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On a Monte Carlo method for neutron transport criticality computations
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We give a stochastic representation of the principal eigenvalue of some homogeneous neutron transport
operators. Our construction is based upon the Feynman–Kac formula for integral transport equations, and
uses probabilistic techniques only. We develop a Monte Carlo method for criticality computations. We
numerically test this method on various homogeneous and inhomogeneous problems, and compare our
results with those obtained by standard methods.

Keywords: neutron transport equations; principal eigenvalue; criticality; Monte Carlo method; Feynman–
Kac formula; variance reduction.

1. Introduction

The aim of this paper is three-fold. We first study a stochastic representation of the principal eigenvalue
of a simple homogeneous neutron transport operator. We then propose a Monte Carlo method for the
criticality analysis of homogeneous neutron transport problems, and we test this method in a case where
it can be mathematically justified. Finally, we consider more realistic inhomogeneous test cases which
suggest that the method can be applied in rather general situations.

The evolution of a population of neutrons is modelled by a density function u(t, x, v) which depends
on the position x in a domain D, the velocity v in a domain V and the time t . This function is a solution
of the Cauchy problem, in the domain R+ × D × V , for the equation

∂u

∂t
(t, x, v) = T u(t, x, v), (1.1)

where the neutron transport operator T is defined as

T u(t, x, v) = −v∇xu(t, x, v) − Σtcs(x, v)u(t, x, v)

+
∫

V
Σsf(x, z, v)u(t, x, z)dz + S(t, x, v). (1.2)

Here, S(t, x, v) represents a source term and Σtcs(x, v) represents the total cross section. The definition
of the function Σsf(x, z, v) involves the scattering cross section Σs and the fission cross section Σf
which characterize the physical properties of the nuclear reactor which is usually highly heterogeneous
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658 S. MAIRE AND D. TALAY

(Bussac et al., 1978). The boundary conditions depend on the behaviour of the neutrons at the boundary.
In this paper, we focus on the specific criticality transport equation

∂u

∂t
(t, x, v) = T λu(t, x, v), (1.3)

where

T λu(t, x, v) = −v∇xu(t, x, v) − Σtcs(x, v)u(t, x, v) +
∫

V
Σs(x, z, v)u(t, x, z)dz

+ 1

λ

∫
V

Σf(x, z, v)u(t, x, z)dz.

In this model, the production of neutrons comes from fission only. The parameter λ > 0 is related to the
number of neutrons created by a fission. We will say that the model is spatially homogeneous when the
coefficients Σtcs, Σs(x, z, v) and Σf depend on the velocity variable only.

Under weak assumptions on the physical model, using analysis tools and especially the Krein–
Rutman theorem, one can show that the principal eigenvalue of T λ is real and simple, and that its
eigenfunction is positive: see, e.g. Mika (1971). Let αλ

0 be the principal eigenvalue of the operator T λ.
If αλ

0 = 0, there is a perfect balance between the production and the absorption of the neutrons. The
corresponding λ is often called the ‘keff’ coefficient. If αλ

0 < 0, the reactor is subcritical and if αλ
0 > 0,

the reactor is supercritical. The number of neutrons decays or grows exponentially fast according to the
sign of αλ

0 . Furthermore, under weak hypotheses, αλ
0 is a decreasing function of λ which tends to +∞

when λ tends to 0 and is negative for λ large enough (see, e.g. Dautray & Lions, 1988).
In criticality studies, one desires to compute the value of λ for which the principal eigenvalue αλ

0 of
the operator T λ is as close to zero as possible. Therefore, one must find the largest value λ such that there
exists a solution Ψ to the following equation in the domain D×V with appropriate boundary conditions:

v∇xΨ (x, v) + Σtcs(x, v)Ψ (x, v) −
∫

V
Σs(x, z, v)Ψ (x, z)dz = 1

λ

∫
V

Σf(x, z, v)Ψ (x, z)dz.

For theoretical considerations see, e.g. Vidav (1968). For other criticality analyses see, e.g. Bardos
et al. (1984).

The numerical calculation of the keff coefficient and its eigenfunction by deterministic methods is
achieved by using the power method on the fission part of the transport operator. Setting

LΨ := v∇xΨ (x, v) + Σtcs(x, v)Ψt (x, v) −
∫

V
Σs(x, z, v)Ψ (x, z)dz

and

FΨ :=
∫

V
Σf(x, z, v)Ψ (x, z)dz,

the nth step of the algorithm consists in solving the equation

L̄Ψn = 1

λn−1
F̄Ψn−1,

where

λn := λn−1

∫
D

∫
V Ψn(x, v)dx dv∫

D

∫
V Ψn−1(x, v)dx dv

,

and L̄ and F̄ are discretizations of the operators L and F .
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ON A MONTE CARLO METHOD FOR NEUTRON TRANSPORT CRITICALITY COMPUTATIONS 659

The most commonly used discretization methods are the nodal methods, finite differences and
finite elements for the spatial discretization, and the so-called discrete ordinates SN and spherical
harmonics PN methods for the velocity variables: see, e.g. Lewis (1981), Planchard (1995), Karp (1998),
Warin (1993). With these methods, a good approximation may be difficult to achieve, especially for 3D
problems, because of their complexity. Therefore, it is worth considering Monte Carlo methods since
these methods are less sensitive than deterministic methods to the dimensional effect and to the hetero-
geneity of the nuclear reactor: see, e.g. Lapeyre et al. (1998) and Kalos (1981). Monte Carlo methods
are used to approximate αλ

0 , λ being fixed: one simulates particles, computes the numbers N (t1) and
N (t2) of particles which are inside the domain D at times t1 and t2 and then uses the estimator

αλ
0 � 1

t2 − t1
ln

(
N (t2)

N (t1)

)
.

This estimator relies on the approximation

N (t) � N (0) exp(αλ
0 t)

(see Kalos, 1981). Monte Carlo methods are also used to approximate the keff coefficient; this consists
of solving the sequence of equations

LΨn+1 = 1

λn−1
FΨn (1.4)

by means of a stochastic particle method: see, e.g. Brockway et al. (1985). Here, we propose a new
Monte Carlo method which avoids the numerical resolution of partial differential equations in the whole
domain.

The organization of the paper is as follows. In Section 2, we describe the stochastic representation
of the solution of the general transport equation (1.1) and of the principal eigenvalue αλ

0 of the transport
operator by means of the Feynman–Kac formula. We then explain how to combine the Monte Carlo
approximation of this solution and its formal eigenfunction expansion to give a numerical approximation
of αλ

0 . In Section 3, we consider a particular homogeneous model; using probabilistic tools only, we
obtain another stochastic representation of the principal eigenvalue. Sections 4 and 5 are devoted to the
numerical computation of the principal eigenvalue and of the criticality factor for homogeneous models.
The last two sections are devoted to more realistic inhomogeneous models. Different variance reduction
techniques are developed and tested.

2. Refined Monte Carlo simulations for criticality studies of spatially homogeneous and
inhomogeneous models

Consider the neutron transport operator T defined in (1.2). As explained in Section 1, we aim to ap-
proximate by a Monte Carlo method the principal eigenvalue of the operator T in order to determine the
keff coefficient. Of course, the principal eigenvalue may not be isolated and simple. Several sets of suffi-
cient conditions are available in the literature: see, e.g. Dautray & Lions (1988) and Mokhtar-Kharroubi
(1997).

