueness, and Nonnegativity of Transport Solutions

Briefly, each time-dependent neutron transport problem, with or without precursor densities,
always has a unique nonnegative solution. Steady-state neutron transport problems (in which
precursor densities are neglected) do not always have a unique nonnegative solution, but when
they do not, there is a physical explanation. (A classic theoretical discussion of the existence of
solutions of time-dependent transport problems is given in Case and Zweifel (1967).)

To discuss the connection between solutions of time-dependent and steady-state neutron
transport problems, we consider time-dependent and steady-state problems without precur-
sor densities in which the internal source and the prescribed incident boundary fluxes are
nonnegative and independent of ¢. We then have:

1. If V is subcritical (k < 1), the time-dependent neutron flux limits as t — oo to a steady-
state neutron flux, which is the (unique, nonnegative) solution of the steady-state neutron
transport problem.

2. If V is critical (k = 1) and the internal source and prescribed incident boundary fluxes are
nonzero, the time-dependent neutron flux grows linearly in f as t — oco. In this situation,
no limiting (¢ — oo) steady-state solution of the time-dependent problem exists, and no
solution of the corresponding steady-state neutron transport problem exists.

However, if the internal source and prescribed incident boundary fluxes are zero, then
the time-dependent neutron flux limits as t - oo to a steady-state neutron flux of the form:

y(x,0,E t)~C¥(x,Q,E) for ¢t=oo, (60)

where ¥ is the k-eigenfunction for the critical system and C is a constant that depends on
the initial condition ' of the time-dependent problem. In this situation, the steady-state
neutron transport problem has an infinite number of solutions, all given by (60), with the
constant C arbitrary.

3. If V is supercritical (k > 1), the time-dependent neutron flux grows exponentially in ¢ as
t — oo. If the internal source and prescribed incident boundary fluxes are nonzero, the cor-
responding steady-state neutron transport problem either has a unique nonpositive solution,
or no solution exists.

If the internal source and prescribed incident boundary fluxes are zero, then the steady-
state neutron transport problem will either have the solution ¥ = 0, or an infinite number
of solutions of the form of (60), where ¥ is now some other (than the k = 1) eigenfunction
of the system; this eigenfunction is nonpositive (nonphysical).

In all cases, a unique, positive solution of the time-dependent neutron transport problem
exists. Also, a positive solution of the steady-state neutron transport problem exists if and only
if the solution of a corresponding time-dependent problem has a steady-state limit as t — oo;
and if the steady-state limit of the time-dependent problem does exist, it is a solution of the
steady-state problem. Some of these issues are discussed in Case and Zweifel (1967).
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2.10.2 The nth Collided Fluxes

The solution of source-driven neutron transport problems can be written in an advanta-
geous way. To illustrate, let us consider the following monoenergetic steady-state problem with
isotropic scattering:

_ () nao + &) )
2 Vy(x.0) + Z(x)y(x Q) = =7 f4 Y 0)d' + <2, xe v, 0l=1 (6l)
y(x,02) = wb(x,.()), xedV, Q-n<0. (61b)
If we define the following problem for o (x, 2):
Q-Vyo(x,Q2) + Ze(x)ypo(x, Q) = %:), xeV, |Q]=1, (62a)
vo(x, Q) =y’(x,0), x€dV, Q-n<0, (62b)

and for 1 < n < oo the following problems for y,(x, 2):

.Q.Vw,,(x,.())+2t(x)1//,,(x,.()):%[l Va1 (x,2)dQ", xeV, |Q=1, (63a)

Ya(x,02)=0, x€dV, 2-n<0, (63b)

then it is possible to interpret each y, as a particular “component” of y.

First, in (62) for o, neutrons are created by the same internal and boundary sources and
have the same mean free path as in (61); but when the neutrons in (62) experience a collision,
they die. Thus, yo(x, 2) describes the uncollided neutrons in problem (61) - the neutrons in V
that have just been born and have yet to experience a collision in V or leak out of V.

Equation (63) for n = 1 have as their sole source the uncollided neutrons that scatter; when
these (once-scattered) neutrons experience a collision, they die. Thus, y1(x, 2) describes the
once-collided neutron flux in problem (61) - the flux due to neutrons in V' that have experienced
exactly one scattering event and have yet to experience a second collision in V or leak out of V.

By continuing in this manner, we have for all n > 0,

Va(x, Q) = the nth collided neutron flux
= the flux due to neutrons in V that have experienced

exactly n scattering eventsin V. (64)

Also, if (62) and (63) are summed over 0 < 7 < oo, it is easily seen that ) y, satisfies (61) for y.
Thus, the solution y of (61) can be written:

YE0) = 3 va(x.0). (65)
n=0

Therefore: at any instant in time, the neutron population consists of “newly born” neutrons,
which have experienced only a few collisions (and have scattered in each), with “older” neutrons,
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which have experienced many collisions (and have also scattered in each). Moreover, (62) and
(63) show how to explicitly calculate, for each #, the flux of neutrons that have experienced
exactly # collisions.

This view of neutron transport problems has practical benefits. For example, numeri-
cal methods for solving (61) are usually based on the source iteration algorithm, in which,
effectively, (62) and (63) are solved recursively and the results added, as in (65). Source iteration
converges rapidly for small, leaky systems, or systems with significant capture cross sections;
here neutrons are unlikely to have long lives, so y,, — 0 quickly. However, source iteration con-
verges slowly for “diffusive” problems, which are many mean free paths in width (having small
leakage rates) and scattering-dominated (having small neutron capture rates). For diffusive
problems, neutrons can have long lives, so y,, — 0 slowly.

A second benefit of (61-65) occurs in solving problems with localized or point sources.
Here, yo(x,2) [and to a lesser extent y;(x, 2)] are strongly varying functions of x and 0
and are difficult to model numerically. A common strategy is to calculate the uncollided flux
analytically and then calculate the collided fluxes y,, for n > 1 numerically. (In recent work, both
¥o and y; have been calculated analytically and the remaining v, are calculated numerically.)
This approach makes use of the fact that for point source problems, o (and y1) do not have to
be treated by numerical methods that are likely to cause large errors.

A third practical benefit of (61-65) occurs in assessing the smoothness of solutions of (61).
We briefly discuss this next and refer to Kellog (1974) for a more complete discussion.

2.10.3 Smoothness of the Angular Flux

This often poorly understood topic, dealing with the continuity and differentiability proper-
ties of the angular flux, has major implications in the accuracy of approximation schemes and
numerical methods for simulating transport problems. It is not possible to discuss this subject
fully here; instead we give some illustrative examples. (See Kellog (1974) for a more thorough
discussion.) The basic facts are as follows:

1. Solutions of planar-geometry transport problems with vacuum boundaries and finite
isotropic internal sources are smooth (continuous with continuous first derivatives) func-
tions of x and y, except at outer boundaries and material interfaces between regions with
different cross sections and internal sources. At such interfaces, y is (i) continuous in x with
a discontinuous first derivative, and (ii) discontinuous in y at g = 0. This boundary-layer
behavior occurs only at the interface between different material regions, and at the outer
boundary of the system.

2. Angular flux solutions of multidimensional transport problems with vacuum boundaries
exhibit the same boundary-layer behavior as described above at material interfaces and the
outer boundary of the system. However, because of geometrical effects, multidimensional
angular fluxes also lack smoothness away from boundary layers. Generally, multidimen-
sional transport solutions are continuous functions of x and 2 but have discontinuous
first derivatives. Occasionally, these solutions can even be discontinuous. Thus, multidi-
mensional transport solutions are inherently not “smooth”; they lack even one continuous
derivative in x and Q. The lack of smoothness of the transport solution is an impediment
to the calculation of accurate numerical solutions of multidimensional neutron transport
problems.
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3. Solutions of problems with nonzero but smooth prescribed incident boundary fluxes have
the same smoothness properties as described above. However, if the incident bound-
ary fluxes are not smooth, then the uncollided flux component of y can be nonsmooth
throughout V. For example, an incident monodirectional (delta function) beam of neutrons
on 0V creates a delta function component of y that propagates entirely through V.

To illustrate the lack of smoothness for multidimensional problems (item 2 above), let us
consider an infinite (—oo < x, ¥,z < co0) purely absorbing (Z; = 0) system with constant total
cross section X; = X, driven by an isotropic, spatially histogram internal source:

Qo x| <X, |yl <Y,

. (66)
0, otherwise .

Q(x,y) :{

Because of the lack of z-dependence in the geometry and sources, the angular flux vy is
independent of z. The neutron transport equation (see [56] and [2]) is:

oy . oy Q(x,y)
/1— 2 ha s ) - X\07)
1-u (cos w— +sinw ay) Z(x,y, pw) . (67)

Also,  — 0 as |x| > oo and |y| — oo.
The analytic solution, obtained by integrating (67) along the characteristic curve (the flight
path of neutrons) x(s) = x —s cosw, y(s) = y — s sinw for 0 < s < oo, can be written:

f Q(x —s cosw, y — s cos w)e_(z’s/vl_”z)ds. (68)
0

1
XY U W) = ———

If the point (x, y) is outside the source region (which we henceforth assume) and the flight path
does not intersect the source region, then y = 0.

If the flight path intersects the boundary of the source region, it does so for two values of s:
so(x, ¥, w) < s1(x, y, w), as shown in @ Fig. 17. In this situation, we obtain explicitly from (68)
and (66):

1 S1 Q (S —
W(x»}/,//t,w): 1_‘“2 i 4—7(;6 (Zis/\/1-p )dS

e e B IR
47T2[

This result can be extended to all points (x, y) outside the source region and all w by simply
defining so = s; when the flight path does not intersect the source region.

For fixed x, y, and w, it is evident that y(x, y, y, w) is continuous and infinitely differentiable
in the variable y, with y — 0 as y — £1.

Also, s and s; are continuous and infinitely differentiable for most values of x, y, and w.
However, for each spatial point (x, ), there are generally four azimuthal angles w for which the
flight path passes through a corner of the source region (see @ Fig. 18). At one or two of these
phase space points, s1(x, y, ) is a continuous function of x, y, and w, but it has discontinuous
first derivatives with respect to all three of these variables! Likewise, at zero or one of these phase
space points, so(x, y, ) is a continuous function of x, y, and w, but it has discontinuous first
derivatives with respect to all three of these variables. At all four of these phase space points,
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(cosw,sinw)

5 (65,0) /

sy(x,y,0)

Y
>

@ Figure 17
so(x,y, w) and s;(x,y, )

COS®y,Sina,
4 4

(cosws,sinws)

oo (cosmy,,sinw,)

(cosmy,sinwy)

@ Figure 18
s1(x, y, w) is not smooth at the indicated values of @

v(x, y, y, w) is a continuous function of x, y, and w, but it has discontinuous first derivatives
with respect to all three of these variables.

A more extreme situation occurs when the point (x, y) lies on a plane generated by an outer
edge of the source region, and when the flight path traces along this outer edge of the source
region. For example, from (68) we get for x > X, y = Y, w = 0, and any ¢ > 0 (see @ Fig. 18):

y(x,Y+¢&u,0)=0, (70a)

Qo (e_z,(x—xm/l—;ﬂ_ —Zr(x+X>/\/1—f‘2). (70b)
4,

y(x,Y-¢&p,0)= e
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This implies that at the phase space point (x,y,4,w) = (x,Y,4,0), v is a discontinuous
function of y. (And, a discontinuous function of w.)

This simple problem applies to the uncollided angular flux in any source-driven problem.
In general, when the flight path x — s£2 passes through a “corner” of a source region, y(x, 2, E)
is continuous with a discontinuous derivative (with respect to x, y, or w). When the flight path
passes through a corner of a material region that does not contain a source, y has a weaker
singularity (a continuous first derivative but a discontinuous second derivative). And, as we
showed above, when the flight path traces along the planar edge of a source region, y is dis-
continuous. For problems with scattering, the statements in this paragraph hold for each nth
collided flux v, and for v itself. For problems driven by boundary sources, similar results also
follow.

In general, for multidimensional, multiregion problems, v is generally a function with weak
smoothness properties (Kellog 1974). This basic fact has not stopped practitioners from employ-
ing numerical methods that require the exact solution to be smoother than it actually is to
achieve the theoretically optimal accuracy. However, the lack of smoothness of y negatively
affects the accuracy and convergence rates of the resulting numerical solutions. For example,
methods that would be second-order accurate if the solution is unrealistically smooth exhibit
convergence rates that are less than second order when applied to realistic problems (Duo and
Azmy 2007; Larsen 1982). (However, numerical experiments also show that certain integrals of
the flux actually do converge with second-order accuracy (Larsen 1982).) The topic of the lack
of smoothness of the angular flux and how this affects multidimensional numerical simulations
is only qualitatively understood.

2711 Generalizations of the Neutron Transport Equation

For simplicity, the transport equations and boundary conditions discussed above have not
been written in the most general possible form. Here, we briefly describe some common
generalizations.

2141 Reflecting Boundaries

For physical systems V that possess a planar symmetry boundary, an equivalent transport prob-
lem can be formulated on a subregion of V using symmetry or reflecting boundary conditions.
For example, the planar-geometry system —Z < z < Z has a symmetry boundary at z = 0 if
(i) the cross sections and internal source are even functions of z, e.g., Z¢(z, E) = 2(-z,E), and
(ii) the prescribed incident fluxes at z = —Z and Z satisty y"(~Z, 4, E) = y"(Z,—u,E) for
0 < u < 1.1In this case, symmetry considerations show that the angular flux must satisfy:

v(z, i, E) =v(-z,-w,E), —-Z<z<Z, -1<pu<1, 0<E<oco. (71a)

Here, one can formulate an equivalent planar-geometry transport problem on the half-system
0 < z < Z. The transport equation on this half-system and the boundary condition at z = Z are
the same as before. The new symmetry or reflecting boundary condition at z = 0, obtained by
setting z = 0 in (71a), is:

v(0,u,E) =y(0,-,E), 0<pu<1, 0<E<oo. (71b)
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If the transport problem on the half-system is solved, then the angular flux over the full system
is obtained from (71a).

This strategy enables computer simulations to be performed more efficiently. In 1-D prob-
lems with a symmetry boundary, the savings is a factor of 2; in 2-D problems with two symmetry
boundaries, the savings is a factor of 4; and in 3-D problems with three symmetry boundaries,
the savings is a factor of 8.

2.11.2 Periodic Boundaries

Similarly, if a physical system is infinite with a periodic or lattice structure, and the angular
flux itself is spatially periodic, then for obvious reasons it becomes imperative to formulate an
equivalent problem on a single cell of the lattice. For example, if an infinite 1-D planar system
—o0 < z < oo has spatially periodic cross sections and internal sources, e.g., Z:(z) = Z,(z + Z),
and if there are no sources at z = +00, then the angular flux is spatially periodic:

v(z, ., E) =vw(z+ Z,u,E). (72a)

In this case, an equivalent transport problem can be formulated on a single cell 0 < z < Z with
periodic boundary conditions obtained from (72a):

w(0,u,E) = w(Z, 4, E), —-1<u<1, 0<E < oo. (72b)

If the transport problem on the single cell is solved, then the angular flux over the full system
can be obtained from (72a).

2.11.3  Anisotropic Sources

Physically, internal neutron sources due to radioactive decay or spontaneous fission are
isotropic - all directions of flight are equally probable. However, it is sometimes necessary to
consider anisotropic internal sources Q(x, £2, E) - for example, in calculating certain Green’s
functions, or in multigroup calculations, when including the source of neutrons that anisotrop-
ically scatter into a given energy group with the internal source for that group. (This latter topic
will be discussed in detail in @ sect. 6.3). Overall, there is no mathematical reason why the
internal neutron sources must be assumed to be isotropic; if appropriate, these sources can be
taken to be anisotropic.

2114  Coupled Neutron/Photon Transport

In reactor core calculations, the calculation of reaction rates relies on the determination of the
neutron fluxes. However, in reactor shielding calculations, the calculation of dose rates relies
on both the neutron fluxes and gamma-ray (photon) fluxes. The photons, which are produced
by neutron absorption and inelastic neutron scattering, are more deeply penetrating than neu-
trons; the dose to humans on the far side of a reactor shield is due mostly to the transmitted
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photons. To account for the photon transport in the shield, two coupled transport equations
are formulated: one for the neutrons and one for the photons. When these are approximated
using the multigroup approximation (discussed in @ sect. 6), the resulting two sets of multi-
group equations can be merged into a single system of multigroup equations, with some groups
describing neutrons and other groups describing photons.

21,5 Temperature-Dependent Cross Sections

Our derivation of the neutron transport equation ignores changes that occur in the macroscopic
cross sections when temperature changes in the core occur due to an increase or decrease in the
neutron flux (with a corresponding increase or decrease in reactor power). This approximation
is generally valid when the reactor operates near a steady-state mode, but not when the reactor
experiences significant transients in the neutron fluxes. To account for this, (i) an additional
equation must be formulated yielding the temperature within the reactor T(x, t) as a function
of space and time, with a source that depends on the reactor power, and (ii) the macroscopic
cross sections in the reactor must be expressed as functions of T'(x, t). The resulting equations
are nonlinear: the neutron flux affects the temperature, which affects the macroscopic cross
sections, which affects the flux. This is an extremely important topic in the fields of reactor
kinetics and reactor safety.

2.11.6 Advection and Diffusion of Fission Products

Our derivation of the transport equation also ignores the spatial diffusion of fission products;
delayed neutrons are assumed to be emitted at the site of the primary fission event. This is an
excellent approximation for solid fuel reactors, but not when significant fuel motion is possi-
ble, as occurs, for instance, in liquid fuel reactors. The spatial motion of fission products can
be accommodated by adding suitable advection or diffusion terms in the equations for the pre-
cursor densities. Then, in addition to the delayed emission in time, the delayed neutrons are
emitted nonlocally in space.

2,12 Limitations of the Neutron Transport Equation

The neutron transport equation provides an extremely accurate description of the phase space
neutron density in a nuclear reactor. In conjunction with appropriately formatted neutron—
nucleus interaction data, this equation underlies the methods and codes used in the design
of all existing nuclear reactors. However, the derivation of the transport equation has inher-
ent approximations that limit the validity of the equation. Some of these approximations can
be relaxed without significantly altering the mathematical structure of the equation. Other
approximations are more fundamental and can only be relaxed at the expense of a much more
complicated mathematical description. Some of the significant assumptions underlying the
neutron transport equation are delineated below.

1. The neutron is a point, structureless particle whose free motion between interactions can
be described by classical mechanics. Neutron properties requiring a quantum mechanical
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description, such as spin and polarization, are assumed to influence only the interaction
cross sections which, for the purpose of transport theory, are regarded as given. While the
neutron phase space can be expanded to include internal states like spin and polarization,
such effects are unimportant in most applications of neutron transport, but especially in
reactor physics.

The interaction centers, where neutrons collide with nuclei, are assumed to be randomly located
with a Poisson distribution in the host medium, and collisions between neutrons and nuclei are
well-defined isolated two-body interactions. Moreover, the probability of interaction with the
target nuclei is assumed to depend only on the instantaneous state of the neutron and not on its
prior interaction history. In other words, the transport process is assumed to be Markovian,
a statement that is encapsulated in the expression for the collision probability:

p(s)ds = Z,(%,E, t)ds.

That is, the probability of an interaction in an incremental distance ds is proportional to
ds and depends only on the neutron’s current position and energy at the time of collision.
The rate constant for the transition of state is just the macroscopic cross section. Also, the
probability that the neutron can suffer more than one collision in ds is o(ds), i.e., is negligi-
ble compared to ds. Corrections for non-Markovian effects have not been found necessary
in the numerous applications of neutron transport theory. However, this may not be true
in applications involving other types of particles. An example is low energy (~keV or less)
atomic collision phenomena in solids, where isolated two-body collisions cannot be defined.
The neutron transport equation, as derived in this section, describes the ‘expected” or “mean”
neutron population in a medium. Because of the statistical nature of neutron interactions and
of the number of neutrons released per fission, the actual neutron number fluctuates about
this mean value. However, the magnitude of the fluctuations depends on the population size.
In power reactors, where the neutron number may be ~ 10, the deviation of the neutron
population from the mean is small and the neutron transport equation for the expected den-
sity provides an accurate description of the transport process. However, for small neutron
populations, such as encountered at start up in the presence of a weak source, the instan-
taneous neutron density will differ significantly and randomly from the mean density. This
is because fission chains from a weak source are well separated, and some fission chains die
prematurely, while others propagate for unusually long times. Therefore, a sufficiently strong
overlap of chains does not occur for fluctuations to cancel out and a mean density to become
established. Thus, although the neutron transport equation yields the correct mean neutron
density, this is an incomplete characterization of the actual neutron population. Under these
circumstances, a fully stochastic description of the neutron population is necessary. A gen-
eralization of the theory to explicitly account for stochastic effects in neutron transport is
beyond the scope of this chapter but has been presented by Bell (1965).

The neutron transport equation is a linear equation in which the macroscopic cross sections
do not directly depend on the neutron density. Two assumptions are necessary to ensure this
independence:

(a) Neutron-neutron collisions are negligible. In nuclear reactor applications, this is an excel-
lent approximation because the density of target nuclei (10** nuclei per cm®) greatly
exceeds the neutron density (<10" neutrons per cm”). In applications where interac-
tions between moving particles is important, such as in the kinetic theory of gases, the
collision operator becomes nonlinear and the appropriate transport equation becomes
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the original (nonlinear) Boltzmann equation, which includes binary collisions between
the particles.

(b) The neutron reaction rate density is sufficiently small so as to not appreciably modify the
isotopic makeup of the host medium, except during very long timescales. This is also an
excellent approximation in nuclear reactor applications. Since changes in material prop-
erties due to fuel burnup (density, thermal conductivity, poison accumulation, etc.)
occur over much longer timescales than the timescale over which the neutron distri-
bution relaxes, these effects can be treated by performing static transport calculations
over various snapshots of the medium.

