Preconditioned inexact inverse iteration and inexact shift-invert Arnoldi method

Melina Freitag

Department of Mathematical Sciences
University of Bath

SAMBa Student-Led Symposium
Preparation for ITT2
12th March 2015

1 Introduction

2 Inexact inverse iteration

3 Inexact Shift-invert Arnoldi method

4 Conclusions

Outline

1 Introduction

2 Inexact inverse iteration

3 Inexact Shift-invert Arnoldi method

4 Conclusions

Motivation

Alastairs lecture:

$$
\left(I-\sigma_{s} K_{\sigma}\right) \Phi=\lambda \nu \sigma_{f} K_{\sigma} \Phi
$$

■ Eigenvalue problem arising from reactor criticality computation

- Theory on the derivation in the thesis by Fynn Scheben
- Interest in the smallest eigenvalue (which is real and positive)

Motivation

Alastairs lecture:

$$
\left(I-\sigma_{s} K_{\sigma}\right) \Phi=\lambda \nu \sigma_{f} K_{\sigma} \Phi
$$

■ Eigenvalue problem arising from reactor criticality computation
■ Theory on the derivation in the thesis by Fynn Scheben

- Interest in the smallest eigenvalue (which is real and positive)

■ Can be written as

$$
A x=\lambda B x, \quad \lambda \in \mathbb{C}, x \in \mathbb{C}^{n}
$$

Alastairs lecture:

$$
\left(I-\sigma_{s} K_{\sigma}\right) \Phi=\lambda \nu \sigma_{f} K_{\sigma} \Phi,
$$

- Eigenvalue problem arising from reactor criticality computation
- Theory on the derivation in the thesis by Fynn Scheben

■ Interest in the smallest eigenvalue (which is real and positive)

- Can be written as

$$
A x=\lambda B x, \quad \lambda \in \mathbb{C}, x \in \mathbb{C}^{n}
$$

- In this talk: $B=I$ (but all results extend to $B \neq I$)

Problem and iterative methods

Find a small number of eigenvalues and eigenvectors of:

$$
A x=\lambda x, \quad \lambda \in \mathbb{C}, x \in \mathbb{C}^{n}
$$

■ A is large, sparse, nonsymmetric

Problem and iterative methods

Find a small number of eigenvalues and eigenvectors of:

$$
A x=\lambda x, \quad \lambda \in \mathbb{C}, x \in \mathbb{C}^{n}
$$

■ A is large, sparse, nonsymmetric
■ Iterative solves

- Power method
- Simultaneous iteration
- Arnoldi method
- Jacobi-Davidson method
- repeated application of the matrix A to a vector

■ Generally convergence to largest/outlying eigenvector

Problem and iterative methods

Find a small number of eigenvalues and eigenvectors of:

$$
A x=\lambda x, \quad \lambda \in \mathbb{C}, x \in \mathbb{C}^{n}
$$

■ A is large, sparse, nonsymmetric
■ Iterative solves

- Power method
- Simultaneous iteration
- Arnoldi method
- Jacobi-Davidson method
- repeated application of the matrix A to a vector

■ Generally convergence to largest/outlying eigenvector

Shift-invert strategy

- Wish to find a few eigenvalues close to a shift σ

Shift-invert strategy

- Wish to find a few eigenvalues close to a shift σ

- Problem becomes

$$
(A-\sigma I)^{-1} x=\frac{1}{\lambda-\sigma} x
$$

\square each step of the iterative method involves repeated application of $\mathcal{A}=(A-\sigma I)^{-1}$ to a vector

- Inner iterative solve:

$$
(A-\sigma I) y=x
$$

using Krylov method for linear systems. (CG, MINRES, GMRES, ...)
■ leading to inner-outer iterative method.