2.1 A deterministic representation of the principal eigenvalue

We recall some properties of T (see Chapters 1 and 21 in Dautray & Lions, 1988). Suppose that T admits
eigenvalues with finite multiplicity and no accumulation point in a strip {z ∈ C; A1 < Re z � A2}, the
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660 S. MAIRE AND D. TALAY

remaining part of the spectrum being located in the half-space {z ∈ C; Re z � A1}. Then the operator
T is the infinitesimal generator of a semi-group G(t) of the class C0 in L2(D × V ); the spectrum of
G(t) admits a principal eigenvalue α0 which is real and simple. Moreover, there exists β < α0 such that

G(t) = eα0t P0 + O(eβt ), (2.1)

where P0 is the projector in L2(D × V ) on the eigenspace associated to α0 (see Dautray & Lions, 1988,
Chapter 21, Section 3, proof of Proposition 6). Therefore, if D is a bounded domain and u(t, x, v) is the
solution to the Cauchy problem (1.3) with absorption boundary conditions (no incoming neutrons, see
below) and initial condition u(0, x, v) = u0(x, v), one has

u(t, x, v) = etT u0(x, v) = G(t)u0(x, v) = eα0t P0u0(x, v) + O(eβt ) in L2(D × V ). (2.2)

REMARK 2.1 For example, the following assumptions ensure the above property for the spectrum of
G(t): the domain D is bounded and convex; V is a closed ball which includes 0; the kernels Σs and Σf
do not depend on x (see Dautray & Lions, 1988, Chapter 21, Section 3).

Let E be a subdomain of D × V . Set

gE (t) = 1

vol(E)

∫∫
E

u(t, x, v)dx dv. (2.3)

It results from (2.2) that

lim
t→∞

1

t
log gE (t) = α0. (2.4)

We now aim to deduce a Monte Carlo method from that formula.

2.2 Transport processes and Feynman–Kac formulae

2.2.1 Transport processes for transport equations in R+ ×Rk ×V . Consider general transport equa-
tions in R+ × D × V := R+ × Rk × V , that we write in the form

T u(t, x, v) := b(x, v)∇xu(t, x, v) + Θ(x, v)

[∫
V

u(t, x, z)Π x,v (z)dz − u(t, x, v)

]
+ c(x, v)u(t, x, v),

which appears to be convenient for probabilistic interpretations.
Such equations describe particles which move and collide at random times with particles of another

type. The motion of each moving particle can be described by a stochastic process Xt which solves the
differential equation

dXt

dt
= b(Xt , Vt ), (2.5)

where Vt is a jump process which models the velocity of the particle; the jump times of (Vt ) are the
times at which the particle collides.

Suppose that the function b is measurable and

∃K > 0, |b(x1, v) − b(x2, v)| � K |x1 − x2| for all x1, x2, v.
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ON A MONTE CARLO METHOD FOR NEUTRON TRANSPORT CRITICALITY COMPUTATIONS 661

The law of the velocity Vt after a collision, knowing that (Xt , Vt ) = (x, v) just before the collision, has
a bounded density denoted by Π x,v (z) which is measurable w.r.t. (x, v, z). We now describe the law of
the collision times. Let Tn be the elapsed time between the nth and (n + 1)th collisions. The conditional
law of Tn , knowing that (Xt , Vt ) = (x, v) when the nth collision occurs, has the following distribution
function:

Fx,v (t) = 1 − exp

[
−

∫ t

0
Θ(ξs(x, v), v)ds

]
,

where ξs(x, v) is the solution of

dξs

ds
= b(ξs, v),

with ξ0 = x , and the function Θ is measurable, positive and bounded. Under these assumptions, it is
well-known that the stochastic transport process (Xt , Vt ) is well defined and is a strong Markov process
(see, e.g. Dautray et al., 1989).

2.2.2 Feynman–Kac formulae. Suppose first that D = R
k and that the functions u0 and c are meas-

urable and bounded. Then, the solution u(t, x, v) satisfies the Feynman–Kac formula

u(t, x, v) = Ex,v

[
u0(Xt , Vt ) exp

(∫ t

0
c(Xs, Vs)ds

)]
, (2.6)

where Ex,v is the law of the Markov process (Xt , Vt ) starting at point x with velocity v at time 0.
Suppose now that D is a bounded domain. We suppose that there are no incoming neutrons, i.e.

{
u(t, x, v) = 0 for all x on the boundary of D such that b(x, v) · n(x) > 0,

where n(x) denotes the inward normal vector to the boundary.
(2.7)

This boundary condition is the so-called ‘absorption Dirichlet boundary condition’. The Feynman–Kac
formula then writes

u(t, x, v) = Ex,v

[
Iτ D>t u0(Xt , Vt ) exp

(∫ t

0
c(Xs, Vs)ds

)]
, (2.8)

where τ D is the first exit time of (Xt ) from D. See, e.g. Dautray et al. (1989) and Bensoussan et al.
(1979).

We can rewrite (2.8) in terms of a killed transport process: let (X D
t , V D

t ) denote the killed Markov
process defined by

P((X D
t , V D

t ) ∈ B) = P((Xt , Vt ) ∈ B, τ D > t)

for all Borel subset B of D × V . Then,

u(t, x, v) = Ex,v

[
u0(X D

t , V D
t ) exp

(∫ t

0
c(X D

s , V D
s )ds

)]
. (2.9)
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662 S. MAIRE AND D. TALAY

2.3 Monte Carlo methods

2.3.1 Standard Monte Carlo simulations. The approximation of u(t, x, v) can be obtained using a
standard Monte Carlo method. Let the processes Z (i)

t (x, v), 1 � i � N , be independent copies of the
process

Zt (x, v) = Iτ D>t u0(Xt , Vt ) exp

(∫ t

0
c(Xs, Vs)ds

)
,

where (Xt , Vt ) is issued from (x, v). Then,

u(t, x, v) � 1

N

N∑
i=1

Z (i)
t (x, v).

To compute the mean value gE (t), we simulate the processes Z (i)
t (xi , v i ), 1 � i � N , where the N

starting points (xi , v i ) are independent and uniformly distributed in E , and we compute

gE (t) := 1

N

N∑
i=1

Z (i)
t (xi , v i ). (2.10)

In view of (2.4) and (2.10), one may thus compute α0 by using a Monte Carlo method. In Section 4,
we will see that the accuracy is poor because the variance of the simulation quickly increases with t .
We therefore recommend the following two variants. Of course, their efficiency will decrease when β is
very close to α0. However, this difficulty occurs with any other numerical method.

2.3.2 Interpolation method. We deduce from (2.2) that, or all subdomain E of the domain D × V ,
there exists a real number K0 such that, for all t large enough,

1

t
log(gE (t)) � α0 + log(K0)

t
+ o(e(β−α0)t ). (2.11)

Choose t1, t2 large enough and define the new estimator

α0(t1, t2) = log(g2) − log(g1)

t2 − t1
of α0, where we have set: gE is the Monte Carlo approximation of gE defined as in (2.3) and ḡi := gE (ti )
(i = 1, 2). Using the confidence interval

g1 − 1.96
σ1√
N
� g1 � g1 + 1.96

σ1√
N

and assuming that
σ1

g1
√

N
	 1 we obtain

log(g1) − 1.96
σ1

g1
√

N
� log(g1) � log(g1) + 1.96

σ1

g1
√

N
.

We thus have

log
( g2

g1

)
t2 − t1

− 1.96N− 1
2

t2 − t1

(
σ1

g1
+ σ2

g2

)
� α0(t1, t2) �

log
( g2

g1

)
t2 − t1

+ 1.96√
N (t2 − t1)

(
σ1

g1
+ σ2

g2

)
,

with probability 0.9 at least.
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ON A MONTE CARLO METHOD FOR NEUTRON TRANSPORT CRITICALITY COMPUTATIONS 663

2.3.3 Least-squares approximation. In order to make a global use of the information given by the
computation of the solution at the different times, one may use least-squares approximations of α0 and
log(K0) by choosing times t1, . . . , tm and minimizing

m∑
i=1

(
α0 + β

ti
− 1

ti
log(gE (ti )

)2

.

Here, we continue to assume that the remainder term of (2.2) is negligible. This procedure provides
an estimator of α0 which, according to our numerical experiments, seems more accurate than the previ-
ous ones.