2.13 Discussion

We have (i) described the basic physical processes that underlie neutron transport, (ii) derived
the mathematical equations that describe this process for time-dependent and steady-state
nuclear reactor calculations, (iii) discussed some basic properties of the solutions of these
equations, and (iv) discussed the conditions of validity of the equation. The neutron transport
and precursor density equations form the basis for practical neutron (and photon) transport
calculations in nuclear reactors and shields.

3 The Transport Equation in Special Geometries

Phase space for general neutron transport problems is 7-D: there are three spatial dimensions,
two angular (direction-of-flight) dimensions, one energy dimension, and one temporal dimen-
sion. This is problematic for calculating deterministic numerical solutions of realistic problems;
if each of the seven independent variables is discretized on a grid with a modest 10* cells, the
resulting discrete problem will have 10'* unknowns! Problems of this magnitude will be beyond
the capacity of the world’s largest and fastest supercomputers for many years to come.

To formulate practical methods for solving realistic neutron transport problems, the size of
phase space must be reduced as much as possible. For 3-D problems that have special space-
angle symmetries, this can be done by reducing the number of spatial (and possibly angular)
independent variables. In particular, one can formulate and solve a mathematically equivalent
neutron transport equation with fewer than three independent spatial variables and possibly
one rather than two angular variables. These special geometries are extremely important; for
many years it was only possible to obtain practical numerical solutions of spatially 1-D and 2-D
transport problems. In recent years, 3-D codes for practical problems have become available,
but they are so costly to run that the great majority of neutron transport simulations remain
1-D and 2-D.

In the remainder of this chapter, we discuss the most important special geometries for
which the transport equation can be formulated using one or two independent spatial variables.
In each situation, we describe the geometry and derive the appropriate form of the transport
equation.

To begin, we define a general 3-D problem for steady-state, monoenergetic, anisotropically
scattering neutron transport in a prescribed convex spatial region V. This problem is driven by
an internal isotropic source Q(x), which is prescribed for all points x in V, and an incident
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flux 1//b(x, Q), which is prescribed for all points x on the outer boundary 0V of V and for all
incident directions of flight 2 at x. The three restrictions of this problem: (i) steady-state, (ii)
no fission, and (iii) monoenergetic transport, are made for simplicity only and can easily be
relaxed. The problem is:

Q- Vy(x, Q) + Z(x)y(x, Q) = [4 5%, Q- @ )y(x, Q)dQ

+ w, xeV, Qcdn, (73a)
4

y(x,0) = wb(x,()), x€dV, Q-n<0. (73b)

In the various geometries considered below, two terms in (73a) will change form: the leakage
term 2 - Vy on the left side, and the scattering integral [ Zyd Q' on the right side.

To begin, we formulate the above problem using standard 3-D Cartesian spatial variables
and spherical harmonic functions to expand the scattering integral. Then, we describe the prob-
lem for two simpler Cartesian geometries: (1-D) planar geometry and (2-D) x, y-geometry. After
this, we formulate the transport problem in the following curvilinear geometries: 1-D spherical
geometry, 3-D (r, 9, z)-geometry, 2-D (r, z)-geometry, and 1-D cylindrical geometry. The 2-D
(r,2)- and 1-D cylindrical-geometry transport equations are special cases of the 3-D (r, 9, z)-
geometry equation. The most widely used geometries in practical 2-D applications are (x, y)
and (r,z).

3.1 3-D Cartesian Geometry

For a standard 3-D Cartesian (x, y,z)-coordinate system (@ Fig. 19) with 6 = polar angle,
w = azimuthal angle, and y = cos 6 = polar cosine, we have:

x=xi+yj+zk, (74a)
Q=0,i+0Qyj+0Q:k
=/1-p?(coswi+sinw j)+ uk, (74b)
p = cos 0, (74¢)
dQ=dydow. (74d)
In this geometry,
¥(x,Q) = ¥(x, .2, 4, 0), (75)

and the leakage term in the transport equation can be written:

0 0 0
Q- -vy(x,0Q) = (_Qxa + an—y + ng) Y(x,y,2,4,w)

= |:\/1—‘uz (coswa—i+sinw%)+y%] Y(x, 9,2, 4, w). (76)
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A x-axis

@ Figure 19
3-D Cartesian geometry

Thus, the leakage operator depends explicitly on all the spatial and angular variables. (Note: In
this discussion, y denotes the angular flux as a general function of space x and direction €;
¥ denotes the angular flux as a function of angular and direction variables that correspond to
specific coordinate systems.)

To express the scattering integral, we use the fact that scattering is rotationally invariant.
Thus, the differential scattering cross section is a function of the scattering cosine yo = 2 - 4
and can be written as a Legendre polynomial expansion:

N
Zs(x,.Q~.Q'): Z 2n+1

n=0 4n

Zoa(x)Pa(2-Q"), (77)

where P, (o) is the nth Legendre polynomial (Duderstadt and Hamilton 1976). The order N of
this expansion is generally infinite, but in applications the series is truncated and N is taken to
be finite. If N = 0 (or 1), scattering is said to be isotropic (or linearly anisotropic).

The Legendre polynomials satisfy the addition theorem:

4n
2n+1

Z Y"»m('Q)YI:m(-Q,) (78)

m=—n

P.(Q-Q') =

where for 0 < |m| < n < 00, Yy,m () is a spherical harmonic function:

Ym (2) = Yo (pr 0) = anmP™ (u)e™, (79a)
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|m]
Il N 2 m|/z( d )
Py () = (1- — | Pa(w)
w=01-¢) i u
= Associated Legendre function, (79b)
_ 1772
anm = (1) —ZZH—(" DU (79¢)
m (n+|m|)!

Here * denotes complex conjugate, and 0! = 1.
Introducing (78) into (77), we obtain:

Zs(x,.Q-Q'):i an (%) Yom ()Y, (2. (80)
n=0 m=

Thus, the scattering integral in (73a) can be written:
f 5(x, Q- Q) y(x Q)dQ'
4

N n 1 2m
=y > Zs,n(x)Yn,m(.“,w)/ f Yo (f )P (x,p, 2,0 0 )do'dy’. (81)
n=0 m=-n -1J0

Introducing (76) and (81) into (73a), we obtain the following 3-D Cartesian-geometry
transport equation:

d d d
— 2 — i —_— —_
|:\/1 7 (coswax + smway) +u 82] y(x, Q)+ Z:(x)y(x, Q)

Q(x)

- S m@ (@) [ V@ ade’ - L) e

In (82), the shorthand notations of (75) and (79a) have been used. Equation (82) holds for all
spatial points x € V and all unit vectors 2 (-1 < 4 <land 0 < w < 2m). To determine v, (82)
must be solved subject to the boundary condition expressed in (73b).

3.2 1-D Planar Geometry

In problems with 1-D planar symmetry,

1. The physical system is a planar “slab” consisting of spatial points (x,y,z) with
—00 < x,y < oo and 0 < z < Z. Thus, the system is infinite in the (transverse) x- and
y-directions and finite or possibly infinite in the (depth) z-direction.

2. The cross sections, isotropic internal source, and prescribed incident boundary fluxes are
independent of the transverse variables x and y.

Because the problem geometry and neutron sources are independent of x and y, the angular
flux itself is independent of x and y:

y(x,02)=Y(z,02)=Y¥(z,p w). (83a)
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In these circumstances, (82) immediately reduces to:

H%—Z(Z»Q) +2(2)¥(2, Q) = Z Zn: Zn(2) Yom (Q) f4n Y (Q)¥(z,0))d0

z)

, 0<z<Z, Qe4n. (83b)

471

The boundary conditions prescribe the incident angular fluxes on the left and right edges of
the slab:

Y0, u, w) :wb(y,w), O<p<l, 0<w<2m, (83¢)
V(Z,uw) =y (pyw), -1<p<0, 0<w<2m (83d)
Equations (83) describe planar-geometry neutron transport without azimuthal symmetry.

The azimuthal angle can be eliminated by integrating the equations over 0 < w < 27. If we
define the azimuthally integrated angular flux:

2m
Y(z,p) = /0. ¥Y(z,p,w)dw, (84)

then upon integration over w, (83b) yields:

KO (@k) + 2() V()

ﬁj 5 Zs,n(z)( fo " Yn,m(.Q)dw) f4 Y@ ¥(z.0)d0

n=0 m=-n

Qz
2

, 0<z<Z, -1<pu<lL (85a)

However, (79) imply:

2n+1
4n

fo T Y (Q)da - 2n5m,0( ) Pu(p), (85b)

and:

fY,,O(.Q)‘P(z,Q)dQ ff“(zn“) Po(6) ¥ (24", ' )deo' dpt
:(2n+1

1/2
- ) [ RACSTIENDrIS (85¢)

Introducing these results into (85a), we obtain the following simpler equation for ¥(z, ):

2n+1

k2 (a) + 52 ¥ (o) = Z( )2 @Pue) [P ¥ e

+¥, 0<z<Z, -1<u<l (86a)
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Also, integrating the boundary conditions (83c) and (83d) over w, we obtain:

2m
YO0 =y ()= [T v (ma)de, 0<ust, (86b)
2m
Y(Z,u)= 1//b(‘u) = /0 q/b(y,a))da), -1<u<0. (86¢)
Equation (86a) describe azimuthally integrated planar-geometry neutron transport.

To determine ¥(z,u), (86) must be solved. By (84), this solution is the azimuthally
integrated angular flux of the original problem.

33 2-D (X,Y)-Geometry

In problems with 2-D (x, y)-symmetry (@ Fig. 20),

1. The physical system is an infinite “cylinder;” consisting of spatial points (x,y,z) with
(x,y) € D (a convex region in the (x, y)-plane) and —oo < z < oo.

2. The cross sections, isotropic internal source, and prescribed incident boundary fluxes are
independent of z.

3. The prescribed incident boundary fluxes are even functions of y = Q- k:

tpb(x,y,.()) = wb(x,y, Q,), (x,y)eoD, 2-n<0, (87a)
where:
Q= \/1-p? coswi+\/1-p?sinw j+ pk
=i+ &j+uk, (87b)
Q. =ni+&j—uk,
= Reflection of Q across the (x, y)-plane. (87¢)
\ X
i D
> : s
7y
@ Figure 20

2-D (x,y)-geometry
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4
(1,0,0)

n=Q=ni+ ¢+ uk

@ Figure 21
dnd& and dQ

Because the problem geometry is independent of z and the neutron sources are even func-
tions of y, the neutron angular is also independent of z and an even function of y: y(x, Q) =

V(% p o 0) = V(X .~y 0).
If we define:

n=0x=+1-y? cosw, (88a)
£=0,=1/1-p?sinw, (88b)
then || = 1implies that for each value of 17 and &, there are two values of y: y* = +1/1 — % — €2.

Thus, if a function f(2) is an even function of y, i.e., if for each # and £ it has the same value
at u* and u~, then we can write:

f(@)=g(m&), n"+§<1 (89)
Also, from @ Fig. 21, we have:

dndé  dnd§

-

dQ 1
10 daie) 14~ g

which implies:

_ 8(n,§)
f4nf(())d(2_2 f N dydé. (90)

n2+82<1

(The factor 2 occurs because the integral over #* + &* < 1 accounts for integration over only one
hemisphere.)
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From the above considerations, we can write:

1
y(x02) = S ¥(xny.n.8). (91)
Using (91) and (88) in (76), we immediately get:

Q-Vy(x,Q) = % (718% + Ea—ay) ¥(x,p,1,8). (92)

Also, the spherical harmonic functions Yum(2) = Yum(y, w) are even functions of y for
n + m = even, and odd functions of y for n + m = odd (see [79]). Therefore,

_1\ntm
S, im@ute el = L [ @y )
4 2 4m
_ (T Yo (1, 8) ¥ (%, 3,1, &)
_ 2 _ 72
ey VIZ 7= ()

dn'dt.  (93)

Introducing (92) and (93) into (82), we obtain the following (x, y)-geometry neutron
transport equation:

0 )
(}15 + 58_}1)1{/()6)}/) 1, f) + Zt(x’}’)lp(x»% UB f)

:Zn: Zn: [1+(—1)"+m]25,n(x,y)Yn,m(17,f)

n=0 -
o [ Yo ) Yoy E) L
/1 _ 2 _ 7\2
(ﬂ’)2+(§’)zﬁl 1 (’1 ) (£ )

L Qxy)
21

d&

, (x,y)eD, 172+52£1. (94)

The (x, y)-geometry boundary condition prescribes the incident neutron flux for spatial points
(x,y) € 0D and for inward-pointing directions of flight £:

¥(x,y1.8) = V(6. 8) = 20 (e yun ™),
(x,y)edD, (ni+&j)-n<0. (95)

To determine ¥(x,y,7,§), (94) must be solved subject to the boundary conditions equa-
tion (95). The angular flux is then given by (91).

3.4  1-D Spherical Geometry

In problems with 1-D spherical symmetry (@ Fig. 22),

The physical system is a sphere of radius R. (In the following, we take the center of the sphere
to be the origin of the Cartesian coordinate system.)
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@ Figure 22
1-D spherical symmetry. The angular flux is constant for: (i) spatial points x equally distant from the
center of the sphere and (ii) directions of flight 2 that make an equal angle with e = x/r

The cross sections and internal source are functions only of the radial variable

r=(x"+y"+ 22)1/2. (96)
For spatial points on the surface of the sphere (x| = r = R) and for inward-pointing

directions of flight (2 - x < 0), the incident boundary fluxes are functions only of:

u=0-(x/r)
= Cosine of the angle between the direction of flight Q
and the radially outward direction e = x/r. (97)
In these circumstances, the angular flux should be a function only of r and pu:
1
> Q)=—Y > . 98
y(x Q) = —¥(ru) (98)
[The factor 27 is included so that, as in planar geometry,
1

f4 ¥(x,Q)dQ = L ¥ (r,u)du.] (99)

Equation (98) implies:

1 (0¥ oY
Q-vy(x,0Q) = ZT(E.Q'Vr+ a.ﬂw),
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where, using (96) and (97), we have:

Q Vr—(Qxaa +an—i+gzjz)r_ox§+gy%+ozf:,4,
Q Vy:(QX%+ani+ Zai)(oxx+9:y+gzz):.. _ 1_:42.
Therefore,
Q- vy(x, -Q)— ( 9 +1_#2i)‘l’(r,y). (100)
Br r o ou

Also, defining the polar cosine u locally (at each point) by (97) and letting w be any consis-
tently defined azimuthal angle, it is evident that ¥ is independent of w. Thus, (85b) and (85c¢)
hold, with % ,(z) and ¥ (z, u) replaced by Z; ,(r) and ¥(r, ). Using this and (100) in (83b),
we obtain the following 1-D spherical-geometry transport equation:

o 1-u* o
(Mg+ ; a)‘l’(w)wz(r)&”(nu)

Q(r)

i(z””)zm OPue) [ Puay P+ L

0

l/\o
73

|

—

N
=

A
—

<l (101)

The spherical-geometry boundary condition prescribes the incident fluxes on the outer bound-
ary of the sphere:

(R, ) = ¥ (u) = 2my" (R p), —1<pu<O0. (102)

To determine ¥(r, 4), (101) must be solved subject to the boundary condition (102). The angular
flux is then given by (98).

3.5 3-D(r,9,z)-Geometry

To derive the 2-D (r,z) and the 1-D cylindrical transport equations, we first derive the
3-D transport equation expressed in terms of cylindrical variables: the radial spatial variable
r = \/x? + y2 and the azimuthal spatial angle 9 = tan™"(y/x). We also replace the azimuthal
directional angle w by the angular deflection y from the spatial azimuthal angle 9. y ranges over
—n < y < 7. Directions satisfying |y| < /2 are outgoing and describe flow away from r = 0.
Directions satisfying |y| > /2 are incoming and describe flow toward r = 0. The spatial variable
z and the polar cosine y retain their Cartesian geometry interpretations (see @ Fig. 23).
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A Xx-axis A i

> z-axis

@ Figure 23
3-D (r, 9, z) variables

The Cartesian spatial variables x and y, and the azimuthal angular variable w are expressed
in terms of the curvilinear variables r and 9, and the azimuthal angular variable y by:

x =rcosJ,
y=rsind,
w=9+y.

Then, defining the unit vectors (see @ Fig. 23):

X . . P .
e:—1+Z]:cos91+s1n9],
r r

x
t:—Zi+—j:—sin9i+cos9j,
r r

we have:
x =re+ zk,

Q=/1-p*(cosye+sinyt)+ uk,
dQ=dudy=dudw =dQ.

(103a)
(103b)
(103¢)

(104a)

(104b)

(105a)
(105b)
(105¢)
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(A tilde signifies that & is expressed in terms of 7, 9, and z rather than x, y, and z, and that Q is
expressed in terms of y and y rather than w and . We note that & = x and Q = Q.) The angular

flux is now expressed in terms of the new variables:

y(x,2)=vy(x,y,z, 4, w) =y(rcos 9, rsind,z, 4, 9 +y)
=Y(r,9 2 u7y)= ¥ (%, Q).

The following identities can easily be shown:

Q-Vr=cosy\/1-u?,

siny

Q-V9=—="/1-u?
2-Vz=uy,
Q'V‘M:O,

Q-vy-= —g\/l— 2.

Equations (106) and (107) then give:
v v v
0-vy- I/‘ +cosy\/_a smy\/—(a ) )

We also have the identity:
po =020 =/1-p2\/1- (¢')? (coswcos ' +sinwsinw”) + py’
=\/1-p>/1- (p')*cos(w - ") +uy’
= V1= /1= ()2 cos (y = y') + uy’
=\/1-p*\/1- (p')*(cosycosy’ +sinysiny’) + py'
=00 =

We may define:
Zi(x) =Zi(x,y,2) = Z¢(rcos 9,rsin 9, z)
=3(r,9,2) = 2(%),
Zo(x,p0) = Zs(x, y,2, p0) = Zs(rcos 9, rsin 9, z, po)
=3(r, 9,2 fi0) = (%, fio),
Q(x) =Q(x,y,2) = Q(rcos 9,rsin9,z)
= Q(r,S,z) = Q(JZ?)

From (81), the scattering integral becomes:

f (%, Q- 2Ny (x,0)dQ’
4m

N LA - 1 L— rr o 7
= Z Z Zs,n(x)Yn,m([J»)’) [1 [n Yn,m([" ,V)W(V’S»Z’M ,y)d)/ dlu

n=0 m=-n

(106)

(107a)
(107b)

(107¢)
(107d)

(107e)

(108)

(109)

(110a)

(110b)

(110¢)

111



476

General Principles of Neutron Transport

Using (109) and (111) in (73a), we obtain the following (7, 9, z)-geometry transport equation:
oY . .. siny (0¥ _ . d¥Y, _ oY, . ~ 5 .
1= u2 —(%,0 — | —=(%,02)- —(x,02 —(x,0 > Y(x, Q
Vi oy S 5.0+ 2 (Hw.0) - w0 | 2E 50+ 2@y v(a0)
N A~ ~
-3 Y S (@) [ y;m(fz')sv(r,s,z,fz')m'+%’T‘). (122)
4m

This equation describes 3-D neutron transport in, e.g., a finite cylindrical system of radius
R and length Z. The spatial and angular variables then vary over:

0<r<R, -m<9<m 0<z<Z, -1<pu<l, -n<y<m (112b)

In addition to (112), we must prescribe the incident angular flux on the outer boundary of
the cylinder. First, on the outer “cylindrical” surface, we have:

‘P(R,S,z,/,t,y):‘Pb(S,z,y,y), 0<z<Z,-n<9<m -1<pu<], |y|>g. (113a)
At the circular “cap” at z = 0, we have:
'I’(r,S,O,y,y):‘I’b(r,S,y,y), 0<r<R,-m<9<m O<pu<l, —w<y<m (113b)
At the other circular “cap” at z = Z, we have:
‘P(r,S,Z,/,t,y):‘I’b(r,S,y,y), 0<r<R-m<9<m -1<pu<0, -n<y<a  (13c)

Equations (112) and (113) describe 3-D neutron transport in the finite cylindrical system
depicted in @ Fig. 24.

[
U

@ Figure 24
Finite cylindrical system
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3.6 2-D (r,z)-Geometry

In problems with 2-D (r, z)-symmetry,

1. The physical system is typically a finite cylinder consisting of spatial points (r, 9, z) with
0<r<R,-m<9<mand0<z< Z (see® Fig 24).

2. The cross sections, internal isotropic source, and prescribed boundary conditions are
independent of 9.

3. The prescribed incident boundary conditions are arbitrary functions of z, y, and y.

Thus, the system is symmetric through rotations of the spatial azimuthal angle 9 (about the
z-axis). The neutron angular flux will also have this symmetry; i.e., will be independent of 9:

y(x, Q) =Y¥(r,z,4,y). (114)

The (7, z)-geometry transport equation (and boundary conditions) can be obtained as a spe-
cial case of the (7, 9, z)-geometry transport equations in which all quantities are independent
of 9. Equations (112) and (113) yield:

y%—j(r,z,ﬁ) + M(cosy %_il(r,z, Q) - g%’(’:z’ -())) +34(r,2) ¥(r,2, )

:f Ss(r,z,f)f)')‘f’(r,z,f)')df)'+%, 0<r<R, 0<z<Z,
4m T

-1<u<l, —n<y<m, (115)

and:
YRz ) = Y (zpy), 0<z<Z, -1<p<l, y|>§, (116a)
l1”(r,0,‘u,y):‘Pb(r,y,y), 0<r<R, 0<u<l, -n<y<m, (116b)
Y(r, Z,uy) = ¥ (r,uy), 0<r<R, -1<p<0, —m<y<m (116¢)

The scattering integral in (115) can be written as in (111) or (112).
Equations (115) and (116) describe neutron transport in a finite cylindrical system with
rotational symmetry.

37 1-D Cylindrical Geometry

In problems with 1-D cylindrical symmetry,

1. The physical system is an infinite cylinder consisting of spatial points (, 9,z) with0 < r <R,
- <9< mand —oo <z < oco.