Shift-invert strategy

This talk:
 Convergence of outer iteration

Inner iteration and preconditioning

Inverse iteration and Arnoldi method

Outline

1 Introduction

2 Inexact inverse iteration

3 Inexact Shift-invert Arnoldi method

4 Conclusions

Classical methods for finding one eigenvalue

Inverse iteration/Rayleigh quotient iteration

INPUT: Matrix A shift $\sigma \approx \lambda$, initial vector x_{0} with $\left\|x_{0}\right\|=1$. OUTPUT: Approximate eigenpair (λ, x) for $i=1$ to \ldots do

Choose shift σ.
Solve for \hat{x}

$$
(A-\sigma I) \hat{x}=x
$$

Rescale $x=\frac{\hat{x}}{\|\hat{x}\|}$,
Update $\lambda=\rho(x)=x^{H} A x$,
Test for convergence (using eigenvalue residual $(r=(A-\lambda I) x)$.
end for

Classical methods for finding one eigenvalue

Inexact Inverse iteration/Inexact Rayleigh quotient iteration

INPUT: Matrix A shift $\sigma \approx \lambda$, initial vector x_{0} with $\left\|x_{0}\right\|=1$.
OUTPUT: Approximate eigenpair (λ, x) for $i=1$ to \ldots do

Choose shift σ.
Run k steps of a Krylov subspace method to obtain \hat{x} such that

$$
0 \leq\|(A-\sigma I) \hat{x}-x\| \leq \xi
$$

Rescale $x=\frac{\hat{x}}{\|\hat{x}\|}$,
Update $\lambda=\rho(x)=x^{H} A x$,
Test for convergence (using eigenvalue residual $(r=(A-\lambda I) x)$.
end for

Classical methods for finding one eigenvalue

Convergence rates of exact methods

■ Inverse iteration: linear convergence
■ Rayleigh quotient iteration (RQI): cubic convergence for normal A (otherwise quadratic)

Classical methods for finding one eigenvalue

Convergence rates of exact methods

■ Inverse iteration: linear convergence

- Rayleigh quotient iteration (RQI): cubic convergence for normal A (otherwise quadratic)

Convergence rate analysis of inexact methods

Main requirement: decreasing accuracy of the inner solves:

$$
\xi^{(i+1)} \leq \xi^{(i)}
$$

The convergence speed of the exact methods can be re-established.
[Lai/Lin/Lin '97, Golub/Ye '00, Simoncini/Elden '02, F./Spence '07, Elman/Xue '09, ...]

Error indicator

Error indicator (Orthogonal decomposition, symmetric A)

$\mathrm{Qx}{ }^{(i)}=\mathrm{O}\left(\sin \theta^{(i)}\right)$ measure for the error

$$
x^{(i)}=\cos \theta^{(i)} x_{1}+\sin \theta^{(i)} x_{\perp}^{(i)}, \quad x_{\perp}^{(i)} \perp x_{1} .
$$

Generalisations to nonsymmetric A exist.

Error indicator

Error indicator (Orthogonal decomposition, symmetric A)

$Q \mathrm{x}^{(i)}=\mathrm{O}\left(\sin \theta^{(i)}\right) \quad$ measure for the error

$$
x^{(i)}=\cos \theta^{(i)} x_{1}+\sin \theta^{(i)} x_{\perp}^{(i)}, \quad x_{\perp}^{(i)} \perp x_{1}
$$

Generalisations to nonsymmetric A exist.

Eigenvalue residual

$$
C_{1}\left|\sin \theta^{(i)}\right| \leq\left\|r^{(i)}\right\| \leq C_{2}\left|\sin \theta^{(i)}\right|
$$ solver

Error in θ (eigenvector)

$$
\tan \theta^{(i+1)} \leq \frac{\left|\lambda_{1}-\sigma^{(i)}\right|}{\left|\lambda_{2}-\sigma^{(i)}\right|} T^{(i)}
$$

■ Exact solves: $T^{(i)}=\tan \theta^{(i)}$
\square Inexact solves $T^{(i)}=\frac{\left|\sin \theta^{(i)}\right|+\left\|\left(I-x_{1} x_{1}^{*}\right) s^{(i)}\right\|}{\mid \cos \theta^{(i)}-\left\|x_{1}^{*} s^{(i)}\right\|}, \quad\left\|s^{(i)}\right\| \leq \xi^{(i)}$ solver

Error in θ (eigenvector)

$$
\tan \theta^{(i+1)} \leq \frac{\left|\lambda_{1}-\sigma^{(i)}\right|}{\left|\lambda_{2}-\sigma^{(i)}\right|} T^{(i)}
$$

- Exact solves: $T^{(i)}=\tan \theta^{(i)}$
\square Inexact solves $T^{(i)}=\frac{\left|\sin \theta^{(i)}\right|+\left\|\left(I-x_{1} x_{1}^{*}\right) s^{(i)}\right\|}{\mid \cos \theta^{(i)}-\left\|x_{1}^{*} s^{(i)}\right\|}, \quad\left\|s^{(i)}\right\| \leq \xi^{(i)}$

