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(I − σsKσ)Φ = λνσfKσΦ,

Eigenvalue problem arising from reactor criticality computation

Theory on the derivation in the thesis by Fynn Scheben

Interest in the smallest eigenvalue (which is real and positive)

Can be written as

Ax = λBx, λ ∈ C, x ∈ C
n

In this talk: B = I (but all results extend to B 6= I)
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Shift-invert strategy

Wish to find a few eigenvalues close to a shift σ

λ λ λλ 4 λn

σ

1 23

Problem becomes

(A− σI)−1
x =

1

λ− σ
x

each step of the iterative method involves repeated application of
A = (A− σI)−1 to a vector

Inner iterative solve:
(A− σI)y = x

using Krylov method for linear systems. (CG, MINRES, GMRES, ...)

leading to inner-outer iterative method.



Shift-invert strategy

This talk:
Convergence of outer iteration

Inner iteration and preconditioning

Inverse iteration and Arnoldi method
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Classical methods for finding one eigenvalue

Inverse iteration/Rayleigh quotient iteration

INPUT: Matrix A shift σ ≈ λ, initial vector x0 with ‖x0‖ = 1.
OUTPUT: Approximate eigenpair (λ, x)
for i = 1 to . . . do

Choose shift σ.
Solve for x̂

(A− σI)x̂ = x

Rescale x =
x̂

‖x̂‖
,

Update λ = ρ(x) = xHAx,
Test for convergence (using eigenvalue residual (r = (A− λI)x).

end for



Classical methods for finding one eigenvalue

Inexact Inverse iteration/Inexact Rayleigh quotient iteration

INPUT: Matrix A shift σ ≈ λ, initial vector x0 with ‖x0‖ = 1.
OUTPUT: Approximate eigenpair (λ, x)
for i = 1 to . . . do

Choose shift σ.
Run k steps of a Krylov subspace method to obtain x̂ such that

0 ≤ ‖(A− σI)x̂− x‖ ≤ ξ,

Rescale x =
x̂

‖x̂‖
,

Update λ = ρ(x) = xHAx,
Test for convergence (using eigenvalue residual (r = (A− λI)x).

end for
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Convergence rates of exact methods

Inverse iteration: linear convergence

Rayleigh quotient iteration (RQI): cubic convergence for normal A
(otherwise quadratic)



Classical methods for finding one eigenvalue

Convergence rates of exact methods

Inverse iteration: linear convergence

Rayleigh quotient iteration (RQI): cubic convergence for normal A
(otherwise quadratic)

Convergence rate analysis of inexact methods

Main requirement: decreasing accuracy of the inner solves:

ξ
(i+1) ≤ ξ

(i)

The convergence speed of the exact methods can be re-established.
[Lai/Lin/Lin ’97, Golub/Ye ’00, Simoncini/Elden ’02, F./Spence ’07,
Elman/Xue ’09, ...]
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Error indicator (Orthogonal decomposition, symmetric A)
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Error indicator (Orthogonal decomposition, symmetric A)
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   Q x  = O (sin       )      measure for the error

x
(i) = cos θ(i)x1 + sin θ(i)x

(i)
⊥
, x

(i)
⊥

⊥ x1.

Generalisations to nonsymmetric A exist.

Eigenvalue residual

C1| sin θ
(i)| ≤ ‖r(i)‖ ≤ C2| sin θ

(i)|



Convergence rates of inexact inverse iteration - independent of the inner
solver

Error in θ (eigenvector)

tan θ(i+1) ≤
|λ1 − σ

(i)|

|λ2 − σ
(i)|

T
(i)

Exact solves: T (i) = tan θ(i)

Inexact solves T (i) =
| sin θ(i)|+ ‖(I − x1x

∗

1)s
(i)‖

| cos θ(i) − ‖x∗

1s
(i)‖

, ‖s(i)‖ ≤ ξ(i)



Convergence rates of inexact inverse iteration - independent of the inner
solver

Error in θ (eigenvector)

tan θ(i+1) ≤
|λ1 − σ

(i)|

|λ2 − σ
(i)|

T
(i)

Exact solves: T (i) = tan θ(i)

Inexact solves T (i) =
| sin θ(i)|+ ‖(I − x1x

∗

1)s
(i)‖

| cos θ(i) − ‖x∗

1s
(i)‖

, ‖s(i)‖ ≤ ξ(i)