2. The cross sections, internal isotropic source, and prescribed boundary conditions are
independent of 9 and z.

3. The prescribed incident boundary conditions are arbitrary functions of y and y.
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Because the system is independent of 9 and z, the neutron flux will also be independent of
these variables:

v(x,Q) = ¥(r,uy) = ¥(r, Q). (117)
The 1-D cylindrical-geometry transport equation (and boundary conditions) is a special

case of the (r,z)-geometry transport equations in which all quantities are independent of z.
Equations (115) and (116) yield:

V= (cosyaa—f(r )—S‘”al‘"( o))+2(r)arf(r )

f 5(rn0- Q) (rQ)dd + Q()

and:
b1
Y(Rpy) = ¥ (wy), -1<pust > o (119)
The scattering integral in (118) can be written as in (111) or (112).
Equations (118) and (119) describe neutron transport in an infinite cylindrical system with
rotational symmetry and no axial (z-) dependence. The equations have one spatial variable (r)

and two angular variables (4 and y). In contrast, the 1-D planar and 1-D spherical-geometry
transport equations have one spatial variable and only one angular variable.

3.8 Discussion

We have derived several forms of the neutron transport equation for 3-D problems in which
geometric symmetries cause the angular flux to depend on fewer than three independent spatial
variables. This has been done only for the most widely used 2-D geometries: (x, y) and (7, z).
Less important 2-D geometries, which are not treated here, are the two 2-D spherical geome-
tries, cylindrical (9, z)-geometry, and 2-D helical geometry (Larsen 2007). Also, we have not
treated 3-D spherical geometry.

In the preceding derivations, we assumed for simplicity monoenergetic transport, no time-
dependence, and no fission. However, it is straightforward to include these extra features.

We also assumed that in each geometry, the prescribed internal source Q is isotropic. This
can immediately be relaxed to allow an internal anisotropic source whose spatial and angular
dependences are the same as those allowed for the angular flux. For instance, in 1-D spherical
geometry the angular flux is a function of r and g, and one can include an internal anisotropic
source, which is also a function of r and p. Such sources arise naturally in multigroup problems,
in which all the group angular fluxes have the same space-angle symmetry, and thus the source
of neutrons that scatter into each group also share this symmetry.

In our derivations, we have not always stated the most general possible allowed geometric
form of the spatial region V. For example, in 1-D spherical geometry, the physical system V was
assumed to be the interior of a sphere of radius R. However, R could also be the exterior of a
sphere of radius R, or, more generally, a shell consisting of points (7, 9, z) satisfying Ry < r < Ry.
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In these new cases, boundary conditions that prescribe the incident flux must be imposed on
all physical boundaries.

Also, reflecting boundary conditions can be used along planes of geometric symmetry, and
periodic boundary conditions are used to model one cell of an infinite periodic lattice. These
and other types of boundary conditions are often employed in applications.

In all curvilinear geometries, the angular variables are expressed locally in space and change
their value continuously as neutrons stream along flight paths. This gives rise to angular deriva-
tive terms in the neutron transport equation that significantly complicate the derivation of
accurate numerical solutions (Lewis and Miller 1984). For example, the 1-D spherical-geometry
transport equation (101) contains partial derivatives with respect to both r and y. Mathemat-
ically, this leakage operator is a 2-D partial differential operator. Nonetheless, the historical
tradition in the nuclear engineering community is to count only the spatial variables when
describing a transport operator as 1-D, 2-D, or 3-D. Thus, the spherical-geometry transport
equation is called a 1-D transport equation, even though it is has partial derivatives with respect
to two independent variables.

4 Integral Equation for Neutron Transport

In this section, we derive the integral form of the transport equation (Bell and Glasstone 1970;
Case and Zweifel 1967; Williams 1971), an alternate but equivalent description of the transport
process embodied in the integrodifferential form that we have been discussing thus far. The
integral transport equation can be derived using first flight kernels to relate the angular flux
in an element of phase space to the neutron emission rate due to fixed, scattering, and fission
sources everywhere in the medium, and to sources on the boundary. Here, though, we proceed
directly from the differential part of the integrodifferential transport equation by noting that it
is formally a linear first-order partial differential operator that can be inverted using standard
techniques. The result is not an explicit solution for the angular flux, because the right side of the
equation contains the scattering and fission sources, but is an alternate form of the Boltzmann
equation, which has the form of an integral equation.

4.1 Integral Equation for the Angular Flux

We begin by compactly expressing the time- and energy-dependent general-geometry transport
equation (46a) as:

188—‘t”(x, QE 1) +Q-Vy(x, D E 1) + Zi(x, B Dy(x, Q. E. 1) = Q(x, Q.E 1), x€V,
y
(120a)
with the boundary condition (44) and initial condition (45a):
y(x Q,E t) =y’ (x,Q,E,t), x€dV, 2-n<0, 0<E<oo, 0<1, (120b)

v(x,Q,E0) =y (x,Q,E), xcV, Qedn, 0<E < co. (120¢)
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The source Q in (120a), now including neutrons arising from inscatter and fission, is given by:
Q(x,Q,E,t) = /m f >(Q - QF - E)y(x,QE' t)dQ'dE’
E
XP( ) f f vEp(EYy(x, @ E 1) dQ'dE + —Q(x,E 0. (121)

We ignore for the moment the fact that this source depends on the unknown angular flux and
view (120) as a transport equation in a purely absorbing medium with a distributed source, and
we seek an exact solution for the angular flux. To proceed in the general case, it is convenient
to incorporate the initial condition as a source in the transport equation. Equation (120a) then
reads:

lall/(x QE )+ Q-Vy(x, Q,E, t)+ 2:(x,E, t )y(x, Q,E, t) = Q(x, Q,E, t), x€V,
(122)

where:
Q(x, QE 1) = Q(x, O, E, 1) + %8(t)1//i(x, 0,E), (123)

where Q(x, E, 2,t) = y(x, @, E, t) = 0 for t < 0. The boundary condition remains as given by
(120D).

We consider a point x” € V' that lies a distance s from x € V along the direction -, which
intersects the boundary 0V at a point x;, as shown in @ Fig. 25:

Boundary
oV

Volume
v

@ Figure 25
Coordinates for the integral transport equation
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Straightforward vector addition gives:

x =x-s0, (124a)
xXp =% — 550, (124b)

where s;, is the distance from x to the boundary along the direction —£. Similarly, if ¢ is the
time at which the neutron traveling along € is found at position x, then the neutron passed
through position x” at the earlier time ¢’ given by:

t=t——. (125)

We now write (122) with respect to the independent variables (x', Q, E, t'):

10y

at'( JOE ) + Q- Vy(x', QE ) +2(xE, ) y(x', 2, E,t') =Q(x', Q,E, 1), x' €V,

(126)

where ¥V now operates on x’, and we consider the derivative of the angular flux with respect
tos:

d / / d ( s)
- ,O,E, t =T -sO,0,E, t— -
FRAG )=—ow(x-s ”

ks 81// ox’ v
Tl esar T VY

_ [8(t—-)aw Ix-s0) w]

ds  ot! ds

1y

Se T QY. 127)

Thus, the streaming operator in (126) is the total derivative or directional derivative along the
path of the neutron. We can then rewrite (126) as:

—ﬂ( s, Q,E, t—-)+z,( sQ,E,t—f)w(x—sQ,Q,E,t—f)
ds v v v

:a(x—s.(),.(),E,t—%), 0<s<sy, (128)
where:
a(x—s.(),.(),E,t—S):Q( —s.Q.QEt——)+ 8( )wi(x—s.(),.(),E). (129)

Equation (128) is a first-order ordinary differential equation in s, which can be solved using
the integrating factor method. Multiplying (128) by the integrating factor:

s "
exp |:—/ Zt(x—s”.(), E, t— S—)ds”]
0 v
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and manipulating the resulting equation in the usual way gives:

d § " s " S
E[exp(—fo Zt(x—s .Q,E,t—7 ds tl/(x—s.(),.(),E,t—;)

s 14
:—G(x—sD,Q,E,t—f)exp[—/ Zt(-x—S”-Q,E,t—S—)dS”]. (130)
14 0 v

Integrating (130) between 0 and s and reorganizing terms yields, after a bit of algebra:

s 14
v(x, Q,E,t) = exp(— f 5 (x ~s"O,E, t - s—)ds”) w(x—sﬂﬂ,E,t— 5)
0 v v

!

S~ s ”
+ f Q (x -d0,0FE t- S—) exp |:— / o (x -s"OE t- s_) ds"] ds’. (131)
0 v 0 v

Evaluating (131) at the boundary point s = s, and noting that:

w(x—sbﬂ,.(),E,t—s—b) :w(xb,.Q,E,t—S—b),
14 14

= 1//b (xb,.(), E,t— S—b) U(vt—syp), (132)
v

where U(-) is the Heaviside unit step function, we obtain:

s 144
y(x,Q,E, t) = exp (— f ! o (x -s"OE t- 5—) ds") u/b (xb,.(),E,t— S—b) U(vt—syp)
0 y y

!

Sh S’ "
+/ bQ(x—s'Q,.Q,E,t—S—)exp[—f Z (x—s”.(),E,t—S—)ds”] ds’.
0 v 0 v

(133)

The Heaviside function U(v¢—s;) in (133) accounts for the finite neutron speed; a source neu-
tron originating at the boundary and traveling at speed v cannot stream a distance s, to arrive
at position x at time t if vt < s;.

Next, we note that the integral over s’ in (133) for the initial condition part of the source Q
can be explicitly carried out to give:

! 1

N ! . N
f ' ls(t - 5_) v'(x - s'Q,0,F) exp [— f z (x ~s"Q,E t- 5_) ds"] ds'
0 v 14 0 v

. vt "
=y'(x -vtQ,Q,E) exp |:— / Z: (x -s"Q,E, t- S_) ds":| U(sp —vt), (134)
0 v

where well-known properties of the delta function have been used. Isolating this term in (133)
and noting from (124a) and (124b) that:

sp = |x — xp), (135)
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we obtain:

_ |x—xp | "
y(x,Q,E,t) = tpb (xb,Q,E,t— M) exp(— f ! o (x -s"QE, t- S—) ds")
y 0

14

. vt "
x U(vt—|x —xp|) + ¢'(x — vtQ, Q,E) exp (— f Zt (x -s"O,E t- S_) ds")
0

14

N

¥ =] !
xU(\x—xb\—vt)+f bQ(x—s'.Q,.Q,E,t——)
0 v

1

s/
X exp (— / > (x -s"OE t- s_) ds”) ds’. (136)
0 v

To obtain the final result, we transform the line integral in the last term in (136) to a volume
integral. To effect this transformation, we first introduce an angular direction variable 2’ and
express this term as:

- '
f f ' 5(0—9’)Q(x—s’n’,n’,5,t—S—)
4mr JO v

144

X exp (— [OS, 2y (x -s"0 E,t- 57) ds”) ds'da’. (137)
Defining the intermediate position vector:
x'=x-50Q, (138)
we note that an elementary volume about x” can be written as:
AV’ = (s'd0") (s sin 0'd¢')ds" = s*ds'sin0'd0’d¢’ = s*ds’d’. (139)
Further, noting from (138) that s” = |x — x|, (139) yields:
v’ dv’

ds'dQ' = — = —— . 140
512 ‘x _ xl|2 ( )

Introducing these results into (136), we obtain:

— |x—x5| "
y(x,Q,E,t) = tpb (xb,Q,E,t— M) exp(— f ! o (x -"OE t- S—) ds")
y 0

14

. vt "
x U(vt—|x —xp|) + ¢'(x — vtQ, Q,E) exp (— f Z (x -s"O,E t- S_) ds")
0 v

4
x U(|x - x| - vt) + f Q(x',Q',E,t— |x—x)
Vv v

Jx—x"| 17PN s "
exp[—[o Z,(x—s .Q,E,t—T)ds] o
0-0)dVv, 141
y — 5(0-0')d (141)

where we have noted that the integration domain [0, s, ] x [0, 7] x [0, 27] is just the volume V
of the medium.



484

General Principles of Neutron Transport

Equation (141), with the source given by (121), represents the most general form of the inte-
gral transport equation for the angular flux. It is valid for an arbitrary boundary source, initial
condition, and fixed source. Although complicated in appearance, the terms in this equation
each have a simple physical interpretation. To see this, we first note that the integral:

[x—x'| "
7(x,x', Q,E, t) = f 2 (x -s"Q,E t- S—) ds”, (142)
0 v

is the optical distance (the number of mean free paths) that a neutron with energy E experi-
ences while traveling from x’ (at time ¢’ = t — |x — x/|/v) to x (at time ¢) in the direction of flight
Q = (x — x")/|x — x'|. The exponential factor exp[—7(---)] appearing in (141) is the probability
that a neutron will not suffer a collision over this distance, while exp[ —7(---)]/|x —'|* is the free
flight kernel that additionally accounts for geometric spreading of a point source of neutrons.
Thus, the first term in (141) describes the contribution to the angular flux at (x, 2, E, t) from
neutrons that orginated at the boundary x; with energy E and direction 2 at an earlier time
|x — x3|/v and arrive at x without suffering any collisions. The second term describes neutrons
from the initial distribution with energy E and direction £ that are initially located at x — v¢0
and experience no collisions during the subsequent time interval ¢ while streaming to x. The
third term accounts for source neutrons, as well as neutrons born in scattering and fission col-
lisions with energy E and direction Q over the entire medium at an earlier time |x — x;|/v that
subsequently arrive at x unattenuated.

42 The Integral Equation for the Scalar Flux

The complexity of the integral equation is greatly reduced, and its utility greatly enhanced, when
scattering is isotropic and a steady state is assumed. Under these conditions, (141) can be reduced
without approximation to an integral equation for the scalar flux. To show this, we observe that
the source Q given by (121) becomes independent of £ and simplifies to:

Q(x,0,E) = ﬁfomZS(E'—»EM(x,E')dE'
E it ! ! ! 1
T % fo vEf(E)¢(x, B dE'+ - Q(x.E). (143)

Further, assuming a free surface condition, i.e., y’ = 0anda homogeneous medium, the integral
equation (141) becomes:

w(x, O, F) = fv exp (= 2i(E)lx —+']) Q(x',E)8(Q -0V, (144)

|x — x'|?

Integrating (144) over £ and substituting (143) into (144), we obtain the final result:

(l)(x,E): [/ eXP(_Zt(E)‘x—x ‘) ﬁde,[ZS(E,—>E)+XP(E)VZf(E’)]

47|x — x/|?
exp (= Zi(E)|x - x'|)
47|x — x' |2

< $(x',ENdV’ + / Q(x,E)dV’. (145)
\4
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This form of the integral equation, which has the scalar flux as the unknown, is known as
Peierls’ equation. Although stated above for a homogeneous medium with a free surface, it is
apparent from the foregoing that Peierls’ equation can be modified to account for boundary
sources and material inhomogeneities.

4.3 Discussion

Peierls’ equation is used in reactor physics for computing collision and escape probabili-
ties in the context of fuel assembly homogenization. Peierls’ equation has the advantage that
the angular part of the flux is exactly treated, so that quadrature approximations of angular
integrals are not necessary in numerical work. Moreover, boundary conditions are explicitly
incorporated into the equation and therefore are not affected by numerical schemes devised
to approximate the integral operator. However, unlike the integrodifferential transport equa-
tion, the integral equation is spatially nonlocal, which makes it less efficient for numerical
solution.

At a more mathematical level, the integral equation is used in establishing the existence and
uniqueness of solutions to the integrodifferential equation and, when expressed in terms of the
collision density, in establishing rigorous results for convergence of the Monte Carlo method.
Finally, we note that (145) can be reduced to the familiar forms of Peierls’ equation appropriate
in slab, spherically symmetric, and cylindrically symmetric geometries by suitable reductions
of the free flight kernel.

5 The Adjoint Neutron Transport Equation

The transport operator is non-self-adjoint, and in many circumstances it is useful to formulate
and solve the adjoint transport equation. This “dual” description is a powerful and enriching
feature of the theory of linear operators and has been effectively exploited in reactor physics
and neutron transport theory (Bell and Glasstone 1970; Case and Zweifel 1967; Henry 1975;
Weinberg and Wigner 1958). Moreover, although the adjoint flux is a mathematical artifice, it
can be interpreted physically as an “importance function” that quantifies the relative contribu-
tion of neutrons to a desired physical quantity (Lewins 1965). Adjoint formulations underlie
the development of perturbation theory and variational methods (Bell and Glasstone 1970;
Lewins 1968; Pomraning 1967a,b; Stacey 1974), sensitivity and uncertainty analysis (Cacuci
2003), and play a prominent role in the construction of a priori error estimates in the determin-
istic numerical solution of the transport equation. Also, neutron importance maps generated
from the adjoint flux can be used to develop efficient variance reduction techniques that
can result in dramatic improvements in the efficiency of Monte Carlo simulation methods
(Van Riper et al. 1997). Finally, in criticality problems, the adjoint fundamental eigenfunc-
tion is pivotal in developing a rigorous basis for reduced-order models, such as the point
kinetics equations.

In this section, we derive the equation that is the mathematical adjoint of the general inte-
grodifferential transport equation given by (46). For reasons that will become apparent below,
we refer to the latter as the forward transport equation. We show how adjoint boundary and
initial conditions can be assigned that are consistent with the importance interpretation of the
adjoint angular flux, and we close with a presentation on forward and adjoint Green’s functions.
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A rigorous development of the theory of adjoint operators would rely heavily on techniques
from functional analysis, a level of abstraction that is beyond the scope of this book. Instead, we
adopt a more pedestrian approach that relies on explicit construction and emphasizes physical
interpretation over mathematical rigor.

5.1 Definitions

We begin by defining the inner product, also known as the scalar product, of two real functions
u and w of the phase space and time coordinates (¥, Q, E, t) as:

T oo
(u,w):/o fo fR/4nu(x,Q,E,t)w(x._Q,E,t)deVdEdt. (146)

The integration domain is the phase space covering the volume of the body, the surface of the
unit sphere, an allowable range of energies, and a time span which in principle can be infi-
nite. The restriction to real functions is not unreasonable, since the functions encountered in
neutronics applications, such as cross sections, sources, neutron number, angular flux, neu-
tron importance, etc., are real and have well-defined physical interpretations. Moreover, the
operators that act on these functions are also real. Smoothness and continuity of all functions
and sufficient orders of their derivatives is tacitly assumed, and all mathematical operations
employed are assumed to be valid. Useful properties of the inner product that follow, and which
will be applied repeatedly in the ensuing, include symmetry, linearity, and homogeneity. These
properties are encapsulated in the following statements:

(u, w) = (w,u), (147)

(o w1+ azuz, a3 w) = ayas(ur, w) + az az( uz, w), (148)

where i, a2, and a3 are real scalars. These properties of the inner product must be modified if
the functions of interest are not real.

Given a linear operator £, which may be differential, integral, or integro-differential, two
real functions u and w, and an inner product, the adjoint of this operator, denoted by ctis
defined by the inner-product identity:

(w, Lu) = (u,[,Tw). (149)

Besides serving as a formal definition of an adjoint operator, this identity also defines an
algorithm for the explicit construction of L7 In this context, it is understood that all neces-
sary elementary operations from calculus (differentiation rules, integration by parts, switching
orders of integration, manipulating dummy variables) are applied until the function u stands
freely under the inner product while w is acted upon by an operator. The latter operator is the
adjoint operator. If £ is either entirely or partially differential in form, boundary terms will arise
during this process, and these must be dealt with to complete the adjoint formulation. Strictly
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speaking, £ without regard to the boundary terms is referred to as the formal adjoint of L,
and the identity equation (149) is more precisely expressed as:

(w, L) = Plu,w] + (u, £Tw), (150)

where P denotes a boundary functional, also known as the bilinear concomitant. When ch=z,
we say that the operator £ is formally self-adjoint. As we shall be treating all boundary terms

explicitly, we drop the qualifying “formal” and, in what follows, simply refer to £ asthe adjoint
operator.

