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Disontinuous Galerkin methods for�rst-order hyperboli problemsF. Brezzi1,2, L. D. Marini1,2, and E. S�uli3

In this paper we onsider disontinuous Galerkin (DG) �nite element ap-proximations of a model salar linear hyperboli equation. We show thatin order to ensure ontinuous stabilization of the method it suÆes to adda jump-penalty-term to the disretized equation. In partiular, the methoddoes not require upwinding in the usual sense. For a spei� value of thepenalty parameter we reover the lassial disontinuous Galerkin methodwith upwind numerial ux funtion. More generally, using disontinuouspieewise polynomials of degree k, the familiar optimal O(hk+1=2) error es-timate is proved for any value of the penalty parameter. As preisely thesame jump -term is used for the purposes of stabilizing DG approximations ofadvetion-di�usion operators, the disretization proposed here an simplifythe onstrution of disontinuous Galerkin �nite element approximations ofadvetion-di�usion problems. Moreover, the use of the jump-stabilizationmakes the analysis simpler and more elegant.
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21 IntrodutionLet 
 be a bounded polygonal domain in R2, and let the advetive veloity �eld � =(�1; �2)T be a vetor-valued funtion de�ned on �
 with �i 2 C1(�
); i = 1; 2. We de�nethe inow and outow parts of � = �
 in the usual fashion:�� = fx 2 � : �(x) � n(x) < 0g = inow;�+ = fx 2 � : �(x) � n(x) > 0g = outow;where n(x) denotes the unit outward normal vetor to � at x 2 �.Let  2 C(�
); f 2 L2(
); g 2 L2(��). Consider the hyperboli boundary valueproblem Lu � div(�u) + u = f in 
;u = g on ��: (1.1)We shall assume the existene of a positive onstant 0 suh that(x) + 12 div�(x) � 0 for all x 2 �
: (1.2)The disontinuous Galerkin approximation of (1.1) onsists of hoosing the spae V kh ofdisontinuous pieewise polynomials of degree k � 0 and seeking uh 2 V kh suh thatXT2Th ZT (�uh (� � rvh) + uhvh) dx+ Xe6��� Zef�uhgu � [[ vh ℄℄ ds= Z
 fvh dx� Xe��� Ze(� � n) g vh ds; vh 2 V kh ; (1.3)where f�uhgu represents the upwind value of �uh and, as usual, [[ vh ℄℄ denotes the jumpof vh aross the edge of an element over whih it is evaluated; the preise de�nition isgiven in the next setion in (2.1) and (2.3).Here we propose a slightly di�erent stabilization of the problem. Instead of (1.3) weonsiderXT2Th ZT (�uh (� � rvh) + uhvh) dx+ Xe6��� Zef�uhg � [[ vh ℄℄ ds+Xe6�� Ze e(s) [[ uh ℄℄ � [[ vh ℄℄ ds=Z
 fvh dx� Xe��� Ze(� � n) g vh ds; vh 2 V kh ; (1.4)where f�uhg is now the usual average (see (2.2)) and, for every internal edge e, wedenoted by e a nonnegative funtion to be hosen (whih, in pratial implementations,ould be de�ned as onstant on e). For related ideas onerning least-squares-typestabilization in the ontext of disontinuous Galerkin methods, we refer to Setion 5 ofthe paper [5℄.We shall prove that, when the stabilization funtion is taken to be e = j� � nj=2then (1.4) ollapses to the original disontinuous Galerkin method (1.3). This fat is



