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Outline

– Monte Carlo for the diffusion equation and some relatives 
   (simulating random walks, which obey diffusion-like equations)  

– Monte Carlo for the Neutron Transport Equation  
   (simulating the motion of “fictitious” neutrons) 
 



Monte Carlo diffusion

@t⇢ = 4⇢Solve given ⇢(x, 0)

“Density”

Numerical solution of PDEs…

Or, solve given ⇢(x, 0) and F = F (x)@t⇢ = r · (r⇢� F⇢)

⇢ = ⇢(x, t), x 2 Rd
, t � 0

Assume normalisation  
Z

⇢(x, 0)dx = 1 [equation is linear]

⇢

[ Maybe you know… for a particle obeying a stochastic differential equation

   … the probability density function    for its position solves the PDE above  
        (Fokker-Planck equation) ]

dx = Fdt+
p
2 dBt



Monte Carlo diffusion

A possible method for solving this equation:

@t⇢ = r · (r⇢� F⇢)

Initialise a particle at some point x0, set time t = 0

Move it to x0+Δ with Δ = Fh + B, where B is Gaussian distributed  
with variance 2h. Increment time by h

Repeat until time reaches end of required interval

Repeat the whole thing many times, with initial x0 distributed as ρ(x,0)

Can prove:

Estimator is unbiased in the limit, variance of estimator ~ (1 / N)

Can also show: many similar methods are possible and also work…

As h ! 0, can estimate
R
f(x)⇢(x, t)dx as 1

N

P
i f(xi(t))

(The sum runs over the N simulated particles)

dx = Fdt+
p
2 dBt



Monte Carlo PDEs

How to guess the process?
Physicist approach: Where did the PDE come from?

General: “guess” a stochastic process which provides estimators of 
                (some aspect of) a solution of a PDE.

The neutron transport equation (NTE) arises as a “hydrodynamic”  
description of the motion of neutrons.

This equation is independent of many details of the neutron motion  
(cf: diffusion equation applies to very many different physical systems)

We can use a simple stochastic (MC) description of the neutron motion, 
as long as it gives behaviour consistent with the NTE



Neutron Transport

Suggestion: 

Think of the MC method as a simulation of a fictitious process 
that obeys the neutron transport equation (NTE) 
Proving that the fictitious process obeys the NTE should be the  
same as the derivation of the NTE…

This means that whatever quantities are relevant for the neutrons 
can be evaluated directly from the fictitious process, 



Neutron Transport
What is different to the diffusing case?

Neutrons have velocities (advective terms in PDE), 
                and they scatter (scattering terms)

Neutrons appear from sources and fission (source terms) 
               disappear (from absorption)

We want to solve for a steady state (no explicit time dependence)

… no more random walks

… particles not conserved

… slightly more subtle…

Note, equation is still linear: no interactions between neutrons, 
can simulate them “one at a time”



Transport / scattering

Stochastic method:

[similar to Scheben thesis, 4.3.2]

 (t = 0)Choose an initial position and velocity according to 

Move an exponentially distributed distance x with mean (1/λ) 
along the velocity direction. Increment time by x/v.

1

v
@t = (S � T ) 

Decide whether to scatter or be absorbed (see later)
If absorbed, remove the particle
If scattered, choose a new velocity

Repeat until the particle has disappeared or we reach  
the end of our time interval

Repeat for many initial positions



(cross section)

� =
1

n
obstacle

�
obstacle

� : mean distance to collision

n
obstacle

: number density of obstacles

�
obstacle

: ‘cross section’ of obstacle

(sum σ over different kinds of obstacle)



Transport / scattering
[similar to Scheben thesis, 4.3.2]

1

v
@t = (S � T ) 

This procedure provides:

The spatial distribution of absorption/scatter events

The joint velocity/position distribution of surviving neutrons

The time taken for the neutrons to be absorbed

… etc…

Proof that this process solves the NTE… non-trivial exercise…



Scatter or absorb?
[similar to Scheben thesis, 4.3.2]

1

v
@t = (S � T ) 

Pick a random number ξ uniformly in (0,1)

Chapter 4. Monte Carlo methods in neutron transport theory

tracking particles from the initial source Q to their first collision. In the second term,

this flux Ψ[0] undergoes a scatter and is then tracked further providing a flux contribu-

tion Ψ[1] = T −1SΨ[0] = T −1ST −1Q . The next term is then a further scatter of Ψ[1]

with subsequent tracking and so on. Hence, Ψ[k−1] denotes the flux contribution from

the k-th collision and the Neumann series can be interpreted as a “collision expansion”

(see also [29, p. 72]).