5.2 Illustrative Example

Before proceeding with the derivation of the adjoint of the transport operator, it is instructive
to apply the process to a 1-D second-order differential operator. Although this is done here for
illustrative purposes, it is worth pointing out that the diffusion approximation to the transport
equation and heavy gas models in neutron thermalization are described by second-order dif-
ferential operators in spatial and energy variables, respectively. Thus, let us consider £ to be
defined by:

2
Lu= az(x)d u(x) al(x)dL;—(xx) +ao(x)u(x); xce€la,b], (151)
with the inner product:
b
(u,w) = f u(x)w(x)dx. (152)

Suitable boundary conditions on u(x) are presumed prescribed at x = a and x = b, and the
coefficients ay, a1, and a; are specified functions of x. Proceeding, we multiply (151) by another
function w(x) and integrate over the domain of x. Noting the linearity of the inner product,
the resulting expression may be written as a sum of inner products of w with the individual
components of L:

(w, Lu) = (w, Lou) + (w, £1u) (w, Lou)
:[a w(x) as(x) 2 (")d +[a w(x) ai(x)
+ / w(x) ao(x)u(x)dx. (153)

a

u(x)

We consider each term independently and manipulate the integrands such that u(x) is free-
standing. Beginning with the last term on the right, we note that since multiplication is a
commutative operation, we can write simply:

(w, Lou) = fabw(x) ao(x)u(x)dx

= fab u(x) ao(x)w(x)dx
= (w £lw) = (u, Low). (154a)
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This shows that the operation of multiplication is self-adjoint. Next, we consider the term
involving the first derivative of u and integrate by parts:

(w, L1us) = fabw(x)al(x)d”;(;‘)dx
= [rau@] - [ a0 1 fa(w)])dx
- [r@au@] + [Mu) {—— [ar(x)w(x)]} dx
- [w(x)al(x)u(x)]z +(u,cfw). (154b)

This shows that a first-order differential operator is non-self-adjoint. However, when

ai = constant, i.e., when £ is a pure first derivative, we have the simple relationship EIT =-L.
We consider finally the term involving the second derivative of u and integrate by parts twice:

Zu(x)dx

(w, Lou) = fabw(x) az(x)d
= w(x)az(x)du(x)]a fab du(x) %[uz(x)w(x)]dx

dx
du(x)

= w(x)az(x)

b 2
) L]+ [ ) o [aaew )] dx

= w(x)az(x) du(x)

d b t
(x)a [az(x)w(x)]]a + <u,£2 w). (154¢)

This shows that, in general, a second-order differential operator is non-self-adjoint. However,
there are two circumstances under which £, is self-adjoint: (i) when a, = constant, i.e., when
L, is a pure second derivative, and (ii) when the second-order differential operator appears in
the symmetric form:

Lou =2 [ ()du(x)] (155)

Combining (154) and inserting them into (153), we obtain for the adjoint of a general second-
order ordinary differential operator:

2

= (e ()] - A [ w(0)] + a(ew(x)s xe[abl  (56)

We remlark that although the operator defined by (151) is non-self-adjoint, it is well known and
readily verified that any second-order differential operator can be converted into the self-adjoint
form:

:di[ (x) du(x )]+r(x)u(x) (157)
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by a suitable transformation of the coefficients. To complete this illustration, it is necessary to
comment on the boundary functional associated with £, which is given by:

Pluw] = [w() ) P ) (A [axw ()] - w0 )]

b
. (158)
a
Since u represents a physical quantity (such as the neutron scalar flux, chemical concentra-
tion, or temperature) that satisfies a well-posed mathematical model, a sufficient number of
boundary conditions are presumably available. In the above example, these may take the form
of u and/or its first derivative being specified at one or the other boundary x = a and x = b.
However, the adjoint function w is an arbitrary function (assumed sufficiently smooth) with
no apparent physical attribute on which to base the assignment of boundary conditions. It will
be shown below that a consistent set of boundary conditions can be obtained by requiring the
boundary functional P[u, w] to vanish. Thus, in the above example, if u satisfies:

u(a)=0, (159a)

u(b) =0, (159b)
then, P[u, w] will vanish if:

w(a) =0, (160a)

w(b) = 0. (160b)
On the other hand, if u satisfies:

du

& o, 161

dx‘ (161a)

du

=1, =0, 161b

Ix lb (161b)

then for P[u, w] to vanish, w must satisfy the mixed boundary conditions:

d
P [a2(x)w(x)], —ai(a)w(a) =0, (162a)

;_x [ax(x)w(x)], — ar(b)w(b) = 0. (162b)

Similarly, mixed boundary conditions on u, i.e., a linear combination of (159a, 159b) and (16la,
162b), yield mixed boundary conditions on w. Inhomogeneous boundary conditions and inho-
mogeneous terms (sources) can also be accommodated, as is demonstrated below for the adjoint
neutron transport equation. Finally, if the operator is self-adjoint and the boundary conditions
for u and w are identical, the problem is said to be self-adjoint, otherwise it is non-self-adjoint.

We close by remarking that the adjoints of 2-D and 3-D second-order differential operators
can be similarly derived, employing Green’s identities in lieu of integration by parts.
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5.3 The Adjoint Transport Equation

We now apply the procedure developed above to derive the adjoint of the time-dependent
forward transport equation, which we recall from (46) is:

%g—lf(x,Q,E, £) + Q- Vy(x, O, F, £) + Zi(E)y(x, Q,E, 1)
:fmf (2 -Q,E - E)y(x, 0, E',t)dQ'dE’
0 4m

XP(E) e ’ Il ’ ’ i
w2 fo f4 vE(E)y(x, @\ E ) dQ'dE' + -Q(xE1),  (163)

subject to the boundary condition and initial conditions:

v(x, Q,E 1) =y"(x,Q,E 1), x€dV, Q-n<0, 0<E<oo, 0<t<T, (163b)
v(x, Q,E0) =y (x,Q,E), x€cV, Qedn, 0<E < . (163c)

It is convenient to express (163a) in the compact form:
Ly=Ly+Liy+ Loy—Ly—Lsy=Q, (164)

where components of £ symbolically describe time evolution, free streaming or leakage,
removal (outscatter and absorption), inscatter, and fission operators, respectively, and Q is the
fixed source. Proceeding as outlined earlier, we take the inner product of an auxilliary function

1//T (%, 9, E, t) with Ly and define the adjoint operator yai through the inner-product identity:

(w'cv) = Plyy'] + (L), (163)

where we have explicitly noted that boundary terms arise from the differential components of
the transport operator. Inserting (164) into (165) and noting the linearity of £, we can write:

'l = (v clyT) + (v clo) + (el ™) - (o cloT) - (v v ). aee)

We begin our treatment with the simplest term, namely, the removal term:

T [T o T
(v ,E,t//)-/o dt/o dEf4ndeVdV1// (x,Q,E, )Z(E)y(x, Q,E, )
T )
:f dt/ dE dQ/th//(x,.Q,E, 0Byl (x, Q. B, 1)
0 0 4 14

= (y.cly™) = (v cv). (167a)
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Thus, the removal term is trivially self-adjoint. Next, we consider the time evolution term and
integrate by parts:

trwy= [T Caryt la_w
(1//,&1//)—[0 dE dofdvf ary’ (0.0~ (5, 0 B )

:[ dE 4ﬂdQ[dV[ v (x.QEt)l//(x,.QEt)]

f dt/ dE/ d.Qdew (x, Q,E, t)[———(x.()E t):|

= Plyy ']+ (e £ly). (167b)

The boundary functional P; denotes a restricted inner product, wherein the time variable is
constrained to take its initial and final values only. Being a first-order differential operator, the
time evolution operator is non-self-adjoint. Proceeding likewise for the streaming operator, we
first note the vector identity:

vicw=vlo - vy=v (ou')-yo vy

and apply the divergence theorem to get:

tp JLiy) = / dtf dE 4ﬂd.Q/dV 01//1//) 1;/.Q~V1//T]
:fo dtfo dE 4ndQ/aVdAn~.Qtp(x,.(),E,t)u/T(x,.Q,E,t)

+/OTdtfowdEfmdQ/vdVW(x’Q’E’t) [—Q~V1//T]

= Ply, wT] + (w,ﬁhﬁ). (167¢)

The boundary functional P; denotes a restricted inner product, wherein the spatial variable is
constrained to lie on the surface of the body. We observe that the streaming operator is also
non-self-adjoint.

We consider now the adjoint of the inscatter operator, which is an integral operator. The
significance of this is that boundary terms will not arise. Thus:

(WT,ESI//):fOTdt/VdV/OwdE[MdQ

u/T(x,.Q,E,t)foodE'f dQ' 52 - Q. E — E)y(x, Q' E' 1)
0 4m

T oo
:f dt/ dV/ dE’ [ do’
0 \%4 0 4

foodE/ A0y’ (x, 0B )2(Q - 0, F > E)y(x, @, E 1)
0 4m
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fdtfdvf ae [ do

f dE’ f a0’ w(x,.(),E,t)Zs(.Q~.Q',E—>E')l//T(x,.Q',E',t)

f dtf dV/ ae [ do
w(x,.(),E,t)/ dE' f dQ'ZS(Q-Q',E—>E')wT(x,.Q',E',t)
0 4

- <1,,, g}"f} , (167d)

where in the first step, the orders of integration for the pre- and post-collision energies were
switched, as were the corresponding directions, and in the second step, the dummy variables
for pre- and post-collision energies were interchanged, as were those of the corresponding
directions. We notice that the adjoint of the inscatter operator is obtained simply by revers-
ing the orders of the pre- and post-collision arguments in the scattering kernel. Since scattering
is rotationally symmetric, this affects only the energy loss part of the kernel. In other words, the
scattering operator for coherent scattering (i.e., scattering without energy loss) is self-adjoint.
Manipulating the fission operator in the same manner as the scattering operator, we get:

('l cpy) = fdtfdvf ae [ do
v (x,.Q,E,t)%fo dE’ f4n dQ'vIs(E yy(x, Q' E', 1)

:fOTdtfvdvfode’ [ aor
fdef dQMV/T(x,.Q,E,t)vZf(E')u/(x,Q',E',t)

[ dt/ dvf dt [ do

f dE’ f dQIMV/(x,.Q,E,t)vZf(E)q/T(x,.Q',E',t)

[ ar [av ["aE [ a0
y(x, O, E, t) v, (E) f dE’ f d_Q'XP( Dt e B p)
0 4an
= (y.cly"). (167¢)
The fission operator is non-self-adjoint with respect to the energy variable, the angular dis-
tribution being isotropic. It becomes self-adjoint when the fission cross section is energy
independent and all fission neutrons are born with the same energy, i.e., in the one-speed

approximation.
Finally, substituting (167a—167¢) into (166) yields:

(w'cy) =Py |+ P vy ]+ Ty, (168)
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and thus for the adjoint transport operator:

cWT:—%al(x QE -2 -V (6, QE )+ 3(E)y' (x,Q.E 1)

—f f (0 Q. FE - By (x,Q . t)dQdE'

—vzf(E)f f,, %(E') v (x, 0 F, 1)dQ dE'. (169)

Although wT(x, 0, E, t) is referred to as the adjoint angular flux, the physical interpretation of
this quantity (hence its units) can only be established when it is related to some functional of
the forward angular flux y(x, 2, E, t), which, moreover, will dictate the choice of the adjoint
source and adjoint boundary-initial conditions. This will be demonstrated shortly below, but
first we make some general observations on the adjoint transport process.

An adjoint problem is defined such that the adjoint angular flux 1//T (x,0,E,t)isasolution
of the following adjoint transport equation:

ia"’ (£, QE1) - Q- vy (x, QE 1)+ Z(E)y  (x,0,E 1)
:[ /zs(n-n,EaE)w (x, Q' E', 1) dQ'dE'
0 4

+v2f(E)f0°°f4ﬂ%f)w(x,n’,y,t)do’wuQT(x,Q,E, t), (170)

for a given source adjoint QT and given adjoint boundary and initial conditions. The adjoint
flux represents the flow of pseudo-particles, or adjoint particles (sometimes also referred to as
“adjunctons”), which, like neutrons, are created, destroyed, and redistributed in phase space.
However, the adjoint transport process is fundamentally different. Adjoint particles:

e Are born in the medium distributed in phase space according to the adjoint source, but
beginning at some final or terminal time

e Stream in reverse time to earlier times and travel in reverse directions

o Gain energy in scattering collisions, but the inscattering and outscattering terms do not bal-
ance when integrated over all energies and directions, i.e., the energy-dependent adjoint
scattering operator is nonconservative

e Are isotropically emitted in fission reactions, but the energy-dependence of the adjoint fis-
sion cross section is proportional to the neutron fission spectrum while the energy spectrum
of the resulting adjoint fission particles is proportional to the neutron fission cross section.

In other words, the adjoint equation is a backward transport equation, the adjoint angular flux
satisfying a final or terminal condition in time instead of an initial condition, and a boundary
condition which is specified for outgoing directions instead of incoming directions. To empha-
size this distinction between the two approaches, the neutron transport equation is referred to
as a forward transport equation.

Like the forward transport equation, the adjoint transport equation has a unique solution
for subcritical systems with fixed sources, while adjoint k-eigenvalue and adjoint a-eigenvalue
problems can be defined for multiplying systems. For both types of eigenvalue problems, it can
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be shown that the adjoint fundamental mode is positive and the dominant adjoint eigenvalue
is identical to the dominant eigenvalue of the forward problem.

5.4 Adjoint Flux as an Importance Function

Adjoint transport problems lead to a natural physical interpretation of the adjoint flux and,

under certain circumstances, an adjoint formulation results in a more efficient solution to a

physical problem than the traditional forward approach. We demonstrate this next.
Expressing the forward and adjoint problems in condensed notation as:

Ly =Q, (171)
chyt - of, (172)

and then subtracting the inner product of y with (172) from the inner-product of 1//T with (171),
we obtain:

whoy) - wchyh = vl Q) - (v.Qh). (173)

Noting the definition of the adjoint operator as expressed by the inner product identity
equation (168), the left-hand side of (173) can be simplified to obtain:

Py |+ B [wy'] =l Q) - (wQF), (174)

where P is given by:

P [w,wT]:fodel d_QfvdV%t//T(x,Q,E,T)q/(x,.Q,E,T)
—[jdEle dQ/VdV%t//T(x,.(),E,O)t//(x,.(),E,O), (175)

and P; by:
P [V/,WT]:fOTdtfode | d.QfavdAn-Qll/(x,Q,E,t)tpT(x,Q,E,t)

T oo
:f dt/ dE/ dQ/ dAn- Qy(x, Q,E 1)y (x, Q. E 1)
0 0 n-02>0 Vv
T oo
- f dt f dE 40 f dAln-Qy(x Q.E ) vi(x,Q.E1). 76)
0 0 n-0<0 Vv

The identity expressed by (174) is a key result in the adjoint-space formulation of transport
problems. It relates functionals of the forward and adjoint angular fluxes at initial and final
times and along incoming and outgoing directions at the surface of the body to the function-
als of these fluxes in the interior of the body with fixed sources. This generalized reciprocity
relationship enables transport problems to be posed using either forward or adjoint descrip-
tions, provides a physical interpretation of the adjoint flux, and imposes consistent adjoint
boundary and terminal conditions. While the class of such problems is wide, we highlight here
so-called source-detector problems for subcritical systems at steady state, for which the adjoint
formulation is extensively employed.
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5.4.1 Source-Detector Problems

A classic forward problem is to determine a desired linear functional of the steady-state flux
for a given interior source distribution and a free surface boundary condition. That is, we are
interested in the solution of the forward transport equation:

Ly =Q, (177a)
¥=0, x€dV, Q-n<0, 0<E< oo, (177b)

which is used to compute the functional:

(f,v) = fode/M dQ/Rde(x,.Q,E)w(x,.Q,E), (178)

where R is a subregion in the body and f(x, 2, E) is a real function that makes the above func-
tional a useful physical quantity. For instance, if it is desired to know the response of a detector
to the local neutron flux, then f would be equated with the detector cross section X, (E), and
subregion R would be the detector volume. If the detector is localized at some point x; so that:

f(%,92,E)=24(E) S (x —x9), (179)

then the desired functional gives the reaction rate at this point:

(fov)= [ TdE [ d05,(E)y(x 0.)
- fo T AES4(E) ¢(x0, E), (180)

where ¢ is the scalar flux at the detector. By choosing f appropriately, the functional can be
generalized to yield energy and/or angle-dependent responses.

Since we are dealing with time-independent situations, the reciprocity condition, (174),
reduces, upon substituting the vacuum boundary condition (177b), to:

(M,Q)—(W,QT):fowdE dﬂfavdAn-.Qtp(x,.Q,E)wT(x,.Q,E), (181)

n-Q>0

where the right-hand side contains the outward-directed forward and adjoint angular fluxes at

the boundary. If now QT is identified with f, a permissible operation because of the arbitrari-
ness of the adjoint source, and moreover if we require the outward-directed adjoint flux at the
boundary to vanish, (181) reduces to the particularly simple form:

()= v Q). (182)
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This result states that the desired functional of the forward flux can alternatively be obtained as
the inner product of the adjoint flux with the physical source, where the adjoint flux now solves
the specific adjoint transport problem:

chyt =7 (183a)
y'=0, xcdv, Q- n>0, 0<E<oo. (183b)

The significance of this adjoint formulation of a detector response is twofold. First, it will be
observed that the adjoint problem given by (183a,b) is independent of the source Q in the for-
ward problem. Thus, if a detector response is desired for multiple different sources, an adjoint
computation would be more efficient than a forward computation. The latter would require
multiple solutions of the forward transport equation, one for each source, followed by evalua-
tion of the inner product ( f, y) for each such solution. The adjoint approach, on the other hand,
necessitates obtaining a single solution to the adjoint transport equation, followed by evalua-
tion of the inner product (WT, Q) for each source. This is computationally far less laborious
than solving the forward problem for each different source. If multiple generalized responses
are of interest for the same forward source, the forward computation is preferred for precisely
the same reasons.

Second, let us assume that the forward source corresponds to one particle injected into the
system locally in phase space, at a specified point xy, direction of flight Qo, and energy Eo:

Q(x,Q,E) = & (x - x0) 8 (2 - Q0) 8 (E - Eo). (184)

Then, from (182), the resulting detector response is given by:

(fo9) = ' (0,20, o). (185)

This result indicates that the detector response is equal to the adjoint flux at the point of injection
of the neutron. Thus, the adjoint flux is a direct measure of the importance of a locally injected
neutron to the response of a detector. For this reason, the adjoint flux is commonly referred to
as the importance function. Moreover, the boundary (and terminal) conditions assigned to the
adjoint flux become physically reasonable and consistent with this notion of importance. For
instance, in the above problem, a neutron leaving the body at the boundary cannot contribute
to the detector response, and hence its importance is zero.

For external detector locations, measuring the importance of outgoing neutrons, the adjoint
boundary conditions require modification. In this case, we take QT = 0 and by way of illustra-
tion, consider a monodirectional and monoenergetic incident beam condition for the forward
problem:

Y(x,0,E)=0(x-x5) 6 (2-0,) 6(E-E), x€dV, Q-n<0, 0<E<oo, (186)

where x;, is the point on the boundary at which the beam of neutrons of energy E, is incident
along direction £,,. Note that since x is restricted to lie on the boundary, the delta function
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0 (x — x3,) is 2-D. This then gives a source normalization of one incident particle per second.
The reciprocity relationship equation (174) reduces in this case to:

/wdE dQ/ dAn- Qy(x, Q,E) v (x,Q,E)
0 n-02>0 Vv

=m0y (.24, E,), Qp-n<o0. (187)
If the desired quantity is the total leakage from the body, we may assign:
vy (6, 0,E)=1, x€dV, @-n>0, 0<E<oo, (188)

and (187) then becomes:

]+:/°°dE dQ/ dAn-Quy(x,Q,E)
0 n-0>0 A%

=|n- @yl (%, Q0. E), Q,-n<o. (189)

Thus, the total leakage from a body, given a monodirectional and monoenergetic incident beam,
can be obtained by solving the homogeneous adjoint transport equation with unit outgoing
adjoint flux at the boundary. In this case, the importance to the detector of neutrons exiting the
medium will be the highest of any other group of neutrons. Since the forward problem involves
singular functions at the boundary while the adjoint problem does not, numerical solution of
the adjoint transport equation will be more efficient. With an appropriate choice of adjoint
boundary condition in (187), it is evident that adjoint space formulation of surface energy spec-
tra and/or angular distributions can be realized, with and without interior sources. This analysis
can be further extended to show that the adjoint flux in a critical system measures the impor-
tance of a neutron injected at a particular phase space location in sustaining the fundamental
mode.

From the considerations of this section, we observe that the adjoint problem cannot be
considered independently of the forward problem. The identification of the adjoint source
and assignment of adjoint boundary (and terminal) conditions makes the adjoint formula-
tion (forward-) problem dependent. However, regardless of the application, the adjoint flux can
always be imbued with an “importance” attribute, thereby rendering it a physically meaningful
quantity.

5.5 Green'’s Functions

Finally, we consider a particularly interesting special case of the generalized reciprocity rela-
tionship given by (174). Let the forward and adjoint sources be completely localized in phase
space and in time:

Q(x,0Q,E,t)=8(x-x0) 6 (Q2-0Q0) §(E-Eop) 6(t—to), (190a)
QT(x, QE 1)=0(x-x1)0(2-2)) §(E-E) §(t-n). (190b)
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The resulting solutions of the forward and adjoint transport equations with homogeneous
boundary and initial/terminal conditions are the forward and adjoint volume Green’s functions
and are denoted by:

y(x,Q,E, t) = G (x,09,E, t; x0,Q0, Eo, t0), (191a)
1//T(x, OE, t) = GT (x, O, E t; x3, .Ql,El,tl). (191b)

For these sources, the reciprocity condition equation (174) reduces to:

(¢",Q)=(c.Q"), (192)

which, upon inserting (190a) and (190b) then yields the result:
GT (xO) QO) EO) tos X1, Ql) El) tl) =G (xh Ql) El) t1; Xo, QO) EO) tO)) (193)

where from causality we require that f; > to. The right-hand side of the above equation is the
neutron angular flux at the phase space point (x1, 21, E1) at time #;, known as the field vari-
ables, resulting from the injection of a neutron at another phase space point (xo, 20, Eo) at an
earlier time to, known as the source variables. Equation (193) shows that this is identical to the
angular flux for the adjoint problem but with the source and field variables reversed. A similar
relationship involving surface Green’s functions may be derived by imposing an incident beam
on the boundary:

w(x,Q,E,t):(?(x—xo)8(.()—.()0)6(E—E0)8(t—t0),

x€edV, Q-n<0, 0<E<oo, (194a)
v (0 QB 1) =8 (x—x1) 6 (2-2) §(E-E) 8(t— 1),

x€edV, Q-n>0, 0<E<oo, (194b)

where xo and x| are two arbitrary points on boundary, and the source normalization is one
particle (neutron and adjuncton) per second. Substituting these into (174) we obtain:

|n - Qo el (%0, Q0, Eo, to; x1, 21, Ei, 11) = |n- Q1| G (x1,Q1, By, 115 %0, Q0, Eo, t9),  (195)

subject to the causality constraint ¢; > to and where again homogeneous initial and terminal
conditions have been assumed.

These reciprocity relationships can be used to construct the angular flux for a distributed
source from the corresponding Green’s function. Let us consider a localized adjoint interior
source, for which the adjoint angular flux is just the adjoint Green’s function G', and a dis-
tributed forward source, for which the solution is the forward angular flux y. The reciprocity
condition for this problem reads:

(6", Q) = (y.Q"), (196)
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or, more explicitly:
y(x,0,E,t)
t oo
- / at’ f av’ f dE’ f d0'Q(x, 0 E, )G (x', Q" E¥;x,0,E1). (197)
0 \%4 0 4m

Recalling (193), the adjoint Green’s function in (197) can be replaced by the forward Green’s
function but with field and source variables reversed, to finally obtain:

y(x,Q,E,t)
t oo
- [Car [av' [TaE' [ do' Q9 F.¢) G (xE6xQLEL ). (198)
0 1% 0 4n
This result is a statement of the superposition principle for linear systems: the angular flux cor-

responding to a distributed source can be obtained by a superposition of angular fluxes for
elementary sources. It is a direct consequence of the linearity of the transport operator.