3essentially known, and has already been used, for instane, by Cokburn and Shu [4℄ inseleting the numerial ux funtions for LDG methods in order to redue the stenil.However, the disontinuous Galerkin method (1.4) with jump-stabilization is stable moregenerally, whenever there exists a �0 > 0 suh thate � �0 j� � nej for eah internal edge e: (1.5)This approah, in our opinion, has several potential advantages. In the �rst plae we havea way to tune-up the amount of upwinding that we are willing to use. Admittedly, thisis a rather insigni�ant advantage for a problem as simple as our model problem (1.1);however, the tehnique an be relevant in more ompliated situations: for instane, inthe ase of advetion-di�usion equations where a ertain amount of visosity is present,possibly only in subsets of the omputational domain, partiularly when suh subsetsare unknown a priori, or hange with time, or when it is neessary to alter the amount ofloal numerial dissipation in the ourse of an iterative proedure. In fat, if a di�usiveterm is present and is also approximated by means of a disontinuous Galerkin method,it is quite likely that a jump-penalty, idential or very similar to the present one, isalready inluded into the di�usive part of the disretization, and we an therefore treatthe two jump-penalty stabilizations together, both from the theoretial viewpoint as wellas in the atual implementation of the method. Finally, we believe that the present wayof dealing with upwinding provides a simpler and more elegant analysis even in the asewhen we take exatly e � j� � nj=2.The paper is organized as follows. In the next setion we formulate our hypotheses,and we derive the unstabilized disontinuous Galerkin method for our model problem.Then, in Setion 3, we introdue the jump-stabilization and arrive at the ultimate formof our method. The onsisteny and the stability of the method are explored in Setion4, and the �nal a priori error estimates are proved in Setion 5. In partiular, in the aseof disontinuous pieewise polynomial �nite element approximations of degree k � 0, weprove an optimal error estimate of the formjju� uhjj20;
 +Xe2Eh jj1=2e [[ u� uh ℄℄jj20;e � Ch2k+1jjujj2k+1;
; (1.6)familiar from the theory of stabilized �nite element methods for �rst-order hyperboliproblems.2 The disontinuous �nite element approximationLet Th be a regular family of deompositions of 
 into triangles T ; let hT denote thediameter of T , and let h = maxT2Th hT . In order to de�ne a disontinuous �nite elementapproximation of problem (1.1) we �rst need to introdue typial tools suh as jumpsand averages of salar- and vetor-valued funtions aross the edges of Th. Followingthe notation of [3℄, let e be an interior edge shared by elements T1 and T2. De�ne theunit normal vetors n1 and n2 on e pointing exterior to T1 and T2, respetively. For a



4funtion ', pieewise smooth on Th, with 'i := 'jTi we de�nef'g = 12('1 + '2); [[' ℄℄ = '1n1 + '2n2 on e 2 EÆh; (2.1)where EÆh is the set of interior edges e. For a vetor-valued funtion � , pieewise smoothon Th, with analogous meaning for � 1 and � 2, we de�nef�g = 12(� 1 + � 2); [[ � ℄℄ = � 1 � n1 + � 2 � n2 on e 2 EÆh: (2.2)Notie that the jump [[' ℄℄ of the salar funtion ' aross e 2 EÆh is a vetor parallelwith the normal to e, and the jump [[ � ℄℄ of the vetor funtion � is a salar quantity.The advantage of these de�nitions is that they do not depend on the ordering that isassigned to the elements Ti. For e 2 E�h , the set of boundary edges, we let[[' ℄℄ = 'n; f�g = � on e 2 E�h : (2.3)We do not require either of the quantities f'g or [[ � ℄℄ on boundary edges, and leavethem unde�ned there.Next, with any integer k � 0 we assoiate the �nite element spae of disontinuouspieewise polynomial funtionsV kh = fv 2 L2(
) : vjT 2 Pk(T ) T 2 Thg; (2.4)where, as usual, Pk is the spae of polynomials of degree k or less. On multiplyingequation (1.1) by a funtion vh 2 V kh and integrating by parts, we getXT2Th �ZT (�u (� � rvh) + uvh) dx + Z�T (� � n) u vh ds� = Z
 fvh dx: (2.5)Reall the following identity (see [3℄) whih holds for vetors � and salars ', pieewisesmooth on Th:XT2Th Z�T (� � n)' ds = Xe2Eh Zef�g � [[' ℄℄ ds+Xe2EÆh Ze[[ � ℄℄ f'g ds: (2.6)Now, from (2.6) with � = �u and ' = vh, sine [[�u ℄℄ = 0 on internal edges, we deduethat XT2Th Z�T (� � n) u vh ds = Xe2Eh Zef�ug � [[ vh ℄℄ ds= Xe6��� Zef�ug � [[ vh ℄℄ ds+ Xe��� Ze � � n g vh ds: (2.7)Setting ah (u; vh) = XT2Th ZT (�u (� � rvh) + uvh) dx; (2.8)