Let us now consider how to model the application of the scatter operator to a flux in

the Monte Carlo setting. Recalling the relation between the flux Ψ and the collision

density c in (4.19), as well as the definition of the scatter operator in (4.21), we can

write the term SΨ[0] as

SΨ[0] =
1

4π

∫

S2

σs
σ
c[0](r,Ω

′) dΩ′ , (4.32)

where c[0](r,Ω
′) is the number of particles that travelled in direction Ω′ and have

a collision at r. The integral
∫
S2
c[0](r,Ω

′) dΩ′ contains therefore all first collisions

occurring at r.

In Monte Carlo terms the fraction σs/σ can now be interpreted as the probability of

this collision being a scatter. As we are dealing with isotropic scatter, a realisation

of the new travel direction Ω is in this case determined by drawing two new random

numbers and mapping them to µ and ϕ to obtain the particles new polar and azimuthal

angles. The collection of all scattered neutrons then represents the scatter source SΨ.

The evaluation of (4.31) can now be done efficiently using Monte Carlo techniques by

applying the following steps. We start a particle from the initial source Q, track it

to the first collision and add w/(σdV dΩ) to the current bin. This contributes to the

flux Ψ(∞) as part of the term Ψ[0] = T −1Q in (4.31). We now pick a random number

ξ ∈ U(0, 1) to check if the particle is scattered as shown in Figure 4.3.

0 σs
σ

1

no scatterscatter

Figure 4.3: If ξ ≤ σs/σ the collision event is a scatter.

If ξ > σs/σ , we finish tracking the particle and all its contribution to the flux Ψ(∞)

comes from the term Ψ[0] representing the first collisions in the Neumann series. How-

ever, if the random number indicates that a scatter event happened, we draw two

further random numbers to obtain a new travel direction and track the particle to the

next collision where w/(σdV dΩ) is added to the respective bin. This is part of the

contribution of Ψ[1] = T −1ST −1Q to the flux Ψ(∞) in (4.31). Then the same scatter

97

It is clear that the neutron can either be scattered or absorbed; if it 
is scattered, it has different probabilities of different final directions etc. 
Whatever these probabilities are, they set the “kernels” in the NTE

(The distance x that we calculated before is the distance to the first of two  
  independent events… “first scatter” or “first absorption”.  more later…)



Inhomogeneous setting
[similar to Scheben thesis, 4.3.2]

1

v
@t = (S � T ) 

Just one caveat:

We assumed all rates (kernels) constant in space  
(when calculating our random distance x)

If the neutron leaves the reactor before any event happens, 
   we should just remove it from the “simulation”

If the neutron moves into a different kind of material before its next  
event, we need to stop it at the point where it enters, and recalculate  
the time to the next event…



Fission and sources
Sources:

Since we treat neutrons one at a time, we can account for sources 
by simply choosing our insertion points according to the source  
distribution Q

Fission:
To treat fission, we add in the relevant contribution to the  
cross section σ, and an extra segment to our  
“choice of process” line.

If we choose fission, we should use the fission point (and time) as  
the next starting point for our “loop” over neutrons (or put it into a  
list of starting points to be considered)

If this list gets out of control, the reactor is supercritical… 
  need some method to deal with this (reduce fission rate?)

[? talk to Andreas Kyprianou]



MC a la “Gillespie algorithm”
There are many MC methods similar to the one I have described

The basic idea is that any of several events may happen, 
   all are independent, we need to pick one of them 

The method is:

Pick an exponentially distributed random number with mean 1/A, 
increment the time by this amount

To get to the NTE method, we go from a time between events 
to a distance between events… this is ok since we know the velocity

[? talk to Kit Yates]

Define A =
P

i ri where ri is the rate for event i

Choose event i to happen with probability ri/A
(“choice of process” line)



Conclusions
The derivation of the NTE is based on general features of neutrons’
behaviour, independent of microscopic details.

If we can find a “fictitious” stochastic process which obeys the NTE,  
then simulations of this process can give physical quantities of interest.

We can find such a process, it involves independent neutrons that 
evolve “one at a time” (related to linearity of the equation).

To rationalise the stochastic aspect of the MC process, we can think 
of a large population of neutrons from which a deterministic PDE  
appears through a law of large numbers (at each spatial location).