5.6 Discussion

We have seen that neutron transport problems can be mathematically modeled using either a
forward or an adjoint formulation. The adjoint operator is commonly derived using an inner-
product identity, and the adjoint formulation always inherits physical relevance that is unique to
the forward problem. The interpretation of the adjoint flux as an importance function makes it
possible to derive the adjoint transport equation from first principles, using balance arguments
akin to those employed in the derivation of the forward equation (Bell and Glasstone 1970;
Henry 1975; Lewins 1965). For certain applications, adjoint formulations have clear computa-
tional advantages over forward formulations, while for other applications the reverse is true.
Forward and adjoint functions taken collectively provide a means of generating highly accu-
rate approximate solutions at reduced cost, as exemplified by their use in variational methods,
perturbation theory, and Monte Carlo simulations.

The derivations and results of this section simplify considerably for neutron transport in the
one-speed approximation. Under these conditions, the scattering and fission operators become
self-adjoint, leaving only the time evolution and streaming operators as non-self-adjoint. How-
ever, upon reflecting the direction and time variables, i.e, setting 2 — —-Q and t — —t, the
one-speed adjoint transport equation becomes identical to the forward transport equation. The
distinction between the two formulations then stems purely from the respective sources and
boundary and initial/terminal conditions, but for criticality problems in particular, this conse-
quence obviates the need to independently solve the adjoint transport equation - the adjoint
angular flux is obtained by simply reflecting the direction variable in the forward angular flux.
Moreover, in a critical system, where sources are absent and homogeneous boundary conditions
are imposed, the adjoint scalar flux is identical to the forward scalar flux.

Finally, we remark that under certain restrictive conditions, a hybrid forward-backward
formulation can be developed to describe linear transport processes. Although this approach
has not found utility in reactor physics or neutron transport applications, it is nevertheless
widely used in the theory of radiation damage and atomic sputtering (Prinja 1989; Sigmund
1969; Williams 1979).
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6 The Multigroup and One-Speed Neutron Transport
Equations

The multigroup approximation to the neutron transport equation is almost universally used to
discretize the continuous-energy variable E (Duderstadt and Hamilton 1976; Henry 1975; Lewis
and Miller 1993). The structure of the resulting multigroup transport equations is closely related
to that of the original transport equation, the difference being that the energy variable is discrete
rather than continuous. (Thus, integrals over E are replaced by sums over energy groups.) Several
important identities of the original continuous-energy scattering operator are preserved in the
multigroup approximation. Here, we derive the multigroup transport equations and discuss
some of their properties.

6.1 The Continuous-Energy Problem

We consider a general, steady-state, 3-D neutron transport equation:
Q- -Vy(x,0,E) + Z¢(x, E)v(x, Q,E)
- f f 5(x,Q - Q,F - E)y(x,Q,E)dQ'dE’
0 4
> E it
L X E) f f v (% 'y (x, @, E') dQ'dE’
4m 0 4
1
+4—Q(x,E), xeV, Qe4n, 0<E< oo, (199a)
s
with the boundary condition:
v(x, Q,E) =y’ (x,2,E), x€dV, Q-n<0, 0<E < oo. (199b)

The cross sections and fission spectrum in these equations satisfy the usual identities (see [8],

[13b], [14b], and [77]):

34(E) = 5,(E) + 2,(E) + 3,(E), (200a)

3(E) = fom f4 Z(Q-QE- E)dQ'dE’ (200b)

/0 " W(E)E=1, (2000)
N

(0 QF S E)= Y 2"; Ly (B > E)Pa(Q- Q). (200d)
n=0

6.2 The Multigroup Transport Equations

The multigroup approximation requires that a finite number G of energy bins or groups be
chosen:
Ein = EG < EG*I < - < Eg < Eg—l <--< Ey<E;=Enpax,

with E,i, sufficiently small that neutrons with energies less than E,,;, are negligible, and with
Emax sufficiently large that neutrons with energies greater than E,, 4« are negligible. The energy
range E; < E < Ey 1 is the gth energy group. It is customary to order the energy groups with
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the group index g increasing as the energies decrease. Then the slowing down of fast fission
neutrons occurs through energy groups with increasing indices.
For each 1 < g < G, we define:

Eg
v @) = [ y(x.0.E)dE

= Angular flux for group g, (201a)
6= [ i By

= Multigroup fission spectrum for group g, (201b)
Q)= [ E Q(x, E)dE

= Internal multigroup source to group g. (201¢)

Because these quantities are integrals over energy groups, the group fluxes have dimensions
cm™? 57, the multigroup fission spectrum is dimensionless, and the multigroup sources have
dimensions cm ™ s™'. Also, by the preceding definitions and (200c), the multigroup fission
spectrum automatically satisfies:

G G rE. Emax
;Xg(x)zgﬁg X(x,E)dE:/EY x(x,E)dE = 1. (202)

min

To proceed, we integrate (199a) over the gth energy group, obtaining:

Eg
Q- Vyy(x, Q) + /E Zi(x,E)y(x, Q,E)dE

14
& Eg1 Egry ’ ’ ronr I
-y f f f 5(x,E — E,Q - Q)y(x, @, E)dQ dE'dE
g'=1 Eg 2’1 4

xe(x) & /Egul/ ; YT RG]
S (x,E O ENdQ'dE + 22 203
i g’z=:1 ¢ o s EDy(x ) e (20)
Equivalently,
E,_
S 55, Eyy(x, 0, E)dE
Q- Vy(x,0) + | ——— Ve(x )
J& w(x Q,E)dE
G fEEgi1 fEEle Zs(x, E, i E, -Q, : 'Q)W(x’ -QI» EI)dEIdE
g & ' '
= f E,/ ll/g,(x’g)d()
g=174n Je 8 w(x, Q' E)dE
&
Ey
6 o | Je T vEH(x BNy (x, @ E')dE’
+ Xs(x) > f = Ey g (x,Q")dQ'
am g5y Jan e, V(6 QLE)dE
Qq(x)

B (204)
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or:
& G 2, / ! !/
Q-Vye(%,02) + 21 4(x, Q)ye(x,2) = > f4 2o g—g(x,2,Q)yg(x,2)d0
g/=1 ys
Xg(") Z f 051 (2,0 Yy (x,0)d0 + 52 Qg(") (205)
where:

3 —fEEg’IZr(x,E)w(x,Q,E)dE
B : (206a)
e w(x Q.E)dE

B _ E _

Sogag(x,0,0) fEig iy (x> E,.Q- @)y (x, @' E')dE'dE (206b)
' o (X, > = >

e “y(x,Q,E"dE’

A L e B
V2 g(x,0Q7) = £ T . (206¢)
S 7 w(x, @, E)dE

&

Exact boundary conditions can be obtained by integrating (199b) over the energy groups:
Eq
Ye(x,2) = ¢! (%, 0) = f b (x, Q,E)E, xcV, Q-n<o. (207)
ES

Equations (205-207) are an exact system of equations for the group fluxes. If the hatted coef-
ficients in (205) were known, then (205) and (207) would, in the absence of spatial and angular
discretizations, yield the exact group fluxes. However, by (206), the hatted coeflicients depend
on the solution of the continuous-energy problem and are not known.

In the multigroup approximation, an approximation for y is specified and introduced into
the right sides of (206). The resulting approximate multigroup cross sections are then used in
(205).

Specifically, in each of the bracketed terms in (206), we introduce the approximation:

y(x, Q,E)~ ¥(x,E) f(x,Q), (208)

where ¥(x,E) is a specified neutron spectrum. The function f(x, ) cancels out of each
numerator and denominator, and (206) yield the multigroup cross sections:

[ [F 5y(x, E)¥(x, E)dE
Sig(x) = | 2— , (2092)
J£ (%, E)dE

/ —fEig_l fEif,_l (x,E' > E, Q- Q)¥(x,E")dE'dE
Zs’glag(x’ - Q) = Ey / / > (209b)
ng, ¥ (x,E')dE
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[ vEp(x, E') ¥V (x, E')dE’
£

v (%) = (209¢)

E,,
Je ! ¥ (x E)dE!

Introducing these expressions into (205), we obtain the multigroup transport equations (Dud-
erstadt and Hamilton 1976; Henry 1975; Lewis and Miller 1993):

G
Q- Ve (x,0) + 20 g (%) (%, Q) = Zf4 Segog(Q - Qg (x, Q)d0
gl=1 m

G
+_Xi(:) > [ vﬁf,g(x)wg,(x,o')dow%, xeV, Qedm 1<g<G. (210)
g'=1 4m

The multigroup fluxes y¢(x, 2) are obtained by solving these equations with the multigroup
boundary conditions (207).

To complete the multigroup approximation, the multigroup capture, fission, and scattering
cross sections are defined analogous to (209):

[ [ 55 (%, E)¥(x, E)dE |
Z,e(x) = Fy Ey (211a)
J& " ¥ (x,E)dE
[ [ 2 (%, E) ¥ (x, E)dE |
Zre(x) = P (211b)
Je, " ¥(x,E)dE
[ [P [ 5, (%, B~ E)¥(x, E')dE'dE
Zs,n,g’ag(x) = . : E ., (ZHC)
[ 47 W (x, EN)dE
L g
Then by (209), (211), and (200a), the following identities hold for all g and g':
. fEE;*‘ [Z4(x,E) + Z,(x,E) + Zf(x,E)] ¥(x,E)dE
t,g(X) =
¢ S W (%, E)E
= o(x) + 2 0(x) + Zf,g(x), (212a)
Ee Ego
Ef Ef EO 25 n(E' > E)P,(Q'- Q)] ¥(x,E')dE'dE
2 g—-g(x, Q' Q)= s E.,
[ ¥ ¥ (%, E)dE
g
N oon+1 ,
=3 Song—g Pn(Q-Q), (212b)

n=0 4n
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and:

G

’ ¢ N 2n+1 ’ ,
Zﬁ 5,88 (x'Q Q)dQ Z/nl: " sn,gqg’(x)Pn(.Q Q)]dQ

g'=1 =0

MQ

12

2n+1
= 4

Zangoe (x) [ a2 o)do’]

g

Me

N
[Z ”“zmm (x)4n8no]

7

og
0

=2 Zs0g-g (%)
g'=1

e So(x, B~ E)¥(x,E')dE'dE
Eg
o W (x, EdE!

G
=)
g'=1

S [ Soo(x, B — E) ¥ (x, E')dE'| dE
Eg
S W B dE

S 2, E) ¥ ENE
o W (% B dE!
_ Zs,g(x)- (212¢)

Equations (202) and (212) hold for any choice of ¥ (x, E); they are the multigroup analog
of the continuous-energy identities (200). These identities have the following significance: (i)
Equations (200a) and (212a) guarantee that the multigroup transport equations describe the
same types of physical reactions between neutrons and nuclei as the continuous-energy trans-
port equations. (ii) Equations (200b) and (212c) guarantee that the continuous-energy and
multigroup scattering operators are conservative — they neither create nor destroy neutrons.
(These operators only rearrange neutrons in (£, E)—space.) (iii) Equations (200¢) and (201b)
guarantee that the continuous-energy and multigroup fission spectra satisfy the same normal-
ization. (iv) Equations (200d) and (212b) guarantee that the continuous-energy and multigroup
differential scattering cross sections satisfy the same type of Legendre polynomial expansions.

We have noted that the structure of the multigroup transport equations is similar to that
of the continuous-energy transport equation, the difference being that in the multigroup equa-
tions, the energy variable is discrete rather than continuous. From the above derivation, the
only error in the multigroup equations occurs in replacing the “exact” multigroup cross sec-
tions (206) by the approximate multigroup cross sections (209). This replacement is exact in
three hypothetical situations:

1. The continuous-energy angular flux y(x, Q, E) has the form of (208) and ¥ is known. Unfor-
tunately, (208) requires the angular flux to have the same energy spectrum for each direction
of flight and the same direction-dependence for each energy. This occurs for an infinite
homogeneous spatial medium where yis isotropic, but it does not generally occur otherwise.

2. The continuous-energy cross sections are histograms in E and E' on the specified energy grid.

In this situation, the multigroup cross sections are independent of ¥ and equal to the
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D s R TR Xhist (E)

@ Figure 26
Continuous-energy histogram cross sections

continuous-energy cross sections within each group (see @ Fig. 26). Unfortunately, physical
cross sections lack this simple histogram energy-dependence.

3. The number of energy groups G becomes very large and the group widths AEg = Eg_1 — Eg
become small. In this limiting case, the multigroup cross sections become independent of ¥
and equal to the continuous-energy cross section evaluated at E (and E,).

Thus, the multigroup neutron transport equations are rarely exact for realistic neutron transport
problems.

Nonetheless, item 2 in the preceding list suggests a useful way to interpret the multigroup
transport equations: they exactly represent a continuous-energy transport problem with cross sec-
tions that are histograms in energy. If a multigroup approximation for a continuous-energy
transport problem is developed, then the multigroup approximation yields the exact group
fluxes for the continuous-energy transport problem whose (continuous-energy) cross sections
ZhiSt(E ) are equal to the multigroup cross sections on each energy group:

MU E) =5, Eg<E<Eg 1<g<G.

Effectively, then, the multigroup approximation is an approximation to the continuous-
energy cross sections. If the physical continuous-energy cross sections are approximated by
histograms in energy, then the multigroup approximation will yield the exact group fluxes for
the approximate problem with histogram cross sections.

This discussion makes it plausible that as the number of energy groups increases and the
energy group widths decrease, the error in the multigroup approximation should decrease. In
fact, this is seen in practice.

6.3 The Within-Group and One-Group Transport Equations

For each g, (210) can be written:

0Ty (5 Q) + S (e (5.2 = [ Spg(5.0 - Q)yi(x, )Y

" Xi(;) in vEfg (%) (%, 2)dOQ" + Sg(x, ), (213a)
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where:

Qg(x)
4

Se(x, ) = f S gg( Q- D)y (x,Q')dO
g'+g

Xg( %) 5 f vE s (%) (%, 2))d0Y. (213b)

&'#g

Equation (213a) is the within-group transport equation; it has the form of a monoenergetic trans-
port equation, with an anisotropic group-to-group source S, representing (i) the internal neutron
source, (ii) the scattering source from groups g’ to g, and (iii) the fission source from groups g’
to g.

Equations (213) suggest an iterative strategy for solving multigroup transport problems.
Specifically, estimates of ¥, could be introduced into (213b) to obtain estimates of S,. Then
(213a) could be solved to obtain new estimates of v, and the process could be repeated.
Variations on this idea are used in practical simulations (Lewis and Miller 1993).

6.4 Discussion

For obvious reasons, a practical goal is to make the number of energy groups G as small as possi-
ble and yet achieve sufficient accuracy. For this reason, great care is often taken in the derivation
of the neutron spectrum ¥(x, E) used to calculate multigroup cross sections. We cannot dis-
cuss here the various procedures used to calculate ¥. However, we do note that different physical
circumstances can lead to very different values of G.

For example, in light water reactor cores, where (208) is often a valid approximation, sat-
isfactory numerical results can often be achieved with only G = 2 energy groups, group 1
representing the fast neutrons and group 2 representing the thermal neutrons. However, in
shielding problems, where the neutron spectrum changes radically (and continuously) from
one side of the shield to the other, often G > 100 energy groups are required to achieve accurate
results.

A fundamental limitation with the conventional multigroup approximation presented here
is the assumption (208) that at each spatial point, the energy spectrum is independent of direc-
tion . This assumption is not valid at material interfaces between two materials with different
capture cross sections. (If the material to the left of an interface has absorption resonances at
different energies than the material to the right of the interface, then near the resonance, the
neutrons traveling to the right will have an energy spectrum associated with the material on
the left of the interface, and the neutrons traveling to the left will have a different energy spec-
trum associated with the material on the right of the interface.) At present, if highly accurate
results are desired near material interfaces, the only option is to use a large number of energy
groups G.

Another issue is that because neutron cross sections Z(E) can be extraordinarily com-
plicated functions of E, the angular flux y(x, 2, E) will also be a complicated function of E.
In such cases, it is, as a practical matter, impossible to choose an energy group structure fine
enough to “resolve” all the energy-dependent peaks and valleys of ¥ and y. Hence, the calcu-
lation of suitable multigroup cross sections (i.e., the calculation of suitable neutron spectra to
be used in [209] and [211]) becomes a problem-dependent, time-consuming, and yet essential
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task. Because of this, the multigroup approximation is, although relatively simple to formulate,
difficult to implement in detail for practical problems.

7 The Age and Wigner Approximations

In the classic Age and Wigner approximations to the neutron transport equation, the neu-
tron scattering operator is approximated either directly (in the Age approximation) or indi-
rectly (in the Wigner approximation) by a first-order differential operator (Larsen and Ahrens
2001; Weinberg and Wigner 1958). The resulting approximate equations are easier to solve
numerically, and in certain problems, they can be solved analytically.

Conventional derivations of the Age and Wigner approximations from the infinite-medium
neutron spectrum equation make use of a transformation of the equation from the energy vari-
able E to the lethargy variable u = In(Eq/E), where E¢ > maximum neutron energy. After this
transformation is made, the Age and Wigner approximations are derived, and then the results
are converted back to E. (These derivations do not explain why the transformation from E to u is
made to facilitate the approximations.) Here, the Age and Wigner approximations are derived
directly from the scattering operator expressed in terms of E; we do not first transform the
infinite-medium neutron spectrum equation from E to u. Thus, the derivations given here have
a certain pedagogical advantage: they do not involve the lethargy variable.

However, after deriving the Age and Wigner approximations, we briefly discuss why the use
of the lethargy variable has a certain practical advantage in the calculation of multigroup cross
sections.

71 The Infinite-Medium Neutron Spectrum Equation

We consider the eigenvalue problem defined by (49), with the elastic differential scattering cross
section defined by (10) and (11). (Equations (10) are valid for epithermal energies E > kT = the
mean thermal energy of the nuclei.) Integrating (49a) over 2 and defining

¢(x,E) = f y(x,0Q,E)dQ = scalar flux, (214a)
4

J(x,E) = / Qy(x,0,E)dQ = neutron current,, (214b)
4m

we obtain:

Blo 3,(E)9(x E')
(I-a)E’

()

o= .

A+1

For an infinite homogeneous medium, ¢ and J are independent of x, and the previous equation
can be written:

V.](x,E)+Zt(E)¢(x,E):fE dE'+@v[OOOVZf(E')¢(x,E')dE',

where:

Blo 2, (E") ¢ (E')

0 a)E dE'+ Q(E), (215a)

z(B)$(E) = |
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or:

2.(E)P(E) = LP(E) + Q(E), (215b)

where Q(E) is the fission source and L is the elastic neutron scattering operator:

Q(E) = @fomvzf(E’W(E’)dE’, (215¢)
.c¢(E):f;”%dy—zsww(ﬁ). (215d)

In the following, we assume that Q(E) = Cx,(E), where the constant C is given.
For A = 1 (epithermal elastic neutron scattering off hydrogen nuclei), « = 0 and (215)
become:

Z,(E)gb(E):[E Mdﬁ + Q(E). (216)

This equation can be solved analytically. Differentiating it with respect to E, we get:

d _ Zu(E)¢(E)
25 [Z(B)$(E) - Q(E)] = ~———F—— (217)

which is an easily solved first-order ordinary differential equation. Assuming Q(E) = ¢(E) =0
for E > E, we obtain the analytic solution:

$(E) = Q(E)+f QEN—= Z(E) 1 s g (218)
b (E) S (ENEC
However,
E ZS(E") dE” B /E' Z[(E”) —Za(E") dE” ~ lnE_, - E’ Za(E”)di”
e S(E") E"  JE >(E") E" \ E e Z.(E") E"’
s0 (218) can be written in the equivalent and more common form:
ZS(E) 7-[5’2(}: ) de”
E — (D T JE 21
o) = 15 | @) 3 [ e 2 | am

Unfortunately, for A > 1, it is not possible to perform these operations and solve (215). Thus,
for A > 1, it is desirable to accurately approximate (215) in a form similar to (217), i.e., as an
explicitly solvable first-order ordinary differential equation. Accomplishing this is the task at
hand.
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Before proceeding, we note that for any constant C,

_C He  C , C
c[EZS(E)] ) /E (B B (220)

Thus, for Z,(E) = 0and Q(E) =0,

$eq(E) = (221)

EZ, (E)

is an equilibrium solution of (215a). For intervals of energy in which ¥4(E) = 0 and Q(E) = 0,
¢(E) is very well approximated by (221), with a suitably defined C.
Also, for any ¢(E), we have

fo LY(E)dE = f fE/“ ZS((IE_)O?)(EI::)dE'dE—fowZS(E)¢(E)dE

B fmo (fEEE dE) % fom Z(E)$(E)dE=0. (222)

This equation states that scattering is conservative: the rate at which neutrons enter scattering
events equals the rate at which neutrons exit scattering events.

In the following, we require any acceptable approximation of £ to satisfy (220) and (222).
Thus, an approximate scattering operator should preserve the equilibrium solution ¢.4(E), and
it should be conservative. (In fact, we will demand more, but we state these first two conditions
here.)

7.2 The “Conservative” Form of the Neutron Transport Equation

The out-scattering (integral) operator in (215a) contains the differential scattering cross section:

>o(E'
>(E' - E") (15( )i:" EN<E' <E'[a (223)
s — = -«
0, otherwise.

Using this, it is possible to determine the slowing-down density F(E), defined by:

F(E) = the rate per unit volume at which neutrons slow down from

energies (EN greater than E to energies (E ") less than E. (224)

As depicted in@ Fig. 27, a neutron with energy E’ in the interval E < E’ < E/« can directly
scatter into an energy E”’ < E only if E” is in the interval « E’ < E” < E.
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Ela
@ Figure 27
Scattering fromE’ > EtoE"” < E

From (223), we have

(E" - E")¢(E")dE'dE" = the rate per unit volume at which neutrons scatter from
the interval (E', E’ + dE") to the interval (E”,E" + dE").