Before analysing numerically the above refinements of the direct Monte Carlo simulations (see
Sections 4–7 below), we consider a homogeneous 1D model which allows us to express α0 in terms of
the tail of the distribution of the first exit time of (Xt ) from the domain D.

3. A probabilistic representation of the principal eigenvalue

In this section, we show that, for particular models, (2.4) can be replaced by an equality of the type

α0 = lim
t→∞

1

t
log(u(t, x, v))

for all (x, v), which will allow us to also prove that α0 can be approximated by simulating exit times of
(Xt ) only. Our technique is fully probabilistic. Our assumptions essentially concern the sub-Markovian
transition operator of a killed stochastic transport process. Note that the expansion (2.2) holds almost
everywhere only, whereas the probabilistic representation holds everywhere, and that it may allow one
to study the sensitivity of the principal eigenvalue with respect to various parameters of the model, as it
has been done for elliptic operators and small viscosity parameters (see, e.g. Kifer, 1988).

3.1 The principal eigenvalue of an elliptic operator

The stochastic representation of the principal eigenvalue of a general elliptic operator L is usually
achieved by combining the Feynman–Kac formula for the Cauchy problem⎧⎨

⎩
∂u
∂t (t, x) = Lu(t, x),

u(x, 0) = 1,

and, when it exists, the eigenfunction expansion of the function

u(t, x) =
∞∑
j=0

c j exp(α j t)Ψ j (x),

where the α j ’s are the eigenvalues of L arranged in decreasing order and the Ψ j ’s are the corresponding
eigenfunctions. Using this method, Kac (1951) gives the following stochastic representation for the
principal eigenvalue of the operator:

Lu = 1

2
�u − ku,
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664 S. MAIRE AND D. TALAY

where k is a continuous function from R in [0, ∞) such that limx→±∞ k(x) = ∞:

α0 = lim
t→∞

1

t
logEx exp

(
−

∫ t

0
k(Bs)ds

)

for all x ∈ R, where Bt is a Brownian motion. Freidlin (1985) considers a general elliptic operator L
with Dirichlet boundary conditions in a bounded domain D in Rk . Let τ D be the first exit time from D
of the stochastic process X x

t whose generator is L. The principal eigenvalue α0 satisfies

α0 = lim
t→+∞

1

t
logP(τ D > t).

Probabilistic proofs of this result are given in Freidlin (1985) and Friedman (1976). These proofs deeply
use the fact that L is the generator of a diffusion process. As we are concerned with generators of
transport processes, we follow another method developed by Kifer (1988). This method relies on the
hypothesis that the transition probability of the killed diffusion process has a density which is bounded
from above and below by strictly positive constants. For transport processes, this hypothesis may be too
stringent: e.g. consider the model studied in Section 3.3 below; for small times, the transition density
may not exist and for large times, this density tends to 0 when the space coordinate tends to 0 and the
velocity coordinate is positive. We thus have to add arguments to Kifer’s ones.

3.2 The principal eigenvalue of a transport operator

Let ρ be a real number. Consider bounded domains D and V , and the Cauchy problem in R+ × D × V :

∂u

∂t
(t, x, v) = b(x, v)∇xu(t, x, v) + Θ(x, v)

[∫
V

u(t, x, z)Π x,v (z)dz − u(t, x, v)

]

+ ρu(t, x, v), (3.1)

with a bounded initial condition u(0, x, v) = u0(x, v) and the absorption boundary condition (2.7). We
suppose that the assumptions made in Section 2.2.2 on b, Θ and Π x,v hold in force. In view of (2.8)
one has

u(t, x, v) = Ex,v [u0(Xt , Vt ) exp(ρt)It<τ D ], (3.2)

where τ D is the first exit time of (Xt ) from D.
We state a classical result for Markov processes which is a straightforward consequence of the fact

that the function

t → log sup
(x,v)∈D×V

Px,v (τ
D > t)

is subadditive.

LEMMA 3.1 Suppose that b, Θ and Π x,v satisfy the hypotheses listed in Section 2.2. The quantity

1

t
log sup

(x,v)∈D×V
Px,v (τ

D > t)

has a finite limit βρ when t goes to +∞.
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ON A MONTE CARLO METHOD FOR NEUTRON TRANSPORT CRITICALITY COMPUTATIONS 665

We now prove that we can remove the supremum in the previous formula. The hypotheses of the
following result seem rather abstract. However, we will see in Section 3.3 below an example where
these hypotheses can be verified without too much difficulty, and that the guidelines of our verification
can obviously be adapted to other models.

Recall that (X D
t , V D

t ) denotes the killed Markov process defined by

P((X D
t , V D

t ) ∈ B) = P((Xt , Vt ) ∈ B, τ D > t)

for all Borel subset B of D.

THEOREM 3.1 In addition to the hypotheses of Lemma 3.1, assume that there exists T ∗ > 0 such that,
for all T > T ∗, there exists a positive and measurable function pD(T, (x, v), (x1, v1)) satisfying

Ex,v [ f (Xt , Vt )Iτ D>t ] = Ex,v [ f (X D
t , V D

t )] =
∫

V

∫
D

pD(t, (x, v), (x1, v1)) f (x1, v1)dx1 dv1

for all bounded Borel measurable functions f . In addition, suppose that there exists a Borel subset A of
D × V such that

ess inf
(x1,v1)∈A

pD(T, (x, v), (x1, v1)) > 0 (3.3)

and

ess sup
(x1,v1)∈D×V

pD(T, (x, v), (x1, v1)) < ∞. (3.4)

Finally, suppose that

∃κ > 0,

∫∫
A
Px,v (τ

D > t)dx dv � κ

∫∫
Ac
Px,v (τ

D > t)dx dv for all t > 0. (3.5)

(i) Let βρ be defined as in the preceding lemma. Then, for all (x, v) ∈ D × V we have

lim
t→+∞

1

t
log(Px,v (τ

D > t)) = βρ. (3.6)

(ii) Assume that 0 < c1 � u0(x, v) � c2 < ∞ for some positive real numbers c1 and c2. For all
(x, v) ∈ D × V we have

lim
t→∞

1

t
log(u(t, x, v)) = βρ + ρ.

REMARK 3.1 Under the assumptions made in Section 2.1, in view of the expansion (2.2) and using (3.6),
we have

α0 = lim
t→+∞

1

t
log(Px,v (τ

D > t)) + ρ. (3.7)

A Monte Carlo approximation of α0 can thus consist in approximating the distribution function of τ D

for an arbitrarily fixed initial condition: see Sections 4 and 5 below for numerical experiments.
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666 S. MAIRE AND D. TALAY

Proof. The claim (ii) is a straightforward consequence of (i) since, in view of (2.8), we have

c1 exp(ρt)Px,v (τD > t) � u(t, x, v) � c2 exp(ρt)Px,v (τ
D > t).

We now prove (i) by adapting a proof used in Kifer (1988, Chap. 3). Fix (x, v) in D and let t > T .
We have

Px,v (τ
D > t) =

∫
V

∫
D

pD(t, (x, v), (x1, v1))dx1 dv1.