5bh (u; vh) = Xe6��� Zef�ug � [[ vh ℄℄ ds; (2.9)(f; vh) = Z
 fvh dx; hg; vhi = � Xe��� Ze(� � n) g vh ds; (2.10)we then have thatah (u; vh) + bh (u; vh) = (f; vh) + hg; vhi; vh 2 V kh : (2.11)Inspired by the identity (2.11), we now de�ne the unstabilized disrete problem as� �nd uh 2 V kh :ah (uh; vh) + bh (uh; vh) = (f; vh) + hg; vhi; vh 2 V kh : (2.12)3 Stabilization with a jump-penaltyThe formulation (2.12) is stable, but only in the L2(
)-norm. The pratial onsequenesof this an be detrimental: disontinuities in the boundary data may trigger large,nonphysial osillations in the numerial solution. In order to design a formulation thatis stable in a stronger norm, on every internal edge e, ommon to the triangles T 1 andT 2, one usually substitutes the average f�uhg that appears in bh (uh; vh) (see (2.9)) bythe upwind value of �uh, de�ned asf�uhgu = 8><>: �u1h if � � n1 > 0�u2h if � � n1 < 0�fuhg if � � n1 = 0: (3.1)As f�uhgu, in bh (uh; vh), is multiplied by [[ vh ℄℄, whih is direted as the normal n toe, it is lear that only the normal omponent of f�uhgu will feature in the sheme.On the other hand, it is a simple matter to hek that, if n is normal to e, thenf�uhgu � n an also be written asf�uhgu � n = (f�uhg+ �[[ uh ℄℄) � n (3.2)where f�uhg is again the usual average and � is given by� = j� � nj=2: (3.3)Motivated by (3.2) and (3.3), we now hypothesize (and will prove later on) that weould still ahieve stability in a norm that is stronger than k � k0;
 if we replae theupwind average f�uhgu by f�uhg + e[[ uh ℄℄, provided that e is a nonnegative funtionhosen on eah e in suh a way that e � �0 j� � nj; (3.4)



6with �0 a positive onstant independent of e and h. In order to make our proofs moreelegant, it will be onvenient to de�ne e on the boundary �
 as well by settinge = ( � � n
=2 on �+� � � n
=2 on ��; (3.5)where n
 is the unit normal vetor to �
.We emphasize here that, trivially, the onditions (3.4) and (3.5) imply thate � 0 for all e 2 Eh: (3.6)We therefore assume that e satis�es (3.4) and we replae bh (uh; vh) in (2.12) by itsstabilized version bsh (uh; vh) := bh (uh; vh) +Xe2EÆh Ze e[[ uh ℄℄ � [[ vh ℄℄ ds; (3.7)thus obtaining the stabilized disrete problem� �nd uh 2 V kh :ah (uh; vh) + bsh (uh; vh) = (f; vh) + hg; vhi; vh 2 V kh : (3.8)We note, in partiular, that (3.8) inludes, as a speial ase, the lassial disontinuousGalerkin �nite element method (see, [7℄ and [8℄) with the numerial ux funtion takenas the upwind ux. Indeed, we an always hoose e = �, given by (3.3).We also note that in ertain ases taking f�uhg+e[[ uh ℄℄ instead of the usual averageorresponds to taking a di�erent type of average. To see this, onsider an internal edgee (ommon to the triangles T1 and T2) and assume in partiular that the funtion evanishes whenever � � ne does. In this ase we an de�ne, for i = 1; 2,�i = 8><>: 12 + e� � ni if � � ni 6= 012 if � � ni = 0: (3.9)Clearly, �1 + �2 = 1. We an, therefore, de�ne the tilted averagef�uhg� := �(u1h�1 + u2h�2): (3.10)It then follows that, whenever ne is orthogonal to e, we have that(f�uhg+ e[[ uh ℄℄) � ne = f�uhg� � ne: (3.11)Therefore our jump-stabilization ould also be seen as using the tilted average (3.10)instead of the usual average.



74 Consisteny and stability of the methodConsisteny. Consisteny follows immediately from (2.11) and (3.7) upon observingthat, sine � � [[ u ℄℄ = 0 on internal edges, bsh (u; vh) � bh (u; vh). In partiular, Galerkinorthogonality holds:ah (u� uh; vh) + bsh (u� uh; vh) = 0; vh 2 V kh : (4.1)Stability. We shall prove stability and error estimates in the normjjj � jjj =  jj � jj20;
 +Xe2Eh jj1=2e [[ � ℄℄jj20;e!1=2 : (4.2)The norm (4.2) is well de�ned on H1(
) + V kh , thanks to (3.6). After integration byparts, the de�nition (2.8) of ah (�; �) yields thatah (vh; vh) = XT2Th ZT (12div� + ) v2h dx� 12 XT2Th Z�T (� � n)v2h ds: (4.3)Furthermore, from (2.6) with � = � and ' = v2h, sine [[� ℄℄ = 0, we haveXT2Th Z�T (� � n)v2h ds = Xe2Eh Zef�g � [[ v2h ℄℄ ds= Xe2EÆh Zef�g � [[ v2h ℄℄ ds+Xe2E�h Zef�g � [[ v2h ℄℄ ds: (4.4)Combining (4.3) and (4.4), and splitting the ontributions on E�h into their parts on �+and �� we an then writeah (vh; vh) = XT2Th ZT (12div� + ) v2h dx� 12Xe2EÆh Zef�g � [[ v2h ℄℄ ds� 12 Xe��+ Zef�g � [[ v2h ℄℄ ds� 12 Xe��� Zef�g � [[ v2h ℄℄ ds: (4.5)On the other hand, using the ontinuity of � and the de�nitions of averages and jumps(2.1), (2.2), and (2.3), we have thatf�vhg � [[ vh ℄℄ � f�g[[ v2h ℄℄: (4.6)Formula (4.6) is straightforward, but ruial. Its validity allows a simpler treatment ofthe jump-stabilization (where the usual average still appears expliitly), ompared withthe lassial upwind stabilization. Indeed from (4.6) we immediately havebh (vh; vh) = Xe2EÆh Zef�vhg � [[ vh ℄℄ ds+ Xe��+ Zef�vhg � [[ vh ℄℄ ds= 12 Xe2EÆh Zef�g � [[ v2h ℄℄ ds+ Xe��+ Zef�g � [[ v2h ℄℄ ds: (4.7)