Integrating this expression over aE’ < E” < E and then over E < E’ < E/a, and using the
definition (224), we obtain:

_ Efa ZS(E )¢(E) "t E/la E— oF'
F(E) = fEiE “ e AEE _fE,:E (o > EIPENE (229)

Differentiating F(E), we get:

B/e zsw JOE)
cw- e 4 S E)6(E)
:Egb(E). (226)

Therefore, the infinite-medium spectrum equation (215b) can be written in the advantageous
conservative form:

Sa(BY(E) = T () + Q) (272

where:

1 Ela E — oF'
F(E) - ; fEl:E - E(E)$(E dE' (227b)

To illustrate the utility of (227), let us consider for any mass number A > 1a purely scattering
problem [2,(E) = 0] with Q(E) > 0 only for E; < E < Eo (@ Fig. 28). Then, operating on
(227a) by fEE" (-)dE', we obtain for E < E;:

E,
F(E) = / Q(E")dE' = constant (independent of E). (228a)
Ey
However, since 24 (E) = 0 and Q(E) = 0 for E < Ej, then for E < Ei, ¢pa(E) is very well-

represented by (221):

¢a(E) ~ EZC(E) (228b)
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E<< E, E; Ey

@ Figure 28
Purely scattering problem with X, (E) = 0

where the constant C is undetermined. Assuming E << Ej, and introducing (228a) into the left
side of (227b) and (228b) into the right side of (227b), we obtain

Eo Ela E — 4
f Q(E)dE ~ — f E-af (E)d}s’
E; 1-a Jer=E E’ E’

Ela E — !
- f E-ab 1 _ce, (228¢)
1-a Jer=g (E')?
where (see @ Fig. 29):
Fo1+ alna
1-«a
1, a=0 (A=1)
. (229)

T+O(1—oc)2, axl (A>1).

Solving (228c¢) for C and introducing this expression into (228b), we obtain:

$a(E) ~ #(E) [% fElEO Q(E')dE']. (230)

Equation (230) is essentially exact for all « and for all E < E;. We note that since £ = 1 for
A =1 (see [229]), then (230) agrees with (219) for A = 1and 2Z,(E) = 0.

As the mass number A of the scattering nuclei increases, o increases, so & decreases, and
so ¢(E) in (230) increases. Physically, this happens because for larger A, neutrons on the aver-
age lose less energy per collision, i.e., the slowing-down process becomes less efficient. Thus,
neutrons increasingly “pile up” as they slow down. The constant £ in (229) and (230) exactly
calibrates this “piling-up” effect for the purely scattering problems considered above:

pa(E) 1 p_ E1, (231)

oi(E) &
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A g

@ Figure 29
&versus «

73 The Age Approximation

In (227), let us consider A >> 1. Then

A-1)\? 4 1
= =1-—+0[|—), 232
* (A+1) A’ (AZ) (232)

so the width of the interval of integration in (225) is O(1/A). (This implies F(E) = O(1/A).)
We approximate (225) as:

FE) = [ s LB (B

Ela E-— OCE’ , ,
) fEE (ITW[E&(EM(E) +O(E' - E)]dE

1
= (EZ(E)¢(E) + O (F) . (233)
(The remainder term is O(l/Az) because E' — E = O(1/A) and the interval of integration is
O(1/A).)

Introducing (233) into (227a) and ignoring the O (1/A”) terms, we obtain the following Age
Approximation to the infinite-medium neutron spectrum equation:

Sa(E)9(E) = £ EZ,(E)$(E) + Q(E) (234)
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(For electron transport problems, this result is called the continuous slowing down (CSD)
approximation.) Equation (234) contains the basic approximation:

LA9(E) = £ EX(E)B(E), 35)

which satisfies (220) and (222), provided only that EX;(E)¢(E) vanishes at E = 0 and oo.

The Age equation has O(1/A?) error for A > 1, so at this point its validity for small mass
numbers A is unclear. For all A, (234), applied to the purely scattering problem discussed above
yields the solution defined by (230) for all E < E;. This shows that the Age approximation is
valid for some problems for all A.

Equation (234) can be solved in closed form, yielding:

1 Eo 1 f,E,—Z“(E") dE" ’ ’
E =—f §JE BT (ET) E)dE'. 236
o8- g [ Q(E) @9

For A =1 (& = 1), this result reduces to the exact A = 1 solution given in (219) only if E < E; and
24(E) = 0. Thus, the Age approximation is generally not accurate unless A > 1, E < Ej, and
24(E) < Z(E).

A more accurate approximation, derived by Wigner, has the desirable features of the Age
approximation and the additional desirable properties that it is exact for A = 1 and is generally
much more accurate than the Age approximation. We discuss this next.

7.4 The Wigner Approximation

For A > 1, (234) holds with O(1/A?) error. Adding 2(E)¢(E) to both sides of this equation
and using & = O(1/A), we obtain:

SUEYO(E) = [5.(B)(E) + £ Ex(B)o(B) |+ Q(B) + O 5

= % (1+ EE;—E)EZS(E)gb(E) +Q(E)+0O (%)
= % (1_ ij—E)_l EX(E)$(E) + Q(E) + O (%) . (237)

Ignoring the O(1/A%) terms, we obtain the basic form of the Wigner approximation to the
infinite-medium neutron spectrum equation:

S(E)$(E) = % (1— 55%) ES,(E)$(E) + Q(E). (2380)

The first term on the right side:

-1
H(E) = (1_ £Ej—E) Ex.(E)$(E) (238b)
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satisfies the first-order ordinary differential equation:

(1 _ £E%) EHy (E) = ESy(E)$(E),

or:
iy (E) ~ §-E EHu () = 3.(E)§(E)

The solution of this equation is:

1 et E l/f 4 ! 4
HW(E):E—EfE (E—) 5.(E')$(E')dE'. (2380)
Introducing (238c) into (238a), we get:
1 oo E 1/5 , , ,
zt(E)¢(E):£—EfE (E) S(E)$(E)E' + Q(E). (238d)

Thus, unlike the Age approximation, the Wigner approximation approximates the scattering
integral by an actual integral, Hy (E). For A > 1, Hy (E) is an O(1/A*) approximation to the
exact scattering integral in (215b):

_ 1 B S(ENG(E)
H(E)_l_a/E S dE (239)

However, for A=1,« = 0and & =1, s0 Hw(E) = H(E), and Wigner’s approximation is exact!
Also, the Wigner approximation to the scattering operator L:

Lu¢(E) = [ (1-ee) E—I] 2 (E)$(E)
= % [(1— £E;—E)_ - 1] EXZ(E)¢(E) (240)

can be written in two equivalent forms:

Lyw¢(E)=— (I fEi)_l[I—(I—EE%)]EZS(EW(E)

_ %(1— 55%)_ E—EZS(E)</>(E) (241)
and:

Lwd(E) = % [1— (1— EE;—E)] (1— 55%)71 By (E)¢(E)

d !
EE(I_EEE) ES,(E)$(E). (242)
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Equation (241) shows that Ly preserves ¢.q(E), and (242) shows that Lyy is conservative.
Wigner’s equation (238) can also be written:

(1- &5 ) E[=(E)0(E) - Q(B)] - B, (EO(E),

or:
Z(E)$(E) - Q(E) - f;iEE[Zt(EM(E) - Q(E)] = =(E$(E)

or:
d
Za(B)$(E) = §-=E[Z1(E)$(E) - Q(E)] + Q(E). (243)
Solving this first-order ordinary differential equation with ¢(Eo) = 0, we obtain:

. ZH(E”) dE" ZS(EI)

1 L B g
¢W(E)_Z[(E) |:Q(E)+£EfE e E @ Zt(E,)Q(E )dE]. (244)

This result is exact for A = 1and has O(1/A?) error for A > 1.
If we consider a monoenergetic source:

Q(E) = Qo6(E - Ey),

then for E < Ey, (244) can be written as the product of four factors:

| Qo Zo(Eo) ([ -1 /50 geedar]| Zs(E)
¢W(E)_[EEZS(E)][Zt(Eo)][e o ][z,(E)]’ (245)

each of which has a straightforward physical interpretation.
The first factor is the equilibrium solution for a problem emitting Qo neutrons per cm’ per
swith 2,(E) = 0:

Qo
eq(E) = =7 - 246
If ¥,(E) = 0, the remaining three factors on the right side of (245) all equal unity, and then
dw(E) = ¢peq(E). The three terms suppress ¢y (E) in ways that account for absorption.
The second factor is the scattering ratio at energy Eo:

2s(E .
c(Eo) = (£o) = the probability that a (source) neutron
2+(Eo)

with energy Eo will not be absorbed. (246b)

This factor is necessary because only the source neutrons (all of which are born at energy Eo)
that scatter can contribute to ¢ (E). Effectively, the product

Zs(Eo)
2¢(Eo)

qo = Qo
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is a reduced source rate, which accounts for source neutrons born at Ey that are immediately
absorbed and hence do not slow down.
The third factor on the right side of (245) is the resonance escape probability:

Eg _Sq(E")
p(Eo — E) = ¢ 1 )" #rn dt’

= the probability that a neutron will not be absorbed
while slowing down from Ej to E. (246¢)

The fourth factor is the scattering ratio c¢(E), to account for the suppression of ¢ (E) due to
absorption at energy E.

Equation (245) is therefore not only an accurate result, but it has an intuitive physical inter-
pretation. (The expression for the resonance escape probability in (245) is especially accurate
and useful.) We now turn to providing a general sketch of ¢ (E).

For heavy nuclei, £,(E) often consists of narrow, isolated absorption resonances, while
3;(E) is relatively constant (see @ Fig. 30). In this situation, ¢(E) has the form depicted in
© Fig. 31, and p(Eo — E) has the form depicted in @ Fig. 32. Combining these, the product
¢(E) expressed in (245) has the form depicted in @ Fig. 33.

Hence, as neutrons slow down through each absorption resonance, ¢w (E) experiences a
narrow “dip” within the resonance and returns to a new equilibrium solution below the reso-
nance (the amplitude is reduced because of neutrons that are absorbed within the resonance).

Cross section
2s(E)
5, (6) ﬂ
E
Ea,res E2,res E1 res EO
@ Figure 30
Z,(E) and X (E)
1.0 c(E)

: : i E

Es,res E2,res E1 ,res EO
@ Figure 31

c(E)
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p(Ey — E)

D i H > E

ES,res E2,res E. 1,res EO
@ Figure 32
p(Eo ~ E)

4
QO,reduced
/ EEZ,(E)

i s B —> F

Es,res E2,res E1 ,res EO
@ Figure 33
éw (E)

The above Wigner depiction of ¢(E) is surprisingly accurate. The simpler Age depiction of
¢(E) is usually less accurate, unless 2, (E) < X;(E).

7.5 Discussion

We have derived the Age (or CSD) approximation (234), and the Wigner approximation (243) of
the infinite-medium neutron spectrum equation (215a). The Age and Wigner approximations
both:

Are conservative.

Preserve the equilibrium solution ¢.4(E).

Are O(1/A%) asymptotic approximations to the spectrum equation for A > 1.
Yield for E < E; the solution (230) of the purely scattering problem.

N =

However, the Wigner approximation is generally more accurate than the Age approximation,
for the following reasons:
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1. The Wigner approximation Hyw (E) of the out-scattering integral H(E) is itself an integral
[see (238¢) and (239)], and Hy (E) = H(E) for A = 1.

2. Because the Wigner approximation is exact for A = 1and highly accurate for A > 1, it is also
quite accurate for intermediate values of A.

Therefore, the Wigner approximation is quite accurate for all values of A, whereas the simpler
Age approximation is generally only accurate for A > 1.

8 The Diffusion Approximation

Because of its relative simplicity and range of applicability, the diffusion approximation to the
Boltzmann transport equation is widely used for reactor core simulations. However, the diffu-
sion approximation has several subtleties, and even today there are issues in its use that are not
fully understood.

Here we derive the approximate diffusion equation for a 1-D planar-geometry problem,
using a simplified version of asymptotic derivations that have been published during the past
35 years (Habetler and Matkowsky 1975; Larsen 1980; Larsen and Keller 1974; Larsen et al. 1996;
Papanicolaou 1975). The choice of 1-D planar geometry enables us to perform the derivation
with the Legendre polynomials, rather than the more complex spherical harmonic functions,
which are necessary for 2-D, and 3-D problems. However, the basic underlying issues in 1-D,
2-D, and 3-D geometries are the same.

8.1 Derivation of the Diffusion Equation

We consider the energy-dependent, planar-geometry Boltzmann transport equation with
anisotropic scattering:

0
pSE e By + 2 By (. E)

e oo 1
=S 2 ) [ [ ) BB > By B Yu'dE
m=0 -
+ M, (247a)
2
on the system 0 < x < X, with boundary conditions:

v(0,4,E) = w(0,—, E), 0<p<l, (247b)
w(X, 1, E) =" (1, E), 1< u<0. (247¢)

(Equation [247b] is a reflection or symmetry boundary condition; [247c] specifies the incident
flux y* (4, E) on the right boundary of the system.)
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To initiate the derivation of the diffusion approximation to (247), let us first consider (247a)
for an infinite homogeneous medium having no spatial dependence:

2m+1
2

S(EYW(WE) = Y Q<E>

m=0

Pal) [ f (i) Zum (B~ By B du'd i + L)
(248)

To represent the exact solution of (248), we operate on this equation by f_l1 P,(p)(-)dp.
Defining the nth Legendre moment of the angular flux as:

1
[, Pu@)v(. Eydu = 90 (E).
and using:
1
[ P Pu(w)da = 0
we obtain the system of equations:

2(E)pn(E) = fom Su(E" - E)¢n(EdE + Q(E)8u0, 0<n. (249)

Hence, for n > 1, ¢,(E) = 0, and:

S 2n+1

v(u,E) = go

Pa(1)$a () = 390(E), (250)

where ¢o(E) satisfies (249) with n = 0. Equations (248-250) show that for an infinite, spatially
uniform problem with an isotropic source, the angular flux is independent of both space (x) and
angle ().

We now return to (247) and assume that the spatial derivative in v is small in comparison
to the other terms. (Physically, the net leakage rate from a spatial increment dx is assumed to
be small in comparison to the collision rate and scattering rates in dx.) To analytically describe
this, we write (247a) as:

0
S (x, o E) + S, E)y(o o E)

= 3 R [T [ P T E > By E ) aE

. Q(x,E))
2

(251)

where ¢ is a small dimensionless parameter, indicating that the leakage term is small. (At the
conclusion of this analysis, we set € = 1.)

Because y has a weak spatial dependence, we anticipate that y should also have a weak
angular dependence. (As the spatial derivative of y limits to zero, y should become isotropic.)
Consistent with this expectation, we show that the solution of (251) has the Legendre polynomial
expansion:

S 2m+1
v(x,uE)= )

m=0

&" P () $m(x, E), (252)
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where ¢,(E) = O(1) for all n. (In (252), the mth Legendre moment of y(x,u,E) is

e"pm(x,E).)
Introducing (252) into (251), using the identity:

UPm(u) = Pmﬂ(u) + Pu-1(p),

2m+1

and operating by f_ll P, (u)(-)dy, we obtain for all n > 0:

n 0Pn 2 n+1 dpni
2n+1 ox By re 2n+1 ox Tox o E)+ 2% E)gn(x.E)
= [OOZS,n(x,E' - E)¢u(x, EAE" + 8,0Q(x, E). (253)
0

These equations are consistent with the assumption in (252) that ¢,(x,E) = O(1), and thus
that the nth Legendre moment of y is O(€").
Specifically, (253) with n = 0 and n = 1yields:

62%(x,E) + 2(x, E)o(x,E) = f°° S0(x,E' — E)pu(x, E)dE + Q(x,E), (254a)

1 a¢0 28 8(/)2

X2 (0B + Zi(n B (5. F) - f S1(x, E' > E)¢(x, E')dE'.
(254b)

=, BB+

To derive the diffusion equation, we make the following two approximations to (254b):
1. We set:

& a¢2 S (E) 0. (255a)

(This introduces an error of O(&?) in the equations for ¢ and ¢1.)
2. We introduce the approximation:

Z1(E' - E) ~ X1(x,E")0(E - E), (255b)
where:

Zo1(x,E') = /oo Z1(E' - E)dE. (256)
0

(This creates an error of undetermined order with respect to ¢. However, the following
integral is preserved:

fom [Za(x,E' - E)]dE = fom [Za(x,E")S(E - E)|dE = Z1(x, E),

and thus the integral of the right side of (254) over E is preserved.)

Making these two approximations, (254b) becomes:

18‘/’0( JE) + Zi(x, E) 1 (%, E) = Zor(x, E) o (x, E). (257)
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If we now define:
Zu(x,E) =2i(x,E) — Zs1(x, E) = transport cross section, (258a)
then (257) yields Fick’s Law:

Lo

$1(x,E) = -

Introducing (258a) into (254a), we obtain the following energy-dependent diffusion equation:

—& aax 32,,(1x - aa¢o( E) +2i(x, E)po(x,E) = f S0(x,E' — E)¢n(x, E")dE’

+ Q(x,E). (259)

Also, from (252) and (258), we have the following representation of y:

0
Vo B) = 300 ) - s S )+ 0(6), (260)

Ignoring the O(&*) component of y, we see that the transport reflection boundary condition
(247D) at x = 0 is satisfied by (260) if:

a¢>0 S, (OE)=0. (261)

This is the diffusion reflection or symmetry boundary condition.
However, since ¢y is independent of y, the transport boundary condition at x = X:

v (X ) = y(Xop)
1 ey 9¢o
==¢o(X,E) - ——— X,E), -1< 0
2P E) = s X E) ax (O E) Thsus
cannot generally be satisfied. Operating on both sides of this equation by f_ol w(lu|)()duy,
where w(u) is any positive function, which for convenience is normalized by /01 w(p)du =1,

we obtain:
1 0
2 [y o By = 9o % )+ s (i) S x.E), s

and this boundary condition can be used to determine ¢o. However, it is not clear how to
choose w( ).
A common, physically based choice of w( ) is:

w(p) =2p, (263a)
which yields the Marshak boundary condition:

2¢e a¢o

4] (X) = ¢o(X,E) + 35, (GE) ox

(X, E), (263b)
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where:

O b
||l (. E)an

incident partial current at x = X. (263¢)

] (X)

This boundary condition preserves the rate at which neutrons enter the system on its incident-
flux boundary.

A more accurate diffusion boundary condition can be obtained by appealing to transport
theory, or to a variational analysis, which yields the following approximation to w(y):

3
wip) =+ Ju. (264a)
This yields:

17¢ a¢o

0 b
2 [y o B = go(X,B) + oS SEOGE). (6

Setting ¢ = 1in (259-263), we obtain the standard energy-dependent diffusion equation
with Marshak boundary conditions. If the boundary condition (263) is replaced by (264), one
obtains a more accurate result.

The diffusion solution is accurate for transport problems in which the angular flux y has
a weak space-dependence (its spatial derivatives are small). In this case, y also has a weak
angle-dependence (is nearly isotropic). In the diffusion equations (259), (261), and (262) the
angular variable is entirely eliminated. The constraint that  must have weak spatial and angu-
lar dependences is often valid in reactor cores, but not in shields. For this reason, the diffusion
approximation, or variants thereof, are generally used to simulate neutron transport in nuclear
reactor cores, but not in shields.

8.2 Homogenized Diffusion Theory

The “variants” of diffusion theory mentioned in the previous paragraph refer to other approxi-
mations used in practical reactor core simulations. In many problems, an extra step is included
that is difficult to justify theoretically: each reactor assembly in a core is homogenized, i.e.,
approximated by a fictitious homogeneous system in which the homogenized cross sections are
defined to preserve certain features of the original heterogeneous system. Then, the diffusion
approximation is applied to the homogenized system.

The homogenization process is not unique because different quantities can be preserved,
and there has been considerable debate about the proper manner in which homogenization
should be done (Benoist 1964; Dorning 2003; Gelbard 1974; Larsen and Hughes 1980). Different
definitions work acceptably for different applications, but no one definition seems to work best
for all (or even most) applications. As a consequence, the optimal definition of homogenized
diffusion coefficients remains an unsolved problem.



General Principles of Neutron Transport

523

8.3 Spherical Harmonic (Py) and Simplified Spherical Harmonic (SPy)
Approximations

The diffusion approximation is the simplest useful approximation that has been derived from
(251) and (252). Other higher-order in angle approximations can also be derived.

In particular, the 1-D Py approximation (for N odd and > 3) can be derived from (251) and
(252) by calculating the first N + 1 Legendre moments of (251) and using (252) with ¢, = 0 for
n > N to truncate the series. The resulting equations are closely related to diffusion equations;
for one-group problems, they can be written exactly as a coupled system of (N +1)/2 diffusion
equations. Unfortunately, this relatively simple form of the Py equations does not hold for 2-D
and 3-D problems. The greater complexity of the Py equations for 2-D and 3-D geometries has
been a significant factor to their relative unpopularity.

A different class of approximations, which are less accurate but simpler than the Py approx-
imations, and more accurate than the diffusion approximation, has been developed; this is the
so-called simplified spherical harmonic (SPy) equations, originally proposed by Gelbard (1960,
1961, 1962). The 1-D SPy equations are identical to the diffusion form of the 1-D Py equations
described in the previous paragraph. The multidimensional SPy equations can be formally
derived from the 1-D Py or SPy equations by replacing, in each equation, the 1-D diffusion
operator by the multidimensional diffusion operator:

D)%) > v D(x)vo(x).

(More mathematically rigorous derivations of the SPy equations, using asymptotic and varia-
tional analyses, have been developed [Brantley and Larsen 2000; Larsen et al. 1996; Tomasevi¢
and Larsen 1996].) The multidimensional SPy equations have the relatively simple form
of coupled multidimensional diffusion equations, and they become equivalent to the Py
equations in 1-D.