From the Markov property it follows that

Px,v (X D
t ∈ D) =

∫
V

∫
D

pD(T, (x, v), (x1, v1))Px1,v1(τ
D > t − T )dx1 dv1,

which implies the following two inequalities:

Px,v (X D
t ∈ D) � ess inf

(x1,v1)∈A
pD(T, (x, v), (x1, v1))

∫∫
A
Px2,v2(τ

D > t − T )dx2 dv2 (3.8)

and

Px,v (X D
t ∈ D) � ess sup

(x1,v1)∈D×V
pD(T, (x, v), (x1, v1)) ×

∫
V

∫
D
Px2,v2(τ

D > t − T )dx2 dv2

�
(

1 + 1

κ

)
ess sup

(x1,v1)∈D×V
pD(T, (x, v), (x1, v1)) ×

∫∫
A
Px2,v2(τ

D > t − T )dx2 dv2,

(3.9)

where κ is as in (3.5). From Lemma 3.1 and inequality (3.9) we have

βρ � lim inf
t→+∞

1

t
log

∫∫
A
Px2,v2(τ

D > t − T )dx2 dv2. (3.10)

In addition, in view of (3.8), we have

βρ � lim sup
t→+∞

1

t
logPx,v (τ

D > t) � lim sup
t→+∞

1

t
log

∫∫
A
Px2,v2(τ

D > t − T )dx2 dv2. (3.11)

We gather the inequalities (3.11) and (3.10): it turns out that all the inequalities are, in fact, equalities.
In particular,

lim
t→+∞

1

t
log(Px,v (τ

D > t)) = βρ.

�

3.3 The principal eigenvalue of a homogeneous 1D model

The aim of this section is to show how the hypotheses of Theorem 3.1 can be verified in practice.
We consider a rather simple model which, however, requires nontrivial arguments. For technical rea-
sons and to simplify the presentation, we limit ourselves to a 1D model. Nevertheless, our presentation
involves the main ingredients to handle multidimensional homogeneous models as well.
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3.3.1 Description of the model. Consider the Cauchy problem in R+ × R× V :

∂u

∂t
(t, x, v) = −v

∂u

∂x
(t, x, v) + c

{
1

2(1 − δ)

∫
Vδ

u(t, x, v ′)dv ′ − u(t, x, v)

}

+ (c − 1)u(t, x, v), (3.12)

with a positive initial condition (0, x, v) = u0(x, v) and boundary absorption conditions (2.7). We
suppose: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

the space domain is D := (0, d) and the velocity domain is

Vδ := (−1, −δ) ∪ (δ, 1) with 0 < δ < 1;
the constant c is strictly positive;

u(t, 0, v) = 0 for all v > 0 and t � 0;
u(t, d, v) = 0 for all v < 0 and t � 0.

(3.13)

According to Section 2.2.2, we construct the following stochastic transport process:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXt
dt = −Vt ;

the law of the velocity Vt after a collision is the uniform law on Vδ;
the distribution function of the conditional law, knowing that (Xt , Vt ) = (x, v)

when the nth collision occurs, of the elapsed time

before the next collision is Fx,v (t) = 1 − exp(−ct).

(3.14)

Note that the condition that the velocity is bounded away from 0 is also encountered in spectral
studies of transport operators: cf. e.g. Dautray & Lions (1988, Chapter 21).

We now prove that the hypotheses of Theorem 3.1 are satisfied, i.e. inequalities (3.3), (3.4) and (3.5)
hold. We choose A := ( d

4 , 3d
4 ) × Vδ .

3.3.2 A bound from above for the density pD(t, (x, v), (x1, v1)). In order to prove that (3.4) holds,
we start with an elementary result concerning the transport process related to (3.12) without boundary
conditions, i.e. when D = R. We still assume that c > 0.

LEMMA 3.2 Let (Xt , Vt ) be the transport process defined as in (3.14). If the law of (X0, V0) admits a
density p0(ξ, ν) in L∞(R× Vδ) with respect to the Lebesgue measure on R× Vδ , then (Xt , Vt ) admits
a density p(t, ξ, ν) in L∞(R× Vδ) and

∀t > 0, ess sup
ξ∈R

∫
Vδ

p(t, ξ, ν)dν � ess sup
ξ∈R

∫
Vδ

p(0, ξ, ν)dν. (3.15)

Proof. The existence of the density is a standard result on transport jump processes (see Dautray &
Lions, 1988, Chap. 3). In order to get the bound from above, we observe that the density p(t, ξ, ν) is a
weak solution to the Fokker–Planck equation in R+ × R× Vδ

∂p

∂t
(t, ξ, ν) = ν

∂p

∂ξ
(t, ξ, ν) + c

{
1

2(1 − δ)

∫
Vδ

p(t, ξ, ν ′)dν′ − p(t, ξ, ν)

}
,
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668 S. MAIRE AND D. TALAY

with initial condition

p(0, ξ, ν) = p0(ξ, ν).

As p0 is bounded and measurable, we can interpret the above Fokker–Planck equation as a transport
equation of the type (1.1), and thus write p(t, ξ, ν) as the solution of the integral equation

p(t, ξ, ν) = p0(ξ + νt, ν) exp(−ct) + c

2(1 − δ)

∫ t

0

∫
Vδ

p(s, ξ + ν(t − s), ν ′) exp(c(s − t))dν′ ds

(see Dautray et al., 1989, Chapter 3, Section 3.2.1). Gronwall’s lemma implies that p(t, ξ, ν) is bounded
and thus integrable w.r.t. ν. A second application of Gronwall’s lemma then leads to (3.15). �
We now consider problems satisfying (3.13).

PROPOSITION 3.1 For all (x, v) ∈ D and T > 3d
δ , the transition probability of (X D

T , V D
T ) starting at

(x, v) admits a density pD(T, (x, v), (x1, v1)) with respect to the Lebesgue measure on D. Moreover,
there exists M > 0 such that

ess sup
(x1,v1)∈D×Vδ

pD(T, (x, v), (x1, v1)) � M.

REMARK 3.2 We emphasize that, in the above statement and in the proof below, the specific form of
the velocity domain Vδ is used to ensure the existence of the density pD . Indeed, suppose that Vδ =
(−1, 1) (which corresponds to the Lehner–Wing model that we will consider in Section 4 for numerical
illustrations). Then, for all t > 0, one has Px,0(X D

t = x, V D
t = 0, S1 > t) > 0, and therefore the law

of (X D
t , V D

t ) has an atomic component.

Proof. We first prove the existence of the density pD . Let B0 be a Borel subset of D with zero Lebesgue
measure. We aim to show that

Px,v ((X D
T , V D

T ) ∈ B0) = 0

for all T > 3d
δ . Fix T > 3d

δ . We have

Px,v ((X D
T , V D

T ) ∈ B0) = Px,v ((X D
T , V D

T ) ∈ B0, S2 � T ),

where S2 is the second collision time. Indeed, since T > 3d
δ , if two collisions do not occur before T , the

process has been absorbed at the boundary, and hence

Px,v ((X D
T , V D

T ) ∈ B0, S2 > T ) = 0.

We also have

Px,v ((X D
T , V D

T ) ∈ B0, S2 � T ) � Px,v ((XT , VT ) ∈ B0, S2 � T ),

where (Xt , Vt ) is the Markov transport process associated to the transport equation in the whole space.
We now observe

Px,v ((XT , VT ) ∈ B0, S2 � T )

= E

∫∫
G
Px+θ1v+θ2V1,V2((XT−θ1−θ2 , VT−θ1−θ2) ∈ B0) c2e−c(θ1+θ2)dθ1 dθ2,
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ON A MONTE CARLO METHOD FOR NEUTRON TRANSPORT CRITICALITY COMPUTATIONS 669

where G := {0 < θ1, 0 < θ2, θ1 + θ2 � T } and V1, V2 are independent copies of the uniform law on
Vδ . Let (θ1, θ2) be in G. The pair

(x + θ1v + θ2V1, V2)

admits a density with respect to the Lebesgue measure, and therefore Lemma 3.2 implies that

Px+θ1v+θ2V1,V2((XT−θ1−θ2 , VT−θ1−θ2) ∈ B0) = 0 a.s.

We thus have proved the existence of the density pD(T, (x, v), (x1, v1)).
We now exhibit a bound from above for pD(T, (x, v), (x1, v1)). Without loss of generality we as-

sume v > 0. For technical reasons, we now need to consider the first three collision times. We observe
that, since T > 3d

δ ,

Px,v ((X D
T , V D

T ) ∈ B0, S3 > T ) = 0.