Choice of τ

Choice 1: ξ(i) = C‖r(i)‖ = O(sin θ(i)) ⇒ T (i) = O(tan θ(i))

Choice 2: ξ(i) = constant ⇒ T (i) = O(1)



Classical methods for finding one eigenvalue

Inexact Inverse iteration/Inexact Rayleigh quotient iteration

INPUT: Matrix A shift σ ≈ λ, initial vector x0 with ‖x0‖ = 1.
OUTPUT: Approximate eigenpair (λ, x)
for i = 1 to . . . do

Choose shift σ.
Run k steps of a Krylov subspace method to obtain x̂ such that

0 ≤ ‖(A− σI)x̂− x‖ ≤ ξ,

Rescale x =
x̂

‖x̂‖
,

Update λ = ρ(x) = xHAx,
Test for convergence (using eigenvalue residual (r = (A− λI)x).

end for

Convergence rates

If the solve tolerance is decreased, i.e.

ξ
(i) = C‖r(i)‖

then convergence rate is linear (same convergence rate as for exact solves).



Inexact methods

Example: matrix sherman5, n = 3312, fixed shift σ = 0.

exact solution (Matlab backslash)

inexact solution (full GMRES) with decreasing tolerance

termination when ‖r(i)‖ ≤ 10−9, where

preconditioned GMRES with incomplete LU preconditioners P
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Inexact methods - observation

Observation in the unpreconditioned case

increasing accuracy ⇒ number of inner iterations remains ≈ constant
(fixed accuracy ⇒ number of inner iterations ≈ decreasing)

Explanation

right hand side x is an approximate eigenvector in inexact RQI

beneficial for Krylov subspace methods! [F./Spence ’07-09]

Basic idea - key observation

Solving Bx = b with a Krylov method, where b is an eigenvector of B:

⇒ K1(B, b) = span{b}

K2(B, b) = span{b, Bb} = span{b, αb} = span{b}

Krylov method converges in one step!
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Inexact methods - observation

Observation in the preconditioned case

preconditioning ⇒ number of inner iterations is clearly increasing

Explanation

Solution of (A− σI)x̂ = x with a (left) preconditioned Krylov subspace
method:

P
−1(A− σI)x̂ = P

−1
x

but P−1x is a poor eigenvector approximation of P−1(A− σI)!.

This is also the case for the generalised eigenproblem where we solve

(A− σB)x̂ = Bx,

Question

Can we reduce the number of inner steps, e.g. to an ≈ constant level?



Tuned preconditioners

We need a preconditioner P such that P−1x is an approximate eigenvector
of P−1(A− σI):

P
−1(A− σI)P−1

x = (λ− σ)P−1
x

Has to satisfy Px = x (or Px = Ax)



Tuned preconditioners

We need a preconditioner P such that P−1x is an approximate eigenvector
of P−1(A− σI):

P
−1(A− σI)P−1

x = (λ− σ)P−1
x

Has to satisfy Px = x (or Px = Ax)

The tuned preconditioner for one-sided RQI [F./Spence ’09]

For P ≈ A, the tuned preconditioner P is defined by

P = P + (x− Px)xH

and we obtain

P
−1 = P

−1 −
(P−1x− x)xHP−1

xHP−1x

Minor modification and minor extra computational cost.



Inexact two-sided methods - dilemma!

Example: matrix sherman5, n = 3312, fixed shift σ = 0.



Inexact two-sided methods - dilemma resolved!

Example: matrix sherman5, n = 3312, fixed shift σ = 0.



The inner iteration for (A− σI)y = x

Standard GMRES theory for y0 = 0 and A diagonalisable

‖x− (A− σI)yk‖ ≤ κ(W ) min
p∈Pk

max
j=1,...,n

|p(λj)|‖x‖

where λj are eigenvalues of A− σI and (A− σI) = WΛW−1.



The inner iteration for (A− σI)y = x

Standard GMRES theory for y0 = 0 and A diagonalisable

‖x− (A− σI)yk‖ ≤ κ(W ) min
p∈Pk

max
j=1,...,n

|p(λj)|‖x‖

where λj are eigenvalues of A− σI and (A− σI) = WΛW−1.

Number of inner iterations

k ≥ C1 + C2 log
‖x‖

ξ

for ‖x− (A− σI)yk‖ ≤ ξ.