Because of their diffusion form, the SPy equations can be implemented in a multigroup
diffusion code without significantly restructuring the code. In certain practical problems, the
low-order SP; equations have been shown to capture “more than 80%” of the transport effects
that are not present in the diffusion (P;) solution (Gamino 1989, 1991). Generally, the S Py equa-
tions are useful for problems in which the diffusion solution is a reasonable, but not sufficiently
accurate, approximation to the transport solution. However, the SPy equations are not always
accurate for problems in which the diffusion solution is a poor approximation.

8.4 Discussion

The diffusion equation is used almost universally as an approximation to the Boltzmann trans-
port equation for reactor core simulations, after the core has been suitably “homogenized.” The
principal advantage of the diffusion approximation is that the angular variable Q is eliminated,
thereby greatly reducing the amount of work and the expense necessary to solve the approxi-
mate problem. However, the diffusion solution has limited accuracy, and the proper definition
of homogenized diffusion coefficients remains an open question.
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9 The Point Kinetics Approximation

The point kinetics equations (PKEs) are a classic approximation of the time-dependent neutron
transport and precursor density equations (Bell and Glasstone 1970; Henry 1975; Hetrick 1993;
Lewis and Miller 1993; Ott 1985). For a critical system, the (i) neutron transport and precur-
sor and (ii) PKEs both have steady-state solutions. For systems that are nearly critical and have
solutions that vary slowly in t, the solutions of the PKEs can accurately approximate the corre-
sponding solutions of the time-dependent transport and precursor density equations. Also, the
PKEs are much simpler than the transport and precursor density equations and can be solved
much more efficiently. For these reasons, the PKEs are widely used in time-dependent reactor
simulations and stability studies. Previously, the PKEs have been derived by variational approx-
imations; here they are derived from the full transport and neutron precursor equations, using
an asymptotic analysis that is related to the analyses used in @ Sect. 8 to derive the diffusion
approximation.

9.1 Preliminaries

We begin by restating the general time-dependent transport problem with neutron precursors
for a system V with vacuum boundary conditions and no internal source. The problem consists
of the time-dependent transport equation for the angular flux y(x, Q,E, t):

19y
v ot
:[ f Z(x,Q - QE - E t)y(x, Q' E, t)dQ'dE’

0 4

(%, Q,E,t)+ Q- -Vy(x,Q,E t)+ Z:(x,E, t)y(x,Q,E, 1)

,E, t oo
B [ - BB D]z B y(x, 0 F ) d0'dE
4m 0 4z

1 6

+4—§ xi(%,E,t)A;Ci(x,t), xeV, Qe4m, 0<E<oco, 0<t, (265)
T4
Jj=1

the time-dependent equations for the neutron precursor densities C;(x, t):

dC;
a—t](x, t) + A]C](x, t)

- f f Bi(x, B, ) vEp(x, ', t)y(x, @, E, )dQ'dE, xeV, 0<t, 1<j<6,
0 4m
(266)

the specified initial conditions for y and Cj:

v(x,Q,E,0) =y (x,Q,E), xeV, Qedn, 0<E < oo, (267a)
Cj(x,0) = Cj(x), xeV, 1<j<6, (267b)
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and the vacuum boundary condition for y:
y(x,9Q,E,t)=0, x€dV, 2:n<0, 0<E<oo, 0<t. (267¢)

Also, B and ; satisfy:

B(x,E, t) = Zﬁ]—(x, E, t). (268)

Equations (265) and (266) explicitly allow space- and time-dependence of all cross sections to
account for the time-dependent movement of control rods within the core. However, we do
not (for simplicity) include a nonlinear temperature-dependence of the cross sections, and we
assume that the cross sections are specified for t > 0.

Because the cross sections are known for ¢ > 0, it is in principle possible to calculate the
reactivity p(t) and the corresponding forward eigenfunction ¥ (x, £, E, t) for t > 0. These are
defined by the familiar eigenvalue problem:

Q-VY(x,Q,E, t)+ Z:(x,E, t)¥(x,0Q,E, t)
= f f (%, Q- QE - E,t)¥(x,Q,E,t)dQ'dE’
0 4m

JE t) oo
- p(ey) =D f f VI (%, B 1)V (x, @ E, £)d0) dE
4 0 4
xeV, Qcdn, 0<E < oo, (269a)
V(x,0,E,t)=0, x€dV, 2-n<0, 0<E < 0. (269b)

In these equations, t appears only as a parameter, and we normalize the eigenfunction ¥ by:

- l‘I’(x,.Q,E, t)dQdEAV = 1. (269¢)
J L)

Equations (269a) and (269b) have no external sources, and the eigenvalue p(¢) must be
determined so thata positive solution ¥ exists. If p(¢) < 0, the fission term in (269a) is increased
by the factor [1-p( )] to produce a steady-state solution, so the system is subcritical. If p(t) > 0,
the fission term is reduced by the factor [1 — p(t)] to produce a steady-state solution, so the
system is supercritical. If p(t) = 0, then no adjustment to the fission term is made, and the
system is critical.

The time-dependent cross sections, the reactivity p(t), the forward eigenfunction
¥(x,0,E, t), and the adjoint eigenfunction 'al (x,9,E,t) (of the problem which is adjoint
to [269]) all explicitly occur in the asymptotic analysis. In the following, we assume that
all of these quantities are known. (Then the forward and adjoint scalar fluxes ®(x,E,t) =
Jin ¥ (%, Q,E, 1)dQ and CDT(x, E.t) = [,. ‘I’T(x, 0,E, t)dQ are also known.) The asymp-
totic analysis determines time-dependent equations for ¥ and C; having coefficients that
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are expressed in terms of the time-dependent cross sections X(x, E, t), reactivity p(t), and
eigenfunctions ¥(x, 2, E, t) and l}’T(yc, 0,E, t).

9.2 The Scaled Transport and Neutron Precursor Equations

Next, we make physical assumptions that are consistent with the basic overall requirement that
the system V be nearly critical and slowly varying in time.

The reactivity p(t) is small. (The system is nearly critical for all ¢ > 0.)

B; and f3 are small. In practice, this assumption is valid;  is dimensionless and ~ 0.01.

If t is measured on the timescale for precursor decay (e.g., in seconds), then the mean
neutron speed is large. In practice, this assumption is valid.

Since the mean neutron speed is large and ¢ = vN, then v is large.

All specified time-dependent quantities in (265-266) vary on the same slow timescale
(seconds) on which the neutron precursors decay.

To express these conditions mathematically, we introduce a small positive dimensionless
parameter ¢ and define:

p(t) =¢ep(t), (270a)
Bi(x,E, t) = sﬁj-(x, E,t) and P(x,Et)=ep(xEt), (270b)
N (2700)

€
yx0.E 0 - YELED, (270d)
v' (%, Q,E,t) = M (270e)

In these equations, all the hatted quantities are assumed to be O(1).

Introducing (270) into (265-268), we obtain:

)

€

1 N 1 .
(x,Q,E, t) + E.Q -Vi(x, Q,E, t) + EZt(x, E,t){(x,Q,E, t)

<5 =
D

t
| oo )

:-f f S(x,Q - Q.F — E0)j(x, @, E,1)dQ'dE’
& Jo 4

(BBt e B A
T ame fo f4ﬂ[1 p(t) +ep(t) —ef(x,E't)]
xvZp (%, E', ) i(x, Q' ', t)dQ'dE’

1 e Q(x,E, 1)
- ;Xj(x’E’ )4 Ci(x,t) + — (271a)

aC; °° 5 ’ ’ A I ’ ’
a—tf(x,t)mjcj(x,t):fo fMﬁ]—(x,E,t)vZf(x,E,t)l//(x,.Q,E,t)d.QdE, (271b)
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where the expression —p(t)+¢p(t) = 0 hasbeen included in the integrand of the prompt fission
term in (271a) so that the small reactivity p(t) = ep(t) occurs in the scaled equations to leading
order. We also have the boundary and initial conditions:

U(x,Q,E,t)=0, x€dV, 2-n<0, 0<E<oo, 0<t, (272)
(%, Q,E,0) =¥ (x,Q,E), xeV, Qedn, 0<E < oo, (273a)
Cj(x,0) = Cj(x), xeV, (273b)
and:
A 6 A
B(x,E,t) = ]Z_;ﬁj(x, E,t). (274)

The scaled equations (271-274) for §y and C; are equivalent to the original equations (265-268)
for y and Cj; no approximations have yet been made.

9.3 Asymptotic Derivation of the Point Kinetics Equations

To proceed, we introduce the ansatz:

V(x, Q,E, t) = Z e"n(x, Q,E, t), (275a)
n=0

Ci(x,t) =Y &"Cju(x,1), (275b)
n=0

into (271-273) and equate the coefficients of different powers of ¢. The sole O(&™") equation is:
Q-Vio(x,Q,E, t)+ Zi(x,E, t)fo(x, Q,E, t)
- f f 5(x, Q- Q.F - E 0)jo(x, @, E, 1)dQ'dE’
0 4m

)E)t had A
_[l_p(t)]%[o j;ﬂvZf(x,E',t)y/o(x,.Q',E/,t)d.Q/dE’:0, (276)

with the vacuum boundary condition for ¢o. By (269), the general solution of these
equations is:

Yo(x, Q,E, t) = ¥(x,0Q,E, t) No(t), (277)
where Ny(t) is, at this point, undetermined. We note that by (269¢),
[[7) L io(x, Q. E, 1)dQdEAV = No(1), (278)
vV Jo 4n vV
so:

No(t) = the number of neutrons in V at time . (278b)
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Next, we introduce (277) for 9 into the O(1) components of (271) and obtain the following
equations for y; and Cj o:

Q- -Vin(x,Q,E,t) + Z:(x,E, t)n(x, Q,E, t)
- f f 5%, Q- Q.F - E, t)ju(x, @, E, t)dQ'dE’
0 4

1 Xp(x’E’t) ©° 14 A I 14 4
[1 p(t)]—4ﬂ fo /4nv2f(x,E,t)tpl(x,Q,E,t)dQ dE
10
= —;EW(.X, Q,E, t)No(t)
JE,t) oo s
+ %ﬂ) f [6(t) = B(x, E' ) [vZ s (x, E', )@ (x, E', t)dE" No(t)
0

18 Q(x,E, )
+ E;Xj(x) E,t)AjCj,o(x,t) + 4—7I) (279)

oC;
ot

O (x,1) 4 4,Cro(x, 1) = (f°°ﬁj(x,E',t)vzf(x,E’,t)cp(x,E’, t)dE') No(r).  (280)
0

The operator on the left side of (279) is the same as the operator on the left side of (276).
Operating on both sides of (279) by:

/fooof% ¥l (x,Q,E,t) () dQdEdV,

the left side vanishes, and we obtain the solvability condition:

oz_f/wf v 2w Ny(r) doded
0 4 v ot

N0 ([T o xpar)( [ vzroar)av N

4m
- ﬁ f (/000 ofy, dE) (fooo /EvzfcpdE) dV No(t)
+;%ffomq>ch,OdeEdV+$ffochTQdEdV. (281)
To simplify this result, we define the functions:

[ I5 fin ¥ 3 d02dEQY

= =, W lvandEav’ (2822)
1 (ST e dE) (J;7 vep0dE) dv (282b)

Aty anf [ [, ¥TlvdodEdvy
,B(t) / (fooo CDTXP dE) (fooo B"qu)dEl) dv (2820)
= S C

S (5™ T xp dE) (fy™ v=,@dEr) dV

oo of ~ )

Cj(t) _ f [0 @ C]’O Xj dEdV (282d)

an [ [ [, ¥TivdodEdv’
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[ ) otQdEav

; 282e
an [ [~ [, ¥TivdQdEdV (282¢)

q(t) =

then (281) becomes:

dNo p(t) - B(t)

7(t) +0(t)No(t) = O] No(t) + ;A]-cj(t) +q(1). (283)

To obtain equations for ¢;(t), we analytically solve (280) for C;o(x, t), obtaining:

. t , oo
Cjo(x,t) = C;-(x)ef)”t + f e M=) (f ﬁjVZfCDdE') No(t)dt'.
0 0

Then we operate on this result by:

1 oo T
o' [ - |dEav
an [ 57 i ‘PT%IPdodEdvffo wl -]

and use the definition (282d) to obtain:

S (S oy dE) [ [, e ( [, Brvz @dE )No()dt' | dv

284
an [ [~ [, YT ivdQdEAV (254

cj(t) = c;e_lf"f +

Equations (283) and (284) define No(t) and ¢;(t) for t > 0.

Next, we convert these results back to the original unscaled (unhatted) variables. This
is done by using (270) to systematically replace all scaled (hatted) quantities in (277) and
(282-284) by unscaled (unhatted) quantities. Defining N(¢) = No(¢)/e and omitting the
straightforward details, we obtain for t > 0:

w(x, Q,E t) » ¥(x,Q,E,t) N(t), (285)

where N (t) satisfies the equations:

il—l:](t)+6(t)N(t): %N(chMq(tﬂqU), (286)
j=1

and:

(o dE) [y e MO ( [ gy 0dE )N (1) de | dv
() =cte M +
) = e an [ [ [, ¥TivdQdEdv

» (287)

where:

/ (foo<> q)TXP dE) (foo<> /ijf(DdE) dv

=3 pos . (288)
[(fo q)TXpdE)(fo vZfd)dE)dV

(1) =
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Also, (267), (285), and (282d) yield the following initial conditions for N'(t) and ¢;(t):

N(O):f/ox[m%wi(x,.(),E)deEdV,

[ [ (x,E,0)Ci(x)x(x, E,0)dEdV

¢;j(0) =cj =

an [ [~ [, ¥ (%, Q,E,0) 1 ¥(x,Q,E,0)dQdEdV

(289)

(290)

To obtain the standard PKEs, it is necessary to make two further assumptions. The first

assumption is:

i( fo CDTdeE ) ~0

(15 ., YT ivdQdEdV

Then (287) can be written:
i —Ajt t -1;(t=t") ﬁj(t,) NS
Cj(t):Cje / +_[0 e "’ mN(t)dt,

where:

S (5= @ o dE) (i~ Biv=@dE) dv

PO = = o gy dE) (= vz, 0dm) dv

The second assumption is:

[ I5 fun ¥ 3 S d0AEAY

0(t) =
) [, ¥TiwdodEdv ~

If (291) and (294) both hold, then (286) and (292) reduce to the standard PKEs:

p(t) - B(t)
( ) = A

dc;
d_t](t) + Ajc](t) =

N(t)+ 3 Ajei(t) +q(t),
j=1

B;(t)
A(t)

N(t), 1<j<e.

Also, from (274), (288), and (293), we have:

B(1) - iﬂj(t)-

(291)

(292)

(293)

(294)

(295a)

(295b)

(296)

Thus, the neutron angular flux y(x, Q, E, t) is asymptotically given by (285), where N(t) is
obtained by solving the PKEs (295) and (296), with initial conditions given by (289) and (290).
Because of the very specific angular and energy dependence of the asymptotic solution (285),
this solution cannot generally satisfy the arbitrary initial conditions specified in (267). This
deficiency can be overcome by including an initial-layer solution, which describes the rapid
transition from the general initial conditions for ¢ and C; to the near-equilibrium solution that
forms the basis of the PKEs. The asymptotic initial-layer analysis is not presented here because

this analysis has no effect on the PKEs.
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924 Discussion

For a fissile system that is nearly critical and slowly varying, in the sense described by the scal-
ings in (270), we have shown that the time-dependent angular flux is described asymptotically
by (285-290). Furthermore, if (291) and (294) hold, then the approximating equations simplify
to the standard PKEs (295), (296).

The PKEs have been obtained previously using derivations that are tantamount to varia-
tional approximations. In these earlier derivations, ¥(x, 2, E, t) is called the shape function
and is not necessarily an eigenfunction; it is chosen. Also, lI’T(x, Q,E,t) is called the weight
function; it too is not necessarily an (adjoint) eigenfunction and is chosen. The subsequent
derivations lead to equations of the form of (285) and (295), but with the coefficients in these
equations usually defined differently than in (282) and (288). In particular, in the asymptotic
analysis presented here, p(t) is the true reactivity of the system at time f, as defined by the
eigenvalue problem (269). In other formulations, p(t) is not always the true reactivity. The
analysis presented here suggests that these earlier formulations of the PKEs may not represent
asymptotic approximations of the time-dependent transport equations. However, the asymp-
totic result derived here is potentially more expensive to implementbecause p(t), ¥ (x, 2, E, t),
and ‘I’T(x, Q, E, t) must be calculated by solving eigenvalue problems for each time ¢. (This
point is discussed further below.) It is possible that by using a less sophisticated approxima-
tion to ¥ and p, one can reduce the cost of the calculation and still obtain acceptably accurate
results.

In previous derivations of the PKEs, the shape and weight functions are often assumed to
be independent of time (at least, for specified time intervals). If this were true in the asymp-
totic analysis, and if the time-dependent variations of the system occur only in non-fissile
regions, then (291) and (294) would be valid. This situation can effectively occur if, for a critical
reactor, control rods are very slowly and slightly moved in or out, thereby making the reactor
slightly subcritical or supercritical. Then the temporal changes in ¥(x,0,E,t) and
p (x,0,E,t) would be very small and, effectively, 6(¢) = 0, A(t) = A = constant, and
B;(t) = B; = constant.

Also, we note that by suitably altering the normalization (269¢) on ¥, then by (277) and
(278), N(t) = the power output of the reactor at time ¢.

The asymptotic analysis shows that the neutron flux can be predicted by means of PKEs that
depend on time-dependent knowledge of the cross sections, the reactivity, and the forward and
adjoint eigenfunctions. Although it is not practical to calculate p, ¥, and 'l continuously for all
t > 0, it is possible to calculate these quantities at discrete times, e.g., t, = nAt, and to evaluate
p(t) and the time-dependent parameters in (288) by linearly interpolating between ¢, and 4.
By doing this, the asymptotic result obtained here could be the basis of a realistic point kinetics
model.

Other asymptotic expansions that lead to results of the form of the PKEs are possible. For
example, in the analysis presented here, the reactivity p of the system is calculated by neglect-
ing the delayed neutrons (see [269]). By including a steady-state term in (269) to account for
the different energy spectrum of the delayed neutrons, a different and possibly more accu-
rate expression for p might be obtained. Also, a more sophisticated asymptotic analysis could
include temperature-dependent cross sections, with an extra equation relating the tempera-
ture T'(x,t) within the reactor as a function of the neutron flux. In addition, an asymptotic
derivation of the PKEs can be based on the a-eigenvalues and eigenfunctions of the transport
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equation (Lewis and Miller 1984), rather than the k-eigenvalues and eigenfunctions. (Such a
derivation would actually be more natural, because the a-eigenvalues are associated with the
time-behavior of the system.) However, none of these generalizations can be discussed further
here.

10 Computational Neutron Transport

Analytic solutions of the Boltzmann transport equation can be obtained only for the simplest
problems. For realistic, multidimensional, energy-dependent problems, it is necessary to cal-
culate numerical solutions as accurately and efliciently as possible. This can be an extremely
daunting task. Research on computational methods for the Boltzmann transport equation has
been actively pursued from the 1950s up to the present (Adams and Larsen 2002; Carlson and
Lathrop 1968; Carter and Cashwell 1975; Haghighat and Wagner 2003; Kalos and Whitlock 1986;
Larsen 1992; Larsen and Morel 2009; Lewis and Miller 1993; Lux and Koblinger 1991; Marchuk
and Lebedev 1981; Sanchez and McCormick 1982; Spanier and Gelbard 2008; X-5 Monte Carlo
Team 2003). During this time, the speed and memory of computers has increased by many
orders of magnitude. Nonetheless, it has been argued that the gains in efficiency of simulations
of particle transport problems, due to improvements in computational algorithms, exceeds the
gains due to improvements in computer hardware. Here, we give a brief overview of the major
advances in computational neutron transport algorithms. For details, we refer the reader to
previous publications.

The history of computational transport methods is basically the history of two fundamen-
tally different approaches, commonly called stochastic and deterministic. Stochastic (or Monte
Carlo) methods are based on a probabilistic interpretation of the transport process. In this
approach, the random histories of individual particles are calculated using pseudorandom num-
ber sequences and the results are averaged over a large number of histories. Stochastic methods
have no need of a Boltzmann transport equation; they rely only on the detailed physics of inter-
actions between individual neutrons and nuclei. Deterministic methods instead are based on (i)
discretizing the Boltzmann transport equation in each of its independent variables, resulting in
a (typically very large) algebraic system of equations, and then (ii) solving this algebraic system.

For the past 50 years, Monte Carlo and deterministic algorithms have been developed inde-
pendently. The two approaches were viewed as being incompatible, and two basically disjoint
technical communities evolved to develop codes for them. Major technical advances for one
type of method (e.g., acceleration techniques for deterministic methods, variance reduction
techniques for Monte Carlo methods) had no impact on the other method. Except for special-
ized applications, the two methods were not implemented in the same (production) computer
code. Monte Carlo and deterministic methods became viewed as complementary: one approach
was advantageous for certain problems, the other advantageous for different problems. Because
of their complementarity, both methods have survived and matured.

However, during the past 10 years, it has become fairly widely understood that hybrid
methods — which combine aspects of both Monte Carlo and deterministic methods - can be
used to enhance the strengths and overcome the weaknesses of the individual approaches.
Although hybrid methods are in the early stages of their development and implementation,
they have already demonstrated that they can yield major improvements in efficiency and accu-
racy for difficult problems. It now appears that hybrid methods represent a promising third
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approach, offering a way to significantly improve the efficiency and ease of simulations for
difficult practical particle transport problems.

In the following, we discuss the general issues associated with deterministic, stochastic, and
hybrid particle transport methodologies.

10.1 Monte Carlo Methods

In the physical process of particle transport, typically a very large number of particles undergo
random and independent histories. Each element of an individual particle’s history (distance to
collision, probability of scattering, post-scattering energy, and direction of flight) has a specific
probability distribution function. Because of this, the collective behavior of the particle pop-
ulation is predictable, with a small statistical noise that decreases as the number of particles
N — oo.