Set G̃ := {0 < θi , (1 � i � 3), θ1 + θ2 + θ3 � T }. Now, for all Borel subset B of D we have

Px,v ((X D
T , V D

T ) ∈ B)

� E
∫∫

G̃
Px+θ1v+θ2V1+θ3V2,V3((XT−θ1−θ2−θ3 , VT−θ1−θ2−θ3) ∈ B)

× c2e− c(θ1+θ2+θ3)dθ3 dθ2 dθ1.

Fix θ1, θ2 and θ3 in G̃. In view of Lemma 3.2, the law of (Xs, Vs) has a density qx,v,θ1,θ2,θ3(s, ξ, ν)
when the initial law is the law of (x + θ1v + θ2V1 + θ3V2, V3). It is easy to check that the density of
x + θ1v + θ2V1 + θ3V2 is bounded from below by Cδ inf

( 1
θ2

, 1
θ3

)
for some Cδ which does not depend

on the θi ’s. Observe that this bound from below is a function of (θ2, θ3) which is locally integrable w.r.t.
dθ2 dθ3 around the origin. We now use (3.15) and, for some new constant Cδ we get

Px,v ((X D
T , V D

T ) ∈ B) � Cδ

∫∫
G̃

inf

(
1

θ2
,

1

θ3

)
e−c(θ1+θ2+θ3)dθ3 dθ2 dθ1 < ∞.

That completes the proof. �

3.3.3 A bound from below for the transition density of (X D
t , V D

t ). Our aim is now to prove that (3.4)
and (3.5) hold.

PROPOSITION 3.2 As above, let T > 3d
δ and let A denote the set ( d

4 , 3d
4 ) × Vδ . (Improperly!) set

Ac :=
((

0,
d

4

)
∪

(
3d

4
, d

))
× Vδ.

(i) We have

ess inf
(y,u)∈A

pD(T, (x, v), (y, u)) > 0.

(ii) There is a constant κ > 0, such that∫∫
A
Px,v (τ

D > t)dx dv � κ

∫∫
Ac
Px,v (τ

D > t)dx dv for all t > 0.
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670 S. MAIRE AND D. TALAY

Proof. We first prove (ii). Let (x, v) ∈ A and let tA (respectively, tD) be the deterministic exit time from
A (respectively, D) in free motion from x with velocity v . We have

Px,v (τ
D > t) � Px,v (X D

t ∈ D, tA � S1 � tD)

= E

∫ tD

tA

Px+s1v,Y (X D
t−s1

∈ D)ψS1(s1)ds1,

where Y is uniformly distributed on the velocity space and

ψS1(s1) = c exp(−cs1).

We obviously have

Px+s1v,Y (X D
t−s1

∈ D) � Px+s1v,Y (X D
t ∈ D) a.s.,

and therefore

Px,v (τ
D > t) � 1

2(1 − δ)
E

∫
Vδ

∫ tD

tA

Px+s1v,v1(X D
t ∈ D)ψS1(s1)ds1 dv1.

First assume that v < 0. We then have x + vtD = 0 and x + vtA = d
4 . Using that ψS1(s1) � c exp(−cd)

and the change of variable x1 = x + s1v , and observing that 1/|v| > 1, we get

Px,v (τ
D > t) � c

2(1 − δ)
exp

(
−cd

δ

) ∫
Vδ

∫ d
4

0
Px1,v1(X D

t ∈ D)dx1 dv1.

On the other hand, if v > 0, we have x + vtD = d and x + vtA = 3d
4 . Proceeding as above, we get

Px,v (τ
D > t) � c

2(1 − δ)
exp

(
−cd

δ

) ∫
Vδ

∫ d

3d
4

Px1,v1(X D
t ∈ D)dx1 dv1.

Hence,

Px,v (τ
D > t) + Pd−x,−v (τ

D > t) � c

2(1 − δ)
exp

(
−cd

δ

)
×

∫∫
Ac
Px1,v1(X D

t ∈ D)dx1 dv1.

Using the symmetry of the domain, we have

Px,v (τ
D > t) = Pd−x,−v (τ

D > t),

which implies that

Px,v (τ
D > t) � c

4(1 − δ)
exp

(
−cd

δ

) ∫∫
Ac
Px1,v1(X D

t ∈ D)dx1 dv1.

It remains to integrate w.r.t. x and v to obtain (ii).
We now turn to (i). It suffices to prove that

∃β > 0, Px,v

(
X D

T ∈ (y − ε, y + ε), V D
T ∈

(
u − ε

2T
, u + ε

2T

))
> βε2
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ON A MONTE CARLO METHOD FOR NEUTRON TRANSPORT CRITICALITY COMPUTATIONS 671

for all (x, v) ∈ D × V and (y, u) ∈ A and all ε small enough. We first build a deterministic path starting
at (x, v), reaching (y, u) at time T and staying sufficiently far from the boundary of D. We define γ1
such that the location x1 at the first collision time s1 satisfies γ1 � inf(x,1−x)

2 . Then, the motion goes
towards y and stays at a distance at least γ

2 from the boundary by moving and colliding N − 1 times at
distinct times s j with velocities v j . The last part of the path at the velocity u lasts T − sN−1. The idea
is now to build sufficiently many random paths from this deterministic path. We let S j be the collision-
times and V D

j the corresponding velocities. We also let γ2 = min(γ1,
γ
2 ), choose ε > 0 small compared

to γ2 and η such that the intervals G j = [s j − η, s j + η] and Hj = [v j − η, v j + η] are included in the
support of the S j and the V D

j . Thus, all the paths that we can build from these values stay in D. We now
define

D1 =
⎡
⎣y − ε � x + S1v +

N−2∑
j=1

(S j+1 − S j )V
D
j + (T − SN−1)V

D
N−1 � y + ε

⎤
⎦ ,

D2 = [S j ∈ G j ∀ j � N − 1],

D3 = [V D
j ∈ Hj ∀ j � N − 2],

D4 =
[
u − ε

2T
� V D

N−1 � u + ε

2T

]
,

D5 = [SN � T ].

We thus have

Px,v

(
(X D

T , V D
T ) ∈

(
[y − ε, y + ε] ×

[
u − ε

2T
, u + ε

2T

]))
� Px,v (D1 ∩ D2 ∩ D3 ∩ D4 ∩ D5).

Integrating with respect to the laws of V D
N−1 and SN , using that SN−1 � T � SN and letting

D6 =
⎡
⎣y − ε � x + S1v +

N−2∑
j=1

(S j+1 − S j )V
D
j + (T − SN−1)

(
u − ε

2T

)⎤
⎦ ,

D7 =
⎡
⎣x + S1v +

N−2∑
j=1

(S j+1 − S j )V
D
j + (T − SN−1)

(
u + ε

2T

)
� y + ε

⎤
⎦ ,

we can bound the previous expression from below by
ε

2T (1 − δ)
exp(−cT )Px,v (D2 ∩ D3 ∩ D6 ∩ D7).

Let

D8 :=
⎡
⎣y − ε

2
� x + S1v +

N−2∑
j=1

(S j+1 − S j )V
D
j + (T − SN−1)u � y + ε

2

⎤
⎦ .

An integration provides

Px,v (D2 ∩ D3 ∩ D8) =
∫

G1

· · ·
∫

GN−1

∫
H1

· · ·
∫

HN−2

ϕS1,...,SN−1(t1, . . . , tN−1)

× ψV D
1 ,...,V D

N−2
(y1, . . . , yN−2) ID� (t1, . . . , tN−1) dt1 · · · dtN−1 dy1 · · · dyN−2,
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672 S. MAIRE AND D. TALAY

where

D9 =
⎡
⎣y − ε

2
� x + t1v +

N−2∑
j=1

(t j+1 − t j )y j + (T − tN−1)u � y + ε

2

⎤
⎦ .