Choice of τ

■ Choice 1: $\xi^{(i)}=C\left\|r^{(i)}\right\|=\mathcal{O}\left(\sin \theta^{(i)}\right) \Rightarrow T^{(i)}=\mathcal{O}\left(\tan \theta^{(i)}\right)$
■ Choice 2: $\xi^{(i)}=\mathrm{constant} \Rightarrow T^{(i)}=\mathcal{O}(1)$

Classical methods for finding one eigenvalue

Inexact Inverse iteration/Inexact Rayleigh quotient iteration

INPUT: Matrix A shift $\sigma \approx \lambda$, initial vector x_{0} with $\left\|x_{0}\right\|=1$.
OUTPUT: Approximate eigenpair (λ, x)
for $i=1$ to \ldots do
Choose shift σ.
Run k steps of a Krylov subspace method to obtain \hat{x} such that

$$
0 \leq\|(A-\sigma I) \hat{x}-x\| \leq \xi
$$

Rescale $x=\frac{\hat{x}}{\|\hat{x}\|}$,
Update $\lambda=\rho(x)=x^{H} A x$,
Test for convergence (using eigenvalue residual $(r=(A-\lambda I) x)$. end for

Convergence rates

If the solve tolerance is decreased, i.e.

$$
\xi^{(i)}=C\left\|r^{(i)}\right\|
$$

then convergence rate is linear (same convergence rate as for exact solves).

Inexact methods

Example: matrix sherman5, $n=3312$, fixed shift $\sigma=0$.

- exact solution (Matlab backslash)
- inexact solution (full GMRES) with decreasing tolerance
- termination when $\left\|r^{(i)}\right\| \leq 10^{-9}$, where
- preconditioned GMRES with incomplete LU preconditioners P

Inexact methods

Example: matrix sherman5, $n=3312$, fixed shift $\sigma=0$.

Inexact methods - dilemma!

Example: matrix sherman5, $n=3312$, fixed shift $\sigma=0$.

Inexact methods - dilemma!

Example: matrix sherman5, $n=3312$, fixed shift $\sigma=0$.

Observation in the unpreconditioned case
increasing accuracy \Rightarrow number of inner iterations remains \approx constant (fixed accuracy \Rightarrow number of inner iterations \approx decreasing)

Observation in the unpreconditioned case

increasing accuracy \Rightarrow number of inner iterations remains \approx constant (fixed accuracy \Rightarrow number of inner iterations \approx decreasing)

Explanation

\square right hand side x is an approximate eigenvector in inexact RQI
■ beneficial for Krylov subspace methods!
[F./Spence '07-09]

Observation in the unpreconditioned case

 increasing accuracy \Rightarrow number of inner iterations remains \approx constant (fixed accuracy \Rightarrow number of inner iterations \approx decreasing)
Explanation

\square right hand side x is an approximate eigenvector in inexact RQI
■ beneficial for Krylov subspace methods!
[F./Spence '07-09]

Basic idea - key observation

Solving $B x=b$ with a Krylov method, where b is an eigenvector of B :

$$
\begin{aligned}
\Rightarrow \mathcal{K}_{1}(B, b) & =\operatorname{span}\{b\} \\
\mathcal{K}_{2}(B, b) & =\operatorname{span}\{b, B b\}=\operatorname{span}\{b, \alpha b\}=\operatorname{span}\{b\}
\end{aligned}
$$

Krylov method converges in one step!

Observation in the preconditioned case
preconditioning \Rightarrow number of inner iterations is clearly increasing

Observation in the preconditioned case

preconditioning \Rightarrow number of inner iterations is clearly increasing

Explanation

■ Solution of $(A-\sigma I) \hat{x}=x$ with a (left) preconditioned Krylov subspace method:

$$
P^{-1}(A-\sigma I) \hat{x}=P^{-1} x
$$

but $P^{-1} x$ is a poor eigenvector approximation of $P^{-1}(A-\sigma I)$!.

Observation in the preconditioned case

preconditioning \Rightarrow number of inner iterations is clearly increasing

Explanation

■ Solution of $(A-\sigma I) \hat{x}=x$ with a (left) preconditioned Krylov subspace method:

$$
P^{-1}(A-\sigma I) \hat{x}=P^{-1} x
$$

but $P^{-1} x$ is a poor eigenvector approximation of $P^{-1}(A-\sigma I)$!.