Stochastic or Monte Carlo methods model this process by applying the known distribution
functions to simulate the random histories of N ¢ fictitious Monte Carlo particles, and averag-
ing the results over the histories (Carter and Cashwell 1975; Kalos and Whitlock 1986; Lux and
Koblinger 1991; Spanier and Gelbard 2008; X-5 Monte Carlo Team 2003). However, because the
number of simulated particles [Ny ~ O(10”)] is usually much smaller than the number of
physical particles [N ~ O(10")], Monte Carlo simulations usually have orders of magnitude
more statistical noise than the actual physical process. This is a significant issue when Monte
Carlo methods are used to estimate rare events, such as the response rate in a detector located
far from a source.

Nonetheless, Monte Carlo methods have certain basic advantages. If the geometry of the
system and its cross sections are known, then the results of the Monte Carlo simulation contain
only statistical errors. By processing a sufficient number of Monte Carlo particles, it is possible
to reduce the probable statistical error below any specified level.

According the central limit theorem, for any Monte Carlo simulation, the statistical error in
the estimation of a given quantity is, with probability 0.68, bounded by:

Statistical error < \/I\(;_’ (297)

MC

where o (the standard deviation) is specific to the given problem and the quantity estimated, and
(297) holds only for N ¢ sufficiently large. The positive feature of (297) is that as N ¢ increases,
the statistical error will, with high probability, also decrease. The negative feature is that the rate
of decrease of the statistical error is slow. For instance, (297) shows that to decrease the statistical
error by a factor of 10, it is necessary to increase N ;¢ (and hence the computational expense)
by a factor of 100.

Monte Carlo methods are widely used because of their relative ease of implementation, their
ability to treat complex geometries with great fidelity, and their ability to solve problems accu-
rately with cross-sectional data that can have extremely complex energy-dependence. However,
Monte Carlo simulations can be costly, both to set up and to run.

In particular, when attempting to calculate a rare event, such as a detector response far
from a source, such a small fraction of the physical particles participate in this event that the
number of Monte Carlo particles that create a “score” is very small - and the resulting statisti-
cal error is unacceptably large. In this situation, the “rules” of the Monte Carlo “game” can be
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altered so that Monte Carlo particles are “encouraged” to travel from the source to the detec-
tor region. The result is that the desired response is estimated with smaller statistical error and
computational effort. In effect, the Monte Carlo process is changed so that the estimate of the
response is preserved, but the standard deviation in this estimate (the constant ¢ in [297]) is
reduced.

To accomplish this alteration of the Monte Carlo process, the code user must input a (gen-
erally) large number of biasing parameters that successfully “encourage” Monte Carlo particles
to migrate from the source to the specified detector region. These parameters are strongly
problem-dependent, and generating them can be a slow and laborious task. For difficult prob-
lems, a lengthy process of trial and error may be necessary, and there is no guarantee that at the
end of this process, the code user will have been successful.

Another difficulty with Monte Carlo simulations is that they operate most efficiently when
calculating limited information, such as a single detector response. If several detector responses
are desired, and the detectors are located far from the source and far from each other, then often
the best solution is to run several different Monte Carlo simulations, each with its own specially
defined set of biasing parameters.

Thus, while Monte Carlo codes are widely used, running these codes efficiently is prob-
lematic for complex problems. In these situations, Monte Carlo codes are not a “black box”
into which a user can simply specify the problem, press the “start” button, and expect reliable
answer in a short time. In addition to specifying the physical problem, the user must also specify
the problem-dependent biasing parameters, and this can be a formidable task.

Historically, research on Monte Carlo methods has focused on new approaches that show
hope of alleviating the major difficulties associated with the method. For example, different
biasing methods to encourage Monte Carlo particles to travel toward specified detector regions
have been developed and tested. Also, methods have been developed to obtain, via the Monte
Carlo process itself, the biasing parameters for difficult problems. In addition, sophisticated
statistical methods have been developed to analyze Monte Carlo simulations and better deter-
mine the magnitude of the statistical errors. (For example, obtaining accurate estimates of the
standard deviation o, and hence of the true statistical error, can be problematic, particularly for
eigenvalue problems.)

During the past 50 years, many significant advances in Monte Carlo techniques have been
developed and implemented in large-scale codes. However, the difficulties described above
remain significant obstacles to running these codes optimally.

10.2 Deterministic Methods

Because the particle transport process is governed by specified probability distribution func-
tions, the Boltzmann transport equation exists for predicting the mean or average flux of
particles at each location in phase space. Deterministic, or discrete-ordinates, or Sy methods are
based on discretizing the Boltzmann equation in each of its independent variables, and solving
the resulting (typically very large) system of algebraic equations (Adams and Larsen 2002; Carl-
son and Lathrop 1968; Larsen 1992; Larsen and Morel 2009; Lewis and Miller 1993; Marchuk
and Lebedev 1986; Sanchez and McCormick 1982).

Because the Boltzmann equation depends on its independent variables in significantly
different ways, different methods have been developed for their discretization.
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For time-dependent problems, the most common method for discretizing the time variable
t is the implicit, or backward Euler method. Other methods are possible and have been tested,
but the implicit method is the most widely used because of its simplicity and robustness.

Of all the independent variables in the transport equation, the energy variable E is the most
problematic. The reason for this is that typically, the material cross sections, and hence the par-
ticle flux itself, have an extraordinarily complex energy-dependence. If the simple rule of thumb
is followed that an energy grid should be chosen for which the solution varies in energy from
one grid point to the next by no more than about 15%, then for typical problems, millions of grid
points in E would be required. This constraint would render the solution of typical problems to
be outside the range of possibility.

However, the multigroup method (discussed previously in @ Sect. 6) has been developed
to deal with this difficulty, and because of its success, it is almost universally used. This method
requires the user to carefully specify a set of multigroup cross sections, whose values are deter-
mined by calculating integrals over E of the flux and the flux times the cross section. The optimal
specification of a multigroup cross section depends on the given problem. From the user
standpoint, determining accurate problem-dependent multigroup cross sections is the most
challenging and time-consuming aspect of deterministic calculations.

The angular, or direction-of-flight variable £ is generally discretized in one of two ways:
discrete-ordinates, or collocation (or Sy) methods, and spherical harmonic (or Py) methods.
Sy methods are more commonly used because the structure of the resulting discrete equa-
tions is more closely linked to the innate physical interpretation of particle transport. (In
Cartesian geometries, Sy methods can be interpreted as ones in which particles travel only
in a finite, specified set of directions £,,.) However, Sy and Py methods have characteristic
errors. In particular, Sy methods have ray effects, which are most apparent in problems with
strong absorption and localized sources. For problems whose solutions have a strong direction-
dependence, such as neutron streaming through a voided channel, it is necessary to use a very
high-order angular quadrature set. Py methods also have angular truncation errors, but of a
different nature. Like Sy methods, Py methods cannot easily describe an angular flux with a
complicated direction-dependence. Also, the Py equations have a form and structure that are
more difficult (than the Sy equations) to interpret in terms of the physics of particle transport.

The spatial variable x has probably been subjected to a greater variety of discretization meth-
ods than any other independent variable in the Boltzmann transport equation. In the early
years, relatively simple finite difference (diamond difference and weighted diamond difference)
methods were favored. Later, more sophisticated finite element, nodal, characteristic, and corner
balance methods were introduced (Larsen and Morel 2009). Each of these types of methods
tends to have its own advantages and disadvantages (Azmy 1992; Duo and Azmy 2007). For
example, finite difference and (to a certain extent) nodal methods are relatively easy to imple-
ment on Cartesian (orthogonal, or box-like) spatial grids, while finite element, characteristic,
and corner balance methods are better adapted to non-Cartesian (triangular, tetrahedral, or
unstructured) spatial grids.

Cartesian grids were favored in early computer codes; but more recently, non-Cartesian
grids have been employed, to better enable the spatial grid to fit the curved or non-right-angular
surfaces occurring on material boundaries in many realistic applications.

A major issue in discretizing the spatial variable is the number of unknowns that must be
calculated (and stored) per spatial cell. Methods that require a minimum amount of storage are
generally less accurate on a specified grid, but the storage demand of particle transport problems
is so high that in many problems, the simpler methods are preferred.
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Another issue in spatial discretizations concerns accuracy in optically thick, scattering-
dominated (diffusive) regions. For example, in electron and thermal radiation transport prob-
lems, the cross sections (or opacities) can be so high that it is not possible, due to computer
storage limitations, to solve problems using a spatial grid in which the spatial cell widths are on
the order of a mean free path or less. (In many neutron transport problems, spatial cell widths
are chosen to be fractions of mean free paths.) Some discretization methods are significantly
more accurate than others for problems in which the spatial grid is not optically thin; these
methods tend to have a greater number of unknowns per cell (Adams et al. 1998; Adams 2001;
Larsen 1992; Larsen and Morel 2009).

In practical neutron/photon transport problems, the total number of unknowns can be
extraordinarily large. To estimate this number, let us consider a steady-state, 3-D, multigroup
Sy problem.

The number G of energy groups can range from G = 2 for special light water reactor core
problems to G = 200 for difficult shielding problems.

The number M of directions of flight in a typical 3-D Sy calculation varies, depending on
the nature and order of the quadrature set. The 3-D Sy level-symmetric quadrature sets have
M = N(N +2) directions. Thus, the commonly used S4 and Ss level-symmetric quadrature sets
have 24 and 80 directions of flight, respectively.

The number of spatial cells can also vary. It is not atypical for a Cartesian spatial grid to have
each independent variable (x, y, and z) defined on a grid of 100 points. Thus, the number I of
discrete values of x is 100, and the same is true for J = the number of discrete values of y and K
= the number of discrete values of z.

Thus, if we consider “typical” values G = 20, M = 50, and I = J = K = 100, then the total
number Ny, of unknowns is

Nt = Gx MxIxJxK =10’

This extremely large number (and in many problems the number is much higher) is a direct
consequence of the fact that steady-state 3-D transport problems require a 6-D phase space.

To minimize the number of unknowns, computer codes have been written for 3-D problems
with 1-D or 2-D spatial symmetry. This reduces the number of independent spatial variables
from 3 to 2 or 1, and it possibly reduces the number of angular variables from 2 to 1. The problems
that can be accurately treated by 1-D or 2-D codes are geometrically constrained but, fortunately,
many important applications can be adequately represented by a 1-D or 2-D geometric model.

In addition to the issue of storing and processing the unknowns in the discretized Boltz-
mann equation, there is the fact that a linear algebraic system of equations with N =~ 10°
equations and unknowns cannot be solved by direct matrix inversion. For most practical
problems, it is necessary to use iterative methods to calculate solutions.

The simplest iteration strategy is based on sweeping, which itself is based on the observa-
tion that with standard discretization schemes, problems with no scattering or fission can be
solved directly and noniteratively by marching through the spatial grid in the direction of parti-
cle flow. (Different directions of flow can require a different direction of marching, or sweeping.)
The angular flux solution of such a problem is termed the uncollided flux; it consists of all par-
ticles that have not experienced a collision. (When a particle does experience a collision, it is
absorbed. See @ Subsect. 2.10.12.)

For problems with scattering, the source iteration strategy consists of performing sweeps
and iterating on the scattering source. If the first sweep is performed with the scattering source
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estimated to be zero, then at the end of the first sweep, the estimated angular flux is the uncol-
lided flux. If this (uncollided) flux is used to estimate the scattering source and a second sweep
is performed, then at the end of the second sweep, the estimated angular flux is the sum of
the urzcc;llided and the once-collided fluxes. At the end of N sweeps, the estimated angular
flux yN) is:

N
v =Sy, (298)
n=0

where v, is the angular flux of particles that have scattered exactly n times. (See € Subsect.
2.10.12.)

If a physical system is small and “leaky;” or has significant absorption, then particles will
generally have short histories, and the series (298) will converge rapidly. However, if a prob-
lem has a subregion which is many mean free paths thick and dominated by scattering (rather
than capture), then particles in that subregion will have long histories, and the series (298)
will converge slowly. In the former case, the source iteration strategy converges rapidly, but in
the latter case, source iteration converges slowly (Carlson and Lathrop 1968; Larsen and Morel
2009).

To speed up the convergence of source iterations for problems with optically thick,
scattering-dominated subregions, iterative acceleration strategies have been devised. The earli-
est of these was the Chebyschev acceleration, a technique based on concepts from matrix algebra.
This method worked to a limited extent, but it was not sufficiently efficient for many problems.

Later, the rebalance method was developed and used widely for a number of years. This
method operates by calculating and applying, at the end of each sweep, rebalance factors on a
fine or coarse space-energy grid. The rebalance method tends to become unstable when used
on a fine space-energy grid, and to become stable but inefficient when used on a very coarse
grid. The optimal (intermediate) grid is problem-dependent and must found by trial and error.
Even when the optimal grid is found, the resulting method is often not as efficient as desired
(Adams and Larsen 2002).

Later still, diffusion synthetic acceleration (DSA) was developed to speed up the convergence
of source iterations. DSA is based on the following concept. At the end of a transport sweep,
an exact transport equation is derived for the iteration error (the difference between the lat-
est iterate and the converged solution). This equation is just as difficult to solve as the original
transport equation for the angular flux. In DSA, this exact transport equation for the iteration
error is replaced by an approximate diffusion equation for the iterative error; the diffusion equa-
tion is solved; and the diffusion estimate of the iterative error is combined with the most recent
estimate of the flux to obtain an updated and much more accurate estimate of the angular flux
(Adams and Larsen 2002; Alcouffe 1977).

In practice, DSA is highly efficient for optically thin spatial grids. Unfortunately, unless great
care is taken in the discretization of the diffusion part of the algorithm, it can become inefficient
or unstable for optically thick spatial grids (Adams and Larsen 2002; Azmy 1998).

More recently, Krylov methods have been used, often in conjunction with DSA. Although
Krylov methods require significant extra storage, they can be remarkably effective at stabilizing
and speeding up the iterative convergence of methods based on source iterations, or on DSA
(Adams and Larsen 2002; Faber and Mantueffel 1989).

All the work cited above describes advances in the basic mathematical algorithms for solving
transport problems. Other equally important work has taken advantage of changes in computer
architecture, i.e., on the details of how computers process arithmetic for large-scale problems
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(Baker and Koch 1998). This type of research is becoming increasingly important as computers
are becoming increasingly parallel in nature.

Historically, the research on Sy methods has tended to focus on (i) advanced discretization
methods in space, angle, energy, and time, and (ii) advanced iterative methods that converge
the iterative solution more rapidly and efficiently. In the past 50 years, major advances in all
these areas have been made. The discretization and iteration schemes used in many advanced
simulation codes today have little resemblance to the methods used 50 years ago.

However, a fundamental difficulty remains at the heart of deterministic calculations: the
costly and time-consuming task of obtaining adequate multigroup cross sections for a specified
difficult problem. This aspect of deterministic simulations remains the most significant obsta-
cle to obtaining useful, accurate deterministic solutions of practical transport problems in a
reliable, efficient, and user-friendly manner.

10.3  Hybrid Monte Carlo/Deterministic Methods

In the last 10-15 years, it has become understood that the most challenging aspect of difficult
Monte Carlo simulations - the determination of problem-dependent biasing parameters — can
be done efficiently by a deterministic simulation.

Specifically, for source-detector problems, the biasing parameters can be obtained by (i)
solving an adjoint problem in which the detector response function is the source, as discussed
in @ Sect.5, and (ii) processing the resulting adjoint scalar or angular fluxes. The original
“hybrid” concept is to use a deterministic code to perform this task (Chucas and Grimstone
1994; Haghighat and Wagner 2003; Smith and Wagner 2005; Van Riper et al. 1997).

The advantages to this procedure are that (i) it removes from the code user the burdensome
task of calculating the biasing parameters, and (ii) the resulting computer-generated biasing
parameters are usually much more efficient at reducing the Monte Carlo variance than the
biasing parameters obtained by human trial and error (Smith and Wagner 2005).

The principal disadvantage is that two separate codes (Monte Carlo and deterministic) must
be set up to run the same geometric problem, and the results of the deterministic code must
be processed, formatted properly, and then input to the Monte Carlo code. This process can be
unwieldy unless a suitable investment has been made in the computing infrastructure, enabling
the process to occur automatically.

Most public particle transport codes are either Monte Carlo or deterministic, but a
small number of user-friendly hybrid codes are now available. For example, the hybrid code
MCBEND (Chucas and Grimstone 1994) uses a multigroup diffusion solver to determine weight
windows for Monte Carlo simulation. Also, the recent SCALE 6.0 package from Oak Ridge
National Laboratory contains software that enables, with one geometric input deck, determin-
istically generated multigroup Sy solutions to be calculated, turned into weight windows, and
then used in Monte Carlo simulations (Haghighat and Wagner 2003; Smith and Wagner 2005).

The type of problem for which deterministic methods have been most widely used to derive
biasing parameters for Monte Carlo simulations is the classic source-detector problem - in
which particles are born in a source, and a single detector response, in a possibly distant detec-
tor, is desired. The biasing parameters for this problem “encourage” Monte Carlo particles to
migrate from the source to the specified detector region in such a way that estimates of the
desired response have a significantly reduced variance. The biasing parameters can be obtained
by solving an adjoint transport problem. In the resulting nonanalog Monte Carlo simulations
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of source-detector problems, Monte Carlo particles are discouraged from migrating to regions
far from the detector. Consequently, estimates of reaction rates at these locations generally have
larger variances than before.

One of the features of deterministic calculations is that at the end of a simulation, estimates
of the flux are inherently available at all points in the 6-D phase space. For the reasons discussed
in the previous paragraph, this global information is generally not considered to be available in
a useful sense from Monte Carlo simulations.

However, recent work has shown that if weight windows are properly defined using informa-
tion from both adjoint and forward calculations, then Monte Carlo particles are “encouraged”
to become distributed throughout the system in a manner that is much more uniform than
the distribution of physical particles. In this case, accurate (low-variance) estimates of reac-
tion rates throughout a physical system can be obtained from a single Monte Carlo calculation
(Becker and Larsen 2009; Cooper and Larsen 2001; Wagner et al. 2007, 2009).

To date, the term “hybrid” has implied a method in which a deterministic simulation is used
to assist — through the calculation of biasing parameters — a Monte Carlo simulation. However,
deterministic and Monte Carlo techniques can be merged in different advantageous ways. For
example, it has been demonstrated that for source-detector problems, an adjoint calculation
can be used to actively modify the physical scattering process, so that Monte Carlo particles
are encouraged to scatter into directions and energies that will bring them from regions of
low importance to regions of greater importance (Turner and Larsen 1997). This local impor-
tance function transform method requires a greater amount of computation per particle history.
However, for optically thick, deep-penetration source-detector problems, the method can be
significantly more efficient than a standard weight window. It has also been shown that for
problems with high scattering ratios, hybrid methods based on variational principles can yield
estimates of reaction rates and eigenvalues that are significantly more efficient than standard
estimates (Densmore and Larsen 2004). In addition, recent work on the functional Monte Carlo
method has shown that even more accurate estimates of eigenvalues and eigenfunctions can be
obtained by a hybrid method in which the Monte Carlo simulation is not used to obtain esti-
mates of the flux, but rather to obtain estimates of certain nonlinear functionals, which are then
used to obtain estimates of the flux (Larsen and Yang 2008).

Is there a class of hybrid methods for which Monte Carlo can be used to directly assist
the accurate calculation of deterministic solutions? Possibly, the answer to this question is yes.
As discussed previously, the principal difficulty with deterministic methods is the laborious
calculation of multigroup cross sections. If continuous-energy Monte Carlo simulations could
be efficiently run, to automatically determine (problem-dependent) multigroup cross sections,
then this would be a way in which Monte Carlo simulations could significantly influence deter-
ministic solutions. Promising work in this area has recently been reported (Wolters et al. 2009;
Yang and Larsen 2009).

If such methods can be developed, then it is possible to imagine a future particle trans-
port code, containing both Monte Carlo and deterministic modules, in which the Monte Carlo
module “supplies” multigroup cross sections to the deterministic module, and the determin-
istic module “supplies” biasing parameters to the Monte Carlo module. (It might be necessary
to perform these tasks iteratively.) One would then have a particle transport code that is much
closer to a “black box” than present-day transport codes; it would require the user to input
neither the biasing parameters for Monte Carlo simulations, nor the multigroup cross sec-
tions for deterministic simulations; it would determine these quantities automatically, and more
accurately.
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In principle, a code containing these features could make effective use of future advances in
Monte Carlo, deterministic, and hybrid methods. Such a hybrid code does not exist today, but it
is a distinctly logical possibility, given the thrust of past and current research in computational
particle transport methods and the practical difficulties experienced by current-day code users.

10.4 Discussion

During the past 50 years, computational methods for performing neutron and coupled neu-
tron/photon simulations have been an active and vibrant area of research in the nuclear
engineering community. Major advances in algorithms for Monte Carlo and deterministic sim-
ulations have been made. There is little doubt that, due to the increasing demands on increased
realism in simulations, research will continue on different fronts to improve the accuracy and
efficiency of these simulations. Also, hybrid methods may become a distinct third approach,
which would have its own class of difficult problems for which it is best suited.

n Concluding Remarks

This concludes the chapter on general principles of neutron transport. The theory and methods
discussed here apply to photon as well as neutron transport, although photon transport is of
practical interest mainly in radiation shields. Important topics could not be presented, includ-
ing (for example) (i) a discussion on variational methods, which are heavily dependent on the
adjoint transport equation discussed in @ Sect. 5; (ii) a more complete discussion on homog-
enized diffusion theory, which is used in most practical reactor core simulations; and (iii) a
detailed exposition of computational methods for neutron and photon transport. Nonetheless,
the authors hope that the material presented in this chapter, and the references provided below,
will give the reader a useful foundation for more applied techniques described in other chapters
of this handbook, and elsewhere.
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