The previous expression is bounded from below by

C1

∫
G1

· · ·
∫

GN−1

∫
H1

· · ·
∫

HN−2

ID� (t1, . . . , tN−1) dt1 · · · dtN−1 dy1 · · · dyN−2,

with

C1 = inf
ti ∈Gi

ϕS1,...,SN−1(t1, . . . , tN−1) inf
yi ∈Hi

ψV D
1 ,...,V D

N−2
(y1, . . . , yN−2).

We now let θ1 = t1, θ2 = t2 − t1, . . . , θN−1 = tN−1 − tN−2 to transform the above integral into an
integral of the form∫

G1

· · ·
∫

GN−1

∫
Z1

· · ·
∫

ZN−2

ID�� (θ1, . . . , θN−1)dθ1 · · · dθN−1 dy1 · · · dyN−2,

where

D10 =
⎡
⎣y − ε

2
� x + T u + θ1(v − u) +

N−1∑
j=2

θ j (y j−1 − u) � y + ε

2

⎤
⎦ .

A change of variables allows us to transform the domain into [0, 1]2N−1, and therefore we now have to
bound from below an integral of the form

∫ 1

0
· · ·

∫ 1

0
Iq− ε

��x�+∑N−�
j=� x j y j�q+ ε

�
dx1 · · · dxN−1 dy2 · · · dyN−1.

We observe that ∫ 1

0

∫ 1

0
f (xy)dx dy =

∫ 1

0
− ln(t) f (t)dt

for all bounded measurable functions f . Similarly, the change of variables u1 = x1 and u j = x j y j ,
j � 2, leads us to

I :=
∫ 1

0
· · ·

∫ 1

0

N−1∏
j=2

(− ln(u j ))Iq− ε
��

∑N−�
j=� u j�q+ ε

�
du1 · · · duN−1.

There exists ζ > 0 such that

J :=
∫ 1

0

∫ ζ

0
· · ·

∫ ζ

0

N−1∏
j=2

(− ln(u j ))Iq− ε
��

∑N−�
j=� u j�q+ ε

�
du1 · · · duN−1
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is strictly positive. For such a ζ > 0 we have

I � (− ln(ζ ))N−2
∫ 1

0

∫ ζ

0
· · ·

∫ ζ

0
Iq− ε

��
∑N−�

j=� u j�q+ ε
�

du1 · · · duN−1.

A final normalization leads us to a bound from below of the type

∫ 1

0
· · ·

∫ 1

0
Iq̃−ε̃�∑N−�

j=� x j�q̃+ε̃
dx1 · · · dxN−1,

for some ε̃ > 0 and c̃ > ε̃, which is nothing else than

P(q̃ − ε̃ � S � q̃ + ε̃),

where S is the sum of N − 1 uniform and independent random variables. Its density ΨS satisfies
ΨS(c̃) > 0 since, by construction, c̃ ∈ (0, N − 1). Thus,

P(q̃ − ε̃ � S � q̃ + ε̃) � θ ε̃,

for some θ > 0, from which the conclusion follows. �

4. Numerical experiments for the Lehner–Wing model

4.1 Description and stochastic representation

In this section, we study the Cauchy problem

∂u

∂t
(t, x, v) = −v

∂u

∂x
(t, x, v) − u(t, x, v) + c

2

∫
V

u(t, x, v ′)dv ′,

with the initial condition u(0, x, v) = u0(x, v) and the absorption boundary condition (2.7). The spatial
domain is (0, A), the velocity domain is V = (−1, 1) and c is a positive constant. This homogeneous
and isotropic model is known as the Lehner–Wing model (Dautray & Lions, 1988, Chapter 18) and is
also called multiplying slabs (Dahl & Sjostrand, 1979). We have to find the value of the constant c such
that the system is critical. In spite of the fact that the velocity domain contains 0, one can prove that the
principal eigenvalue is real and simple: see Dautray & Lions (1988, Chapter 18).

From

∂u

∂t
(t, x, v) = −v

∂u

∂x
(t, x, v) + c

{
1

2

∫
V

u(t, x, v ′)dv ′ − u(t, x, v)

}
+ (c − 1)u(t, x, v)

we get the stochastic representation

u(t, x, v) = exp((c − 1)t)Ex,v [u0(Xt , Vt )It<τ D ].

The velocity after a collision has a uniform law on V . The cumulative distribution of the time between
two collisions is Fx,v (t) = 1 − exp(−ct). For any fixed c, we compute the principal eigenvalue using
the estimators described in Section 2. To compute the criticality factor, i.e. the critical value of c, we
then use the fact that the principal eigenvalue is an increasing function of c.
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4.2 Numerical computation of u(t, x, v)

We compute

u(t, x, v) = exp((c − 1)t)Ex,v [u0(Xt , Vt )It<τ D ]

by using a Monte Carlo method. The initial condition u0 can be arbitrarily chosen because we are only
interested in computing the principal eigenvalue. Nevertheless we choose u0 ≡ 1 for the following two
reasons. First, the stationary solution tends to u0 ≡ 1 and the criticality factor tends to 1 when the spatial
domain increases to R; therefore, if the spatial domain is large enough, the initial solution u0 ≡ 1 is
close to the eigenfunction relative to the principal eigenvalue, which ensures that the leading term in the
right-hand side of (2.2) dominates the remaining term even for small values of t . Second, the solution
simplifies to

u(t, x, v) = Px,v (τ
D > t) exp((c − 1)t),

which reduces the cost of the simulation.

4.3 Approximation of the principal eigenvalue by the direct method

We study this model with A = 8, and the trajectories start from E = [3.5, 4.5] × [−0.5, 0.5]. We make
the trajectories start near the centre of the spatial domain with small velocities because we desire that
the trajectories reach the boundary as late as possible. We choose c = 1, which leads to a subcritical
system. Figure 1 shows the time evolution of the direct approximation ᾱ0(t) := 1

t log(gE (t)) obtained
with 106 trajectories for 100 � t � 400.

It is difficult to deduce an accurate estimate of the principal eigenvalue from this figure. The value
seems to be around −0.037. We can easily explain why the direct method does not work well: we have
to compute the probability of an event which becomes rarer and rarer when time increases (for, only
five of our 106 simulated trajectories is τ D larger than 400) and, in addition, we have to compute the
logarithm of this probability.

FIG. 1. Direct method; x-axis: t ; y-axis: ᾱ0(t).
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FIG. 2. Interpolation method; x-axis: t1; y-axis: α0(t1, t1 + 20).

TABLE 1 Approximation of the Principal Eigenvalue by the
Interpolation Method

t1 binf α0(t1, t2) bsup

50 −3.7361 × 10−2 −3.7344 × 10−2 −3.7326 × 10−2

55 −3.7360 × 10−2 −3.7341 × 10−2 −3.7322 × 10−2

60 −3.7364 × 10−2 −3.7344 × 10−2 −3.7321 × 10−2

4.4 Approximation of the principal eigenvalue by the interpolation method

We now consider the interpolation method of Section 2.3.2. Figure 2 shows the time evolution of the
estimators α0(t1, t2) considered as a function of t1, after having fixed t2 − t1 = 20, which appears to
be a good choice in terms of variance reduction (we have again used 106 trajectories). It shows that the
interpolation method is more stable than the direct method, and that the principal eigenvalue is close
to −0.0374.

Table 1 summarizes the results obtained with 109 trajectories for three different values of t1 (the
very large number of trajectories ensures highly accurate approximations of α0(t1, t2)). The confidence
intervals are (b inf, b sup).

The three confidence intervals and the three values α0(t1, t2) are almost identical, which indicates
that the remaining term in (2.11) is negligible. We approximate α0 by α0(50, 70). We note that the length
of the confidence interval is around 4 × 10−5, and that practitioners often desire a 10−5 accuracy for the
criticality factor.