- This is also the case for the generalised eigenproblem where we solve

$$
(A-\sigma B) \hat{x}=B x
$$

Observation in the preconditioned case

preconditioning \Rightarrow number of inner iterations is clearly increasing

Explanation

■ Solution of $(A-\sigma I) \hat{x}=x$ with a (left) preconditioned Krylov subspace method:

$$
P^{-1}(A-\sigma I) \hat{x}=P^{-1} x
$$

but $P^{-1} x$ is a poor eigenvector approximation of $P^{-1}(A-\sigma I)$!.

- This is also the case for the generalised eigenproblem where we solve

$$
(A-\sigma B) \hat{x}=B x
$$

Question

Can we reduce the number of inner steps, e.g. to an \approx constant level?

Tuned preconditioners

We need a preconditioner \mathbb{P} such that $\mathbb{P}^{-1} x$ is an approximate eigenvector of $\mathbb{P}^{-1}(A-\sigma I)$:

$$
\mathbb{P}^{-1}(A-\sigma I) \mathbb{P}^{-1} x=(\lambda-\sigma) \mathbb{P}^{-1} x
$$

Has to satisfy $\mathbb{P} x=x($ or $\mathbb{P} x=A x)$

We need a preconditioner \mathbb{P} such that $\mathbb{P}^{-1} x$ is an approximate eigenvector of $\mathbb{P}^{-1}(A-\sigma I)$:

$$
\mathbb{P}^{-1}(A-\sigma I) \mathbb{P}^{-1} x=(\lambda-\sigma) \mathbb{P}^{-1} x
$$

Has to satisfy $\mathbb{P} x=x($ or $\mathbb{P} x=A x)$

The tuned preconditioner for one-sided RQI

For $P \approx A$, the tuned preconditioner \mathbb{P} is defined by

$$
\mathbb{P}=P+(x-P x) x^{H}
$$

and we obtain

$$
\mathbb{P}^{-1}=P^{-1}-\frac{\left(P^{-1} x-x\right) x^{H} P^{-1}}{x^{H} P^{-1} x}
$$

Minor modification and minor extra computational cost.

Inexact two-sided methods - dilemma!

Example: matrix sherman5, $n=3312$, fixed shift $\sigma=0$.

Inexact two-sided methods - dilemma resolved!

Example: matrix sherman5, $n=3312$, fixed shift $\sigma=0$.

Standard GMRES theory for $y_{0}=0$ and A diagonalisable

$$
\left\|x-(A-\sigma I) y_{k}\right\| \leq \kappa(W) \min _{p \in \mathcal{P}_{k}} \max _{j=1, \ldots, n} \mid p\left(\lambda_{j}\right)\|x\|
$$

where λ_{j} are eigenvalues of $A-\sigma I$ and $(A-\sigma I)=W \Lambda W^{-1}$.

The inner iteration for $(A-\sigma I) y=x$

Standard GMRES theory for $y_{0}=0$ and A diagonalisable

$$
\left\|x-(A-\sigma I) y_{k}\right\| \leq \kappa(W) \min _{p \in \mathcal{P}_{k}} \max _{j=1, \ldots, n} \mid p\left(\lambda_{j}\right)\|x\|
$$

where λ_{j} are eigenvalues of $A-\sigma I$ and $(A-\sigma I)=W \Lambda W^{-1}$.
Number of inner iterations

$$
k \geq C_{1}+C_{2} \log \frac{\|x\|}{\xi}
$$

for $\left\|x-(A-\sigma I) y_{k}\right\| \leq \xi$.

More detailed GMRES theory for $y_{0}=0$

$$
\left\|x-(A-\sigma I) y_{k}\right\| \leq \tilde{\kappa}(W) \frac{\left|\lambda_{2}-\lambda_{1}\right|}{\lambda_{1}} \min _{p \in \mathcal{P}_{k-1}} \max _{j=2, \ldots, n}\left|p\left(\lambda_{j}\right)\right|\|\mathcal{Q} x\|
$$

where λ_{j} are eigenvalues of $A-\sigma I$.

Number of inner iterations

$$
k \geq C_{1}^{\prime}+C_{2}^{\prime} \log \frac{\|\mathcal{Q} x\|}{\xi}
$$

where \mathcal{Q} projects onto the space not spanned by the eigenvector.