The inner iteration for (A− σI)y = x

More detailed GMRES theory for y0 = 0

‖x− (A− σI)yk‖ ≤ κ̃(W )
|λ2 − λ1|

λ1
min

p∈Pk−1

max
j=2,...,n

|p(λj)|‖Qx‖

where λj are eigenvalues of A− σI .

Number of inner iterations

k ≥ C
′

1 +C
′

2 log
‖Qx‖

ξ
,

where Q projects onto the space not spanned by the eigenvector.



The inner iteration for (A− σI)y = x

Good news!

k
(i) ≥ C

′

1 + C
′

2 log
C3‖r

(i)‖

ξ(i)
,

where ξ(i) = C‖r(i)‖. Iteration number approximately constant!



The inner iteration for (A− σI)y = x

Good news!

k
(i) ≥ C

′

1 + C
′

2 log
C3‖r

(i)‖

ξ(i)
,

where ξ(i) = C‖r(i)‖. Iteration number approximately constant!

Bad news :-(

For a standard preconditioner P

(A− σI)P−1
ỹ
(i) = x

(i)
P

−1
ỹ
(i) = y

(i)

k
(i) ≥ C

′′

1 + C
′′

2 log
‖Q̃x(i)‖

ξ(i)
= C

′′

1 +C
′′

2 log
C

ξ(i)
,

where ξ(i) = C‖r(i)‖. Iteration number increases!



Convection-Diffusion operator

Finite difference discretisation on a 32× 32 grid of the convection-diffusion
operator

−∆u+ 5ux + 5uy = λu on (0, 1)2,

with homogeneous Dirichlet boundary conditions (961× 961 matrix).

smallest eigenvalue: λ1 ≈ 32.18560954,

Preconditioned GMRES with tolerance ξ(i) = 0.01‖r(i)‖,

standard and tuned preconditioner (incomplete LU).



Convection-Diffusion operator
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The algorithm

Arnoldi’s method

Arnoldi method constructs an orthogonal basis of k-dimensional
Krylov subspace

Kk(A, q
(1)) = span{q(1),Aq

(1)
,A2

q
(1)

, . . . ,Ak−1
q
(1)},

AQk = QkHk + qk+1hk+1,ke
H
k = Qk+1

[

Hk

hk+1,ke
H
k

]

Q
H
k Qk = I.
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The algorithm

Arnoldi’s method

Arnoldi method constructs an orthogonal basis of k-dimensional
Krylov subspace

Kk(A, q
(1)) = span{q(1),Aq

(1)
,A2

q
(1)

, . . . ,Ak−1
q
(1)},

AQk = QkHk + qk+1hk+1,ke
H
k = Qk+1

[

Hk

hk+1,ke
H
k

]

Q
H
k Qk = I.

Eigenvalues of Hk are eigenvalue approximations of (outlying)
eigenvalues of A

‖rk‖ = ‖Ax− θx‖ = ‖(AQk −QkHk)u‖ = |hk+1,k||e
H
k u|,

at each step, application of A to qk: Aqk = q̃k+1



Example

random complex matrix of dimension n = 144 generated in Matlab:
G=numgrid(’N’,14);B=delsq(G);A=sprandn(B)+i*sprandn(B)
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after 5 Arnoldi steps
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after 20 Arnoldi steps
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after 25 Arnoldi steps
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after 30 Arnoldi steps
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The algorithm: take σ = 0

Shift-Invert Arnoldi’s method A := A−1

Arnoldi method constructs an orthogonal basis of k-dimensional
Krylov subspace

Kk(A
−1

, q
(1)) = span{q(1), A−1

q
(1)

, (A−1)2q(1), . . . , (A−1)k−1
q
(1)},

A
−1

Qk = QkHk + qk+1hk+1,ke
H
k = Qk+1

[

Hk

hk+1,ke
H
k

]

Q
H
k Qk = I.

Eigenvalues of Hk are eigenvalue approximations of (outlying)
eigenvalues of A−1

‖rk‖ = ‖A−1
x− θx‖ = ‖(A−1

Qk −QkHk)u‖ = |hk+1,k||e
H
k u|,

at each step, application of A−1 to qk: A
−1qk = q̃k+1
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Wish to solve
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Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)
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H
k u|+Dku,
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Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

Wish to solve
‖qk − Aq̃k+1‖ = ‖d̃k‖ ≤ τk

leads to inexact Arnoldi relation

A
−1

Qk = Qk+1

[

Hk

hk+1,ke
H
k

]

+Dk = Qk+1

[

Hk

hk+1,ke
H
k

]

+ [d1| . . . |dk]

u eigenvector of Hk:

‖rk‖ = ‖(A−1
Qk −QkHk)u‖ = |hk+1,k||e

H
k u|+Dku,

Linear combination of the columns of Dk
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k

∑

l=1

dlul, if ul small, then ‖dl‖ allowed to be large!