4.5 Approximation of the principal eigenvalue by least-squares approximation

Figure 3 shows the time evolution of least-squares estimators α0(tp, tq , m) of the principal eigenvalue.
We choose m = 400 and 20 � tp � 100. The other parameters are as in Section 4.3. Compared
to the interpolation method, the least-squares method appears to be much more accurate. Actually, it
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FIG. 3. Least-square approximation (c = 1); x-axis: tp ; y-axis: α0(tp, tp + 20, 400).

provides an approximation of the principal eigenvalue within [−0.0374, −0.0373], which means that
the accuracy is of order 10−4.

4.6 Computation of the criticality factor by the interpolation method

For parameters chosen as above, the criticality factor is close to 1.0364019 (see Dahl and Sjostrand,
1979). Using the interpolation method, we compute two approximate values of α0 corresponding to
two rough approximations of c resulting from a small number of simulations, e.g. cmin = 1.036 and
cmax = 1.037.

For c = cmin, Table 2 shows that we can choose α0 � −4.13 × 10−4.
For c = cmax, Table 3 shows that we can choose α0 � 6.21 × 10−4.
Using the secant method, the criticality factor can be approximated by

cmin − α0 min
cmax − cmin

α0 max − α0 min
= 1.036399.

The accuracy is of order 10−5 since the reference value obtained by Dahl and Sjostrand (1979) has an
accuracy of order 10−8.

TABLE 2 Approximation of the Criticality Factor by
the Interpolation Method; c = cmin

t1 binf α0 min(t0, t1) bsup

50 −4.28 × 10−4 −4.12 × 10−4 −3.94 × 10−4

55 −4.28 × 10−4 −4.13 × 10−4 −3.94 × 10−4

60 −4.28 × 10−4 −4.16 × 10−4 −3.96 × 10−4
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TABLE 3 Approximation of the Criticality Factor
by the Interpolation Method; c = cmax

t1 binf α0 max(t0, t1) bsup

50 6.05 × 10−4 6.22 × 10−4 6.38 × 10−4

55 6.02 × 10−4 6.21 × 10−4 6.39 × 10−4

60 5.9 × 10−4 6.19 × 10−4 6.4 × 10−4

4.7 Computation of the criticality factor by the least-squares method

We now use the least-squares method to approximate c. We use cmin = 1.03639 and cmax = 1.03641.
Figures 4 and 5 show the time evolution of the principal eigenvalue corresponding to these two values
of c. We observe that the estimators of the principal eigenvalue are stable on the time interval (40, 55).
After time 55, the statistical error of the Monte Carlo method becomes too large because the event
(τ D > t) becomes too rare. We thus use the approximations of the principal eigenvalue obtained at
time t = 55, namely −1.08 × 10−5 and 1.01 × 10−5. The opposite signs of these eigenvalues confirm
that the criticality factor is located in the interval [1.03639, 1.03641]. Using the secant method as above,
we now obtain c � 1.0364003. The accuracy now is of order 10−6. To obtain this result, the CPU time
on a DEC 600 MHz computer has been around 10 h. This cost is high for a 1D problem. However, it
would not increase rapidly with the dimension of the problem.

5. Numerical experiments for two extended Lehner–Wing models

5.1 An anisotropic model

5.1.1 The physical model. We now consider a model more general than the Lehner–Wing model
where the anisotropy is taken into account. We have to solve the Cauchy problem

∂u

∂t
= −v

∂u

∂x
+ (c − 1)u(t, x, v) + c

2

∫
V
(1 + 3µvv ′)u(t, x, v ′)dv ′,

with an initial condition u(0, x, v) = u0(x, v) and absorption boundary conditions. The constant µ
represents the average of the cosines of the angles of deviation at the collision. As in Dahl &
Sjostrand (1979) we choose µ in the interval [0, 0.3]. As explained above, we choose u0 ≡ 1. The
density of the velocity after a collision now is f (v ′) = ( 1+3µvv ′

2 ), where v is the velocity before the
collision. Let a = 3µv . The simulation of the velocity is achieved by

−1 + √
1 − 2a + a2 + 4aU

a
,

where U is uniformly distributed on [0, 1] (this can be checked by inverting the distribution function
of f ).

5.1.2 Numerical results. We choose µ = 0.1. The critical value computed by Dahl and Sjostrand is
1.0932421. We compute the principal eigenvalue at time t = 50 for c = 1.09323 and c = 1.09325. We,
respectively, obtain α0 = −1.1 × 10−5 and α0 = 7 × 10−6. The criticality factor is approximated by
c � 1.0392422. The error is of order 10−6. We have found similar accuracies for various values of µ,
which confirms the efficiency of this method.

 at U
niversity of B

ath on Septem
ber 24, 2015

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from
 

http://imajna.oxfordjournals.org/


678 S. MAIRE AND D. TALAY

FIG. 4. Least-squares approximation (c = 1.03639); x-axis: tp ; y-axis: α0(tp, tp + 20, 400).

FIG. 5. Least-squares approximation (c = 1.03641); x-axis: tp ; y-axis: α0(tp, tp + 20, 400).

5.2 Multiplying spheres

5.2.1 The physical model. We now consider the Cauchy problem

∂u

∂t
= −v∇xu(t, x, v) + (c − 1)u(t, x, v) + c

(
1

4π

∫
S2

u(x, z1, t)dz1 − u(t, x, z)

)
,

with an initial condition u(0, x, v) = u0(x, v) and absorption boundary conditions. The velocity domain
is the unit sphere S2 and the spatial domain is the ball centred at the origin of radius d.
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5.2.2 Simulation of the velocities on the unit sphere. The density of the velocities on the unit sphere
S2 is

f (θ, ϕ) = 1

2
sin(θ)I[�,π ](θ)

1

2π
I[�,�π ](ϕ).

To simulate a random variable with density

g(θ) = 1

2
sin(θ)I[�,π ](θ),

we simulate

Z = 2 arcsin(
√

U ),

where U has a uniform distribution on [0, 1]. The three components of the velocity are

vx = sin(θ) sin(ϕ), vy = sin(θ) cos(ϕ), vz = cos(θ),

where the density of θ is g, and ϕ has a uniform distribution on [0, 2π ].

5.2.3 Numerical results. We choose d = 8. The criticality factor computed by Dahl and Sjostrand is
c = 1.1384602. We approximate it using the least-squares method to compute the principal eigenvalue,
and we use 2 billion trajectories. The principal eigenvalues corresponding to cmin = 1.1384 and cmax =
1.1385, respectively, are −8 × 10−5 and 5 × 10−5. The secant method then leads to c � 1.138462.
Again the accuracy is of order 10−6.

6. Study of a bidimensional inhomogeneous problem

The above Lehner–Wing model and its variants were 1D. Thus, in these cases, deterministic methods are
certainly much more efficient than Monte Carlo methods. However, our Monte Carlo method provides
a satisfactory accuracy on the criticality factor.

In this section and in Section 7, we aim to show that our method still leads to a good approximation
of the keff coefficient in multidimensional situations where the cost and the complexity of deterministic
methods render Monte Carlo methods attractive and competitive, even if the number of simulations
often needs to be large to obtain a good accuracy (our various choices for this number are made in terms
of the desired accuracy according to the confidence intervals described in Section 2.3.2). In addition,
the programming of Monte Carlo methods for these problems is much easier than the programming of
deterministic methods.

We note that, in the examples below, to our knowledge, no theoretical result allows us to be sure that
the principal eigenvalue exists and is simple. Indeed, the fission cross section Σf is inhomogeneous and
locally equal to 0; in addition, the velocity domain includes 0.