The inner iteration for $(A-\sigma I) y=x$

Good news!

$$
k^{(i)} \geq C_{1}^{\prime}+C_{2}^{\prime} \log \frac{C_{3}\left\|r^{(i)}\right\|}{\xi^{(i)}}
$$

where $\xi^{(i)}=C\left\|r^{(i)}\right\|$. Iteration number approximately constant!

Good news!

$$
k^{(i)} \geq C_{1}^{\prime}+C_{2}^{\prime} \log \frac{C_{3}\left\|r^{(i)}\right\|}{\xi^{(i)}}
$$

where $\xi^{(i)}=C\left\|r^{(i)}\right\|$. Iteration number approximately constant!

Bad news :-(

For a standard preconditioner P

$$
\begin{gathered}
(A-\sigma I) P^{-1} \tilde{y}^{(i)}=x^{(i)} \quad P^{-1} \tilde{y}^{(i)}=y^{(i)} \\
k^{(i)} \geq C_{1}^{\prime \prime}+C_{2}^{\prime \prime} \log \frac{\left\|\tilde{\mathcal{Q}} x^{(i)}\right\|}{\xi^{(i)}}=C_{1}^{\prime \prime}+C_{2}^{\prime \prime} \log \frac{C}{\xi^{(i)}}
\end{gathered}
$$

where $\xi^{(i)}=C\left\|r^{(i)}\right\|$. Iteration number increases!

Convection-Diffusion operator

Finite difference discretisation on a 32×32 grid of the convection-diffusion operator

$$
-\Delta u+5 u_{x}+5 u_{y}=\lambda u \quad \text { on } \quad(0,1)^{2}
$$

with homogeneous Dirichlet boundary conditions (961×961 matrix).
■ smallest eigenvalue: $\lambda_{1} \approx 32.18560954$,
■ Preconditioned GMRES with tolerance $\xi^{(i)}=0.01\left\|r^{(i)}\right\|$,
■ standard and tuned preconditioner (incomplete LU).

Convection-Diffusion operator

Figure: Inner iterations vs outer iterations

Figure: Eigenvalue residual norms vs total number of inner iterations

Convection-Diffusion operator

Figure: Inner iterations vs outer iterations

Figure: Eigenvalue residual norms vs total number of inner iterations

Outline

1 Introduction

2 Inexact inverse iteration

3 Inexact Shift-invert Arnoldi method

4 Conclusions

The algorithm

Arnoldi's method

- Arnoldi method constructs an orthogonal basis of k-dimensional Krylov subspace

$$
\begin{gathered}
\mathcal{K}_{k}\left(\mathcal{A}, q^{(1)}\right)=\operatorname{span}\left\{q^{(1)}, \mathcal{A} q^{(1)}, \mathcal{A}^{2} q^{(1)}, \ldots, \mathcal{A}^{k-1} q^{(1)}\right\}, \\
\mathcal{A} Q_{k}=Q_{k} H_{k}+q_{k+1} h_{k+1, k} e_{k}^{H}=Q_{k+1}\left[\begin{array}{c}
H_{k} \\
h_{k+1, k} e_{k}^{H}
\end{array}\right] \\
Q_{k}^{H} Q_{k}=I .
\end{gathered}
$$

Arnoldi's method

- Arnoldi method constructs an orthogonal basis of k-dimensional Krylov subspace

$$
\begin{gathered}
\mathcal{K}_{k}\left(\mathcal{A}, q^{(1)}\right)=\operatorname{span}\left\{q^{(1)}, \mathcal{A} q^{(1)}, \mathcal{A}^{2} q^{(1)}, \ldots, \mathcal{A}^{k-1} q^{(1)}\right\}, \\
\mathcal{A} Q_{k}=Q_{k} H_{k}+q_{k+1} h_{k+1, k} e_{k}^{H}=Q_{k+1}\left[\begin{array}{c}
H_{k} \\
h_{k+1, k} e_{k}^{H}
\end{array}\right] \\
Q_{k}^{H} Q_{k}=I .
\end{gathered}
$$

■ Eigenvalues of H_{k} are eigenvalue approximations of (outlying) eigenvalues of \mathcal{A}

$$
\left\|r_{k}\right\|=\|\mathcal{A} x-\theta x\|=\left\|\left(\mathcal{A} Q_{k}-Q_{k} H_{k}\right) u\right\|=\left|h_{k+1, k} \| e_{k}^{H} u\right|
$$