Inexact solves

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

Linear combination of the columns of Dk

Dku =
k

∑

l=1

dlul, if ul small, then ‖dl‖ allowed to be large!

‖dlul‖ ≤
1

k
ε ⇒ ‖Dku‖ < ε

and
|ul| ≤ C(l, k)‖rl−1‖ ⋆

leads to
‖qk − Aq̃k+1‖ = ‖d̃k‖

‖d̃k‖ = C
1

‖rk−1‖
⋄

Solve tolerance can be relaxed.



The inner iteration for AP−1q̃k+1 = qk

Preconditioning

GMRES convergence bound

‖qk − AP
−1

q̃
l
k+1‖ = κ min

p∈Πl

max
i=1,...,n

|p(µi)|‖qk‖

depending on



The inner iteration for AP−1q̃k+1 = qk

Preconditioning

GMRES convergence bound

‖qk − AP
−1

q̃
l
k+1‖ = κ min

p∈Πl

max
i=1,...,n

|p(µi)|‖qk‖

depending on

the eigenvalue clustering of AP−1

the condition number

the right hand side (initial guess)



The inner iteration for AP−1q̃k+1 = qk

Preconditioning

Introduce preconditioner P and solve

AP
−1

q̃k+1 = qk, P
−1

q̃k+1 = qk+1

using GMRES



The inner iteration for AP−1q̃k+1 = qk

Preconditioning

Introduce preconditioner P and solve

AP
−1

q̃k+1 = qk, P
−1

q̃k+1 = qk+1

using GMRES

Tuned Preconditioner

using a tuned preconditioner for Arnoldi’s method

PkQk = AQk; given by Pk = P + (A− P )QkQ
H
k



The inner iteration for Aq̃ = q

Theorem (Properties of the tuned preconditioner)

Let P with P = A+ E be a preconditioner for A and assume k steps of

Arnoldi’s method have been carried out; then k eigenvalues of AP
−1
k are

equal to one:

[AP
−1
k ]AQk = AQk

and n− k eigenvalues are close to the corresponding eigenvalues of AP−1.



The inner iteration for Aq̃ = q

Theorem (Properties of the tuned preconditioner)

Let P with P = A+ E be a preconditioner for A and assume k steps of

Arnoldi’s method have been carried out; then k eigenvalues of AP
−1
k are

equal to one:

[AP
−1
k ]AQk = AQk

and n− k eigenvalues are close to the corresponding eigenvalues of AP−1.

Implementation

Sherman-Morrison-Woodbury.

Only minor extra costs (one back substitution per outer iteration)



Numerical Example

sherman5.mtx nonsymmetric matrix from the Matrix Market library
(3312 × 3312).

smallest eigenvalue: λ1 ≈ 4.69× 10−2,

Preconditioned GMRES as inner solver (both fixed tolerance and
relaxation strategy),

standard and tuned preconditioner (incomplete LU).
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Tuning the preconditioner
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Relaxation
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Tuning and relaxation strategy
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Ritz values of exact and inexact Arnoldi

Exact eigenvalues Ritz values (exact Arnoldi) Ritz values (inexact Arnoldi, tuning)
+4.69249563e-02 +4.69249563e-02 +4.69249563e-02
+1.25445378e-01 +1.25445378e-01 +1.25445378e-01
+4.02658363e-01 +4.02658347e-01 +4.02658244e-01
+5.79574381e-01 +5.79625498e-01 +5.79817301e-01
+6.18836405e-01 +6.18798666e-01 +6.18650849e-01

Table: Ritz values of exact Arnoldi’s method and inexact Arnoldi’s method with
the tuning strategy compared to exact eigenvalues closest to zero after 14
shift-invert Arnoldi steps.
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Conclusions

For eigenvalue computations it is advantageous to consider small rank
changes to the standard preconditioners

Works for any preconditioner

Works for SI versions of Power method, Simultaneous iteration,
Arnoldi method
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