6.1 The physical model

We now consider a variant of the Khalil test case (Khalil, 1986). It has been suggested to Seumen
Tonou (1997) by Xavier Warin at the Électricité de France. The eigenvalue problem is

LΨ = 1

λ
FΨ,
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FIG. 6. The physical domain.

where the operators L and F are defined by

Lu(x, y, µ, φ) = µ
∂u

∂x
+

√
1 − µ2 cos(φ)

∂u

∂y
+ Σtcs(x, y)u

− Σs(x, y)

4π

∫ 1

−1

∫ 2π

0
u(x, y, µ, φ)dµ dφ,

and

Fu(x, y) = υ(x, y)Σf(x, y)

4π

∫ 1

−1

∫ 2π

0
u(x, y, µ, φ)dµ dφ.

The physical domain D (see Fig. 6) is divided into five zones. Each zone is characterized by its total
cross section Σtcs and its scattering cross section Σs. The splitting zones are also characterized by their
fission cross section Σf which indicates the possibility of a fission at point (x, y). The average number
of neutrons by fission at (x, y) is ν(x, y).

The dimensions of zone 1 are 30 × 25, etc. The characteristics of the zones are listed in Table 4.

TABLE 4 Characteristics of the zones

Zone νΣf Σtcs Σs

1 0.079 0.6 0.53
2 0 0.48 0.20
3 0.043 0.70 0.66
4 0 0.65 0.50
5 0 0.90 0.89
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6.2 The stochastic representation of the Cauchy problem

The Cauchy problem is

∂u

∂t
= b(µ, φ) · ∇x,yu + c(x, y)u

+ γ (x, y)

∫∫
V
(u(x, y, η, ζ, t) − u(x, y, µ, φ, t))π(x, y, η, ζ )dη dζ,

with

b(µ, φ) = (−µ, −
√

1 − µ2 cos(φ)),

c(x, y) = ν(x, y)Σf(x, y) + Σs(x, y) − Σtcs(x, y),

γ (x, y) = ν(x, y)Σf(x, y) + Σs(x, y),

π(x, y, η, ζ ) = 1

4π
I[−�,�]×[�,�π ](η, ζ ).

The Feynman–Kac formula writes

u(x, y, µ, φ, t) = Ex,y,µ,φ

[
Iτ D>t u0(Xt , Vt ) exp

(∫ t

0
c(Xs, Vs)ds

)]
.

6.3 Variance reduction

6.3.1 The computational domain. As for homogeneous models, a Monte Carlo method is used to
compute

gE (t) = 1

vol(E)

∫
E

u (x, y, µ, φ, t) dx dy dµ dφ,

for E ⊂ D. The most natural choice is E = D. A better choice in terms of variance reduction is the
zone with the highest number of splittings, i.e. the zone 1, since the function u takes small values in the
other zones. In view of the characteristics of the model, an even better choice is the bottom left quarter
of this zone. This observation is confirmed by our numerical experiments.

6.3.2 The choice of the initial condition. In view of the expansion (2.2) it is best to choose u0 equal
to an eigenfunction corresponding to the principal eigenvalue. To get a rough approximation of this
eigenfunction, one can use either a deterministic method (see Warin, 1993) or a Monte Carlo method
with a relatively small number of particles (see Brockway et al., 1985). The numerical experiments
confirm that this technique is efficient.

6.4 Computation of the criticality factor

We combine the techniques presented in Sections 6.3.1 and 6.3.2 and we use the least-square method to
approximate the principal eigenvalue. We simulate 600 million trajectories. Figures 7 and 8, respectively,
correspond to λ = 1.0095 and λ = 1.0085, and represent the time evolution of the estimator of the
principal eigenvalue.

Using the secant method again and the two approximate values −3.9 × 10−5 and 3.1 × 10−5 of the
principal eigenvalue, we find keff � 1.00894. Compared to the reference value 1.00890 provided by
Xavier Warin, the error is 4 × 10−5.
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FIG. 7. Least-square approximation (λ = 1.0095); x-axis: tp ; y-axis: α0(tp, tp + 20, 400).

FIG. 8. Least-square approximation (λ = 1.0085); x-axis: tp ; y-axis: α0(tp, tp + 20, 400).

7. A 3D problem

7.1 The physical model

Now consider the operators L and F defined as

Lu(x, v) = v∇xu(t, x, v) + Σtcs(x, v)u(t, x, v) − Σs(x, v)

4π

∫
S2

u(t, x, v ′)dv ′,

and

Fu(x, v) = ν(x, y)Σf(x, v)

4π

∫
S2

u(t, x, z)dz.
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The domain D is 3D: the two first spatial coordinates lie in the 2D domain of Section 6.4, and the third
spatial coordinate lies in the interval [0, 66]. We again divide the domain into five zones with the same
characteristics as above.

7.2 The stochastic representation

The Cauchy problem writes

∂u

∂t
= b(v).∇xu + c(x, v)u + γ (x, v)

{∫∫
S2

(u(x, v1, t) − u(t, x, v))π(x, v1)dv1

}
,

with

b(v) = (−vx , −vy, −vz),

c(x, v) = ν(x, v)Σf(x, v) + Σs(x, v) − Σtcs(x, v),

γ (x, v) = ν(x, v)Σf(x, v) + Σs(x, v),

π(x, v) = 1

4π
IS�(v).

7.3 Numerical results

Our numerical experiment is performed for λ = 0.971 and λ = 0.972. The corresponding approxi-
mate principal eigenvalues are, respectively, 3.9 × 10−5 and −3.4 × 10−5. Using the secant method,
the approximate value of the keff coefficient is 0.97146 whereas the reference value is 0.97142 (see
Warin, 1993), so that the error is around 4 × 10−5.

8. Conclusion

We have developed and studied a probabilistic method to obtain both theoretical and numerical results
on the principal eigenvalues of neutron transport operators. An accurate study of the law of the Markov
process related to this transport operator allowed us, for homogeneous models, to establish a probabilis-
tic representation of the principal eigenvalue. The crucial point was to find both lower and upper bounds
for the transition density of this process. One should be able to extend our technique and results to more
general homogeneous transport operators.

The numerical method has been tested on various homogeneous and inhomogeneous models. For
all these problems, we have obtained very good accuracy for the principal eigenvalue and the criticality
parameters. Our Monte Carlo method has two main drawbacks compared to deterministic methods. In
spite of various variance-reduction techniques, CPU times are long to obtain good accuracy of criticality
factors. Furthermore, our method does not compute an approximation of the critical eigenfunction.
However, this last point can be considered as an important advantage. As we do not need to compute this
critical eigenfunction, the complexity of our method depends weakly on the dimension of the problem.
For some inhomogeneous 2D and 3D problems, we have observed similar CPU times.

The probabilistic approach presented here does not allow one to obtain approximate eigenfunctions.
Nevertheless further extensions and improvements of the method are possible. For example, we can also
consider even more difficult problems where the velocity of the neutrons is not normalized.
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No additional discretization is required (which would not be true if we were to use a deterministic
method). The only difference consists in changing the law of the velocities after a collision. Another
advantage of the Monte Carlo method is that it provides an approximation of the principal eigenvalue,
which allows one to see whether the reactor is supercritical or subcritical. Some refinements of the
variance-reduction techniques can be developed, such as weighted least-squares estimators or biasing
methods. We also emphasize that, as any other Monte Carlo method, our method can take advantage of
parallel computing. Finally, the method can be applied for the numerical computation of the principal
eigenvalue of elliptic operators in high dimensions or in complex domains. The situation would then be
very similar to the homogeneous transport problem, except that an additional error appears which is due
to the discretization of the stochastic differential equation. These studies are in progress.
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DAHL, E. B. & SJOSTRAND, N. G. (1979) Eigenvalue spectrum of multiplying slabs and spheres for monoener-

getic neutrons with anisotropic scattering. Nucl. Sci. Eng., 69, 114–125.
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