Arnoldi's method

- Arnoldi method constructs an orthogonal basis of k-dimensional Krylov subspace

$$
\begin{gathered}
\mathcal{K}_{k}\left(\mathcal{A}, q^{(1)}\right)=\operatorname{span}\left\{q^{(1)}, \mathcal{A} q^{(1)}, \mathcal{A}^{2} q^{(1)}, \ldots, \mathcal{A}^{k-1} q^{(1)}\right\}, \\
\mathcal{A} Q_{k}=Q_{k} H_{k}+q_{k+1} h_{k+1, k} e_{k}^{H}=Q_{k+1}\left[\begin{array}{c}
H_{k} \\
h_{k+1, k} e_{k}^{H}
\end{array}\right] \\
Q_{k}^{H} Q_{k}=I .
\end{gathered}
$$

■ Eigenvalues of H_{k} are eigenvalue approximations of (outlying) eigenvalues of \mathcal{A}

$$
\left\|r_{k}\right\|=\|\mathcal{A} x-\theta x\|=\left\|\left(\mathcal{A} Q_{k}-Q_{k} H_{k}\right) u\right\|=\left|h_{k+1, k} \| e_{k}^{H} u\right|
$$

■ at each step, application of \mathcal{A} to $q_{k}: \mathcal{A} q_{k}=\tilde{q}_{k+1}$

Example

random complex matrix of dimension $n=144$ generated in Matlab: $G=$ numgrid(' N ', 14) ; $B=\operatorname{delsq}(G) ; A=\operatorname{sprandn}(B)+i * \operatorname{sprandn}(B)$

after 5 Arnoldi steps

after 10 Arnoldi steps

after 15 Arnoldi steps

after 20 Arnoldi steps

after 25 Arnoldi steps

after 30 Arnoldi steps

Shift-Invert Arnoldi's method $\mathcal{A}:=A^{-1}$

- Arnoldi method constructs an orthogonal basis of k-dimensional Krylov subspace

$$
\begin{gathered}
\mathcal{K}_{k}\left(A^{-1}, q^{(1)}\right)=\operatorname{span}\left\{q^{(1)}, A^{-1} q^{(1)},\left(A^{-1}\right)^{2} q^{(1)}, \ldots,\left(A^{-1}\right)^{k-1} q^{(1)}\right\}, \\
A^{-1} Q_{k}=Q_{k} H_{k}+q_{k+1} h_{k+1, k} e_{k}^{H}=Q_{k+1}\left[\begin{array}{c}
H_{k} \\
h_{k+1, k} e_{k}^{H}
\end{array}\right] \\
Q_{k}^{H} Q_{k}=I .
\end{gathered}
$$

- Eigenvalues of H_{k} are eigenvalue approximations of (outlying) eigenvalues of A^{-1}

$$
\left\|r_{k}\right\|=\left\|A^{-1} x-\theta x\right\|=\left\|\left(A^{-1} Q_{k}-Q_{k} H_{k}\right) u\right\|=\left|h_{k+1, k} \| e_{k}^{H} u\right|,
$$

- at each step, application of A^{-1} to $q_{k}: A^{-1} q_{k}=\tilde{q}_{k+1}$

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

- Wish to solve

$$
\left\|q_{k}-A \tilde{q}_{k+1}\right\|=\left\|\tilde{d}_{k}\right\| \leq \tau_{k}
$$

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

- Wish to solve

$$
\left\|q_{k}-A \tilde{q}_{k+1}\right\|=\left\|\tilde{d}_{k}\right\| \leq \tau_{k}
$$

- leads to inexact Arnoldi relation

$$
A^{-1} Q_{k}=Q_{k+1}\left[\begin{array}{c}
H_{k} \\
h_{k+1, k} e_{k}^{H}
\end{array}\right]+D_{k}=Q_{k+1}\left[\begin{array}{c}
H_{k} \\
h_{k+1, k} e_{k}^{H}
\end{array}\right]+\left[d_{1}|\ldots| d_{k}\right]
$$

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

- Wish to solve

$$
\left\|q_{k}-A \tilde{q}_{k+1}\right\|=\left\|\tilde{d}_{k}\right\| \leq \tau_{k}
$$

