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Randomly scattered particles

Position and velocity: Think of a particle which is described by the
pair (rt ,Ωt) ∈ R3 × S2 - position and velocity.

Randomised scattering: At times of a Poisson process with rate
σS , a particle independently picks a new velocity, Ω′, on S2 according
to some probability density which depends on its existing velocity, Ω:

P(new velocity = Ω′|old velocity = Ω) = ΘS(Ω,Ω′)dΩ′

Straight lines: Between switching velocities, the particle moves in a
straight line with velocity Ω, its current velocity:

d

dt
rt = Ω



Randomly scattered particles

Position and velocity: Think of a particle which is described by the
pair (rt ,Ωt) ∈ R3 × S2 - position and velocity.

Randomised scattering: At times of a Poisson process with rate
σS , a particle independently picks a new velocity, Ω′, on S2 according
to some probability density which depends on its existing velocity, Ω:

P(new velocity = Ω′|old velocity = Ω) = ΘS(Ω,Ω′)dΩ′

Straight lines: Between switching velocities, the particle moves in a
straight line with velocity Ω, its current velocity:

d

dt
rt = Ω



Randomly scattered particles

Position and velocity: Think of a particle which is described by the
pair (rt ,Ωt) ∈ R3 × S2 - position and velocity.

Randomised scattering: At times of a Poisson process with rate
σS , a particle independently picks a new velocity, Ω′, on S2 according
to some probability density which depends on its existing velocity, Ω:

P(new velocity = Ω′|old velocity = Ω) = ΘS(Ω,Ω′)dΩ′

Straight lines: Between switching velocities, the particle moves in a
straight line with velocity Ω, its current velocity:

d

dt
rt = Ω



Ω

r



Generators

Stochastic calculus: Because the number of changes of velocity up
to time t is random, the pair (rt ,Ωt) (current position and current
velocity at time t) is random, but Markovian.

The randomness in the process (rt ,Ωt), t ≥ 0, is captured through
the semi-group equation.

For (r ,Ω) ∈ R3 × S2 write

ug (r ,Ω, t) = E(r ,Ω)[g(rt ,Ωt)]

Then
∂

∂t
ug (r ,Ω, t) = Ω · ∇ug (r ,Ω, t) + σS

∫
S2

ug (r ,Ω′, t)ΘS (Ω,Ω′)dΩ′ − σSug (r ,Ω, t)

=: Ω · ∇g + Sg .
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Branching Markov process

Initial ancsetor: A particle starts at x ∈ R3 and velocity Ω ∈ S2

and moves randomly with infinitesimal generator L = Ω · ∇+ S.

Branching: A particle dies and branches at rate σF , but now
produces a mean number of offspring, say m, at its spatial point of
death. Each offspring is assigned a new, independent, velocity which
is chosen from the probability density ΘF (Ω,Ω′), meaning

P(offspring is assigned velocity Ω′| parent has velocity Ω) = ΘF (Ω,Ω′)dΩ′

State space: This is a Markov process in the space of spatial
counting measures. A typical realisation of the process takes the
form

Zt(·) =
nt∑
i=1

δ(ri (t),Ωi (t))(·)

where nt are the number of particles at time t and ri (t) are their
positions and Ωi (t) are their velocities.
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Branching semi-group

Function of Z : Because Z is a counting measure, the natural
‘function f of Z ’ is represented through

〈f ,Zt〉 :=
nt∑
i=1

f (ri (t),Ωi (t)).

Nonetheless: With uf (r ,Ω, t) = Eδ(r,Ω)
[〈f ,Zt〉] it turns out that

∂uf /∂t = Luf , becomes

Luf = Ω · ∇uf + σS

∫
S2

uf (r ,Ω′, t)ΘS(Ω,Ω′)dΩ′

+mσF

∫
S2

uf (r ,Ω′, t)ΘF (Ω,Ω′)dΩ′ − (σF + σS)uf

= Ω · ∇uf + Suf + Fuf
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Backward vs Forwards equation

Backwards equations: Semi-group equations for Markov processes
are backward equations. That is, they describe the evolution in t
through the spatial variables pertaining to the initial configuration of
the system.

Forwards equations: The forwards equations are generally much
more difficult to write down. One describes the evolution of the
process in time in terms of the spatial variables pertaining to the
configuration of the system at time t (in which case one needs to
condition on the configuration at time t taking certain values).

Dualty or adjoint: The forward equations are the same as the
backwards albeit that the operator L is replaced by its dual (for the
probabilist) L∗ (adjoint for the analyst).

Spectral properties: The spectral properties of the forward and
backwards equations are easily related (modulo taking care of left-
and right- eigen functions through duality) from the point of view of
the lead eigen value and associated positive harmonic functions.
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Monte-Carlo simulation

The leading eigenvalue associated to the operator L is the object of
interest.

This is the growth rate of the branching process.

For example, with appropriate assumptions, we would expect a
Perron-Frobenius-type result:

lim
t→∞

e−λtE(r ,Ω)[〈f ,Zt〉] = ϕ(r ,Ω)

∫
R3×S2

[f (r ,Ω)ϕ̃(r ,Ω)]drdΩ,

where λ is the lead eigenvalue associated to L with left and right
eigenfunctions ϕ̃ and ϕ respectively.

Boundary conditions have natural interpretations for the probabilistic
setting as much as they do for the mechanics-analytic setting - and
they will play out equally in growth results such as the one above.
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