■ leads to inexact Arnoldi relation

$$
A^{-1} Q_{k}=Q_{k+1}\left[\begin{array}{c}
H_{k} \\
h_{k+1, k} e_{k}^{H}
\end{array}\right]+D_{k}=Q_{k+1}\left[\begin{array}{c}
H_{k} \\
h_{k+1, k} e_{k}^{H}
\end{array}\right]+\left[d_{1}|\ldots| d_{k}\right]
$$

- u eigenvector of H_{k} :

$$
\left\|r_{k}\right\|=\left\|\left(A^{-1} Q_{k}-Q_{k} H_{k}\right) u\right\|=\left|h_{k+1, k} \| e_{k}^{H} u\right|+D_{k} u
$$

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

- Wish to solve

$$
\left\|q_{k}-A \tilde{q}_{k+1}\right\|=\left\|\tilde{d}_{k}\right\| \leq \tau_{k}
$$

- leads to inexact Arnoldi relation

$$
A^{-1} Q_{k}=Q_{k+1}\left[\begin{array}{c}
H_{k} \\
h_{k+1, k} e_{k}^{H}
\end{array}\right]+D_{k}=Q_{k+1}\left[\begin{array}{c}
H_{k} \\
h_{k+1, k} e_{k}^{H}
\end{array}\right]+\left[d_{1}|\ldots| d_{k}\right]
$$

- u eigenvector of H_{k} :

$$
\left\|r_{k}\right\|=\left\|\left(A^{-1} Q_{k}-Q_{k} H_{k}\right) u\right\|=\left|h_{k+1, k} \| e_{k}^{H} u\right|+D_{k} u
$$

- Linear combination of the columns of D_{k}

$$
D_{k} u=\sum_{l=1}^{k} d_{l} u_{l}, \quad \text { if } \quad u_{l} \quad \text { small, then } \quad\left\|d_{l}\right\| \quad \text { allowed to be large! }
$$

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

Linear combination of the columns of D_{k}

$$
\begin{gathered}
D_{k} u=\sum_{l=1}^{k} d_{l} u_{l}, \quad \text { if } u_{l} \quad \text { small, then }\left\|d_{l}\right\| \quad \text { allowed to be large! } \\
\left\|d_{l} u_{l}\right\| \leq \frac{1}{k} \varepsilon \Rightarrow\left\|D_{k} u\right\|<\varepsilon \\
\left|u_{l}\right| \leq C(l, k)\left\|r_{l-1}\right\|
\end{gathered}
$$

and
leads to

$$
\begin{aligned}
& \left\|q_{k}-A \tilde{q}_{k+1}\right\|=\left\|\tilde{d}_{k}\right\| \\
& \left\|\tilde{d}_{k}\right\|=C \frac{1}{\left\|r_{k-1}\right\|}
\end{aligned}
$$

Solve tolerance can be relaxed.

Preconditioning

GMRES convergence bound

$$
\left\|q_{k}-A P^{-1} \tilde{q}_{k+1}^{l}\right\|=\kappa \min _{p \in \Pi_{l}} \max _{i=1, \ldots, n}\left|p\left(\mu_{i}\right)\right|\left\|q_{k}\right\|
$$

depending on

The inner iteration for $A P^{-1} \tilde{q}_{k+1}=q_{k}$

Preconditioning

GMRES convergence bound

$$
\left\|q_{k}-A P^{-1} \tilde{q}_{k+1}^{l}\right\|=\kappa \min _{p \in \Pi_{l}} \max _{i=1, \ldots, n}\left|p\left(\mu_{i}\right)\right|\left\|q_{k}\right\|
$$

depending on

- the eigenvalue clustering of $A P^{-1}$
- the condition number
- the right hand side (initial guess)

Preconditioning

- Introduce preconditioner P and solve

$$
A P^{-1} \tilde{q}_{k+1}=q_{k}, \quad P^{-1} \tilde{q}_{k+1}=q_{k+1}
$$

using GMRES

Preconditioning

- Introduce preconditioner P and solve

$$
A P^{-1} \tilde{q}_{k+1}=q_{k}, \quad P^{-1} \tilde{q}_{k+1}=q_{k+1}
$$

using GMRES

Tuned Preconditioner

using a tuned preconditioner for Arnoldi's method

$$
\mathbb{P}_{k} Q_{k}=A Q_{k} ; \quad \text { given by } \quad \mathbb{P}_{k}=P+(A-P) Q_{k} Q_{k}^{H}
$$

Theorem (Properties of the tuned preconditioner)

Let P with $P=A+E$ be a preconditioner for A and assume k steps of Arnoldi's method have been carried out; then k eigenvalues of $A \mathbb{P}_{k}^{-1}$ are equal to one:

$$
\left[A \mathbb{P}_{k}^{-1}\right] A Q_{k}=A Q_{k}
$$

and $n-k$ eigenvalues are close to the corresponding eigenvalues of $A P^{-1}$.

Theorem (Properties of the tuned preconditioner)

Let P with $P=A+E$ be a preconditioner for A and assume k steps of Arnoldi's method have been carried out; then k eigenvalues of $A \mathbb{P}_{k}^{-1}$ are equal to one:

$$
\left[A \mathbb{P}_{k}^{-1}\right] A Q_{k}=A Q_{k}
$$

and $n-k$ eigenvalues are close to the corresponding eigenvalues of $A P^{-1}$.

Implementation

■ Sherman-Morrison-Woodbury.
■ Only minor extra costs (one back substitution per outer iteration)

Numerical Example

sherman5.mtx nonsymmetric matrix from the Matrix Market library (3312×3312).

■ smallest eigenvalue: $\lambda_{1} \approx 4.69 \times 10^{-2}$,

- Preconditioned GMRES as inner solver (both fixed tolerance and relaxation strategy),
■ standard and tuned preconditioner (incomplete LU).

No tuning and standard preconditioner

Figure: Inner iterations vs outer iterations

Figure: Eigenvalue residual norms vs total number of inner iterations

Tuning the preconditioner

Figure: Inner iterations vs outer iterations

Figure: Eigenvalue residual norms vs total number of inner iterations

Relaxation

Figure: Inner iterations vs outer iterations

Figure: Eigenvalue residual norms vs total number of inner iterations

Figure: Inner iterations vs outer iterations

Figure: Eigenvalue residual norms vs total number of inner iterations

Ritz values of exact and inexact Arnoldi

Exact eigenvalues	Ritz values (exact Arnoldi)	Ritz values (inexact Arnoldi, tuning)
$+4.69249563 \mathrm{e}-02$	$+\underline{4.69249563 \mathrm{e}-02}$	$+\underline{4.69249563 \mathrm{e}-02}$
$+1.25445378 \mathrm{e}-01$	$+\underline{1.25445378} \mathrm{e}-01$	$+\underline{1.25445378} \mathrm{e}-01$
$+4.02658363 \mathrm{e}-01$	$+\underline{4.02658347} \mathrm{e}-01$	$+\underline{4.02658244} \mathrm{e}-01$
$+5.79574381 \mathrm{e}-01$	$+\underline{5.79} 625498 \mathrm{e}-01$	$+\underline{5.79817301 \mathrm{e}-01}$
$+6.18836405 \mathrm{e}-01$	$+\underline{6.18} 798666 \mathrm{e}-01$	$+\underline{6.18} 650849 \mathrm{e}-01$

Table: Ritz values of exact Arnoldi's method and inexact Arnoldi's method with the tuning strategy compared to exact eigenvalues closest to zero after 14 shift-invert Arnoldi steps.

Outline

1 Introduction

2 Inexact inverse iteration

3 Inexact Shift-invert Arnoldi method

4 Conclusions

Conclusions

■ For eigenvalue computations it is advantageous to consider small rank changes to the standard preconditioners

- Works for any preconditioner
- Works for SI versions of Power method, Simultaneous iteration, Arnoldi method
M. A. Freitag and A. Spence, A tuned preconditioner for inexact inverse iteration applied to Hermitian eigenvalue problems, IMA J. Numer. Anal.
\qquad Rayleigh quotient iteration and simplified Jacobi-Davidson method with preconditioned iterative solves.

T-Convergence rates for inexact inverse iteration with application to preconditioned iterative solves, BIT, 47 (2007), pp. 27-44.
_-, Shift-invert Arnoldi's method with preconditioned iterative solves, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 942-969.
F. Xue and H. C. Elman, Convergence analysis of iterative solvers in inexact rayleigh quotient iteration, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 877-899.
-_, Fast inexact subspace iteration for generalized eigenvalue problems with spectral transformation, Linear Algebra and its Applications, (2010).