8Consequently, using (4.7) and (3.7) with (3.4) we obtainbsh (vh; vh) = 12 Xe2EÆh Zef�g � [[ v2h ℄℄ ds+ Xe��+ Zef�g � [[ v2h ℄℄ ds+Xe2EÆh Ze ej[[ vh ℄℄j2 ds: (4.8)Finally, we note that the onditions on the boundary (3.5) and (2.3) imply thatej[[ vh ℄℄j2 = ( f�g � [[ v2h ℄℄=2 on �+�f�g � [[ v2h ℄℄=2 on ��: (4.9)Colleting (4.5) and (4.8), using (4.9), then (1.2) and (3.6), and �nally (4.2), we obtainah (vh; vh) +bsh (vh; vh)= XT2Th ZT (12div� + ) v2h dx� 12 Xe��� Zef�g � [[ v2h ℄℄ ds+ 12 Xe��+ Zef�g � [[ v2h ℄℄ ds+Xe2EÆh Ze ej[[ vh ℄℄j2 ds= XT2Th ZT (12div� + ) v2h dx+Xe2Eh Ze ej[[ vh ℄℄j2 ds� 0jjvhjj20;
 +Xe2Eh jj1=2e [[ vh ℄℄jj20;e � CSjjjvhjjj2; (4.10)
with CS := min f0; 1g.5 A priori error estimatesIn what follows C will denote a generi positive onstant whih depends only on thedegree k of the polynomials, on the minimum angle of the mesh, and on the maximumvalue of the stabilizing funtions e.Let P kh be the L2�projetor onto V kh , for whih the following standard estimate holdsjju� P khujjr;p;T � Chk+1�rjjujjk+1;p;T ; r = 0; 1; 1 � p � 1; T 2 Th: (5.1)We reall the following trae inequality (see [1℄, [2℄):jju� P khujj20;e � C(jej�1jju� P khujj20;T + jejju� P khuj21;T ); (5.2)with C a positive onstant depending only on the minimum angle of T . Thus, from(5.1)-(5.2) we dedue thatjju� P khujj0;e � Chk+1=2T jjujjk+1;T ; e 2 Eh: (5.3)



9Let us de�ne � = u� P khu; Æ = uh � P khu:Hene from (4.10) and (4.1) we have thatCS jjjÆjjj2 � ah (Æ; Æ) + bsh (Æ; Æ) = ah (�; Æ) + bsh (�; Æ): (5.4)Next, observe that rÆ 2 V kh , so that, by the de�nition of the projetor P 0h ,ZT (P 0h� � rÆ) � dx = 0: (5.5)Using this, together with (5.1), the Cauhy-Shwarz inequality and the inverse inequality,we dedue that ah (�; Æ) = XT2Th ZT (�� (� � rÆ) + Æ�) dx= XT2Th ZT ((P 0h� � �) � rÆ) � + Æ�) dx� C� XT2Th jjP 0h� � �jj0;1;T jÆj1;T + jjÆjj0;T�jj�jj0;T� C� XT2Th hT j�j1;1;Th�1T jjÆjj0;T + jjÆjj0;T�jj�jj0;T� Chk+1jjÆjj0;
jjujjk+1;
:
(5.6)

It remains to estimate bsh (�; Æ). For this purpose, we �rst make use of (3.4) and theontinuity of � to obtain, for every edge e and for every unit vetor n normal to e,jf��g � nj = j� � njjf�gj� e�0 jf�gj: (5.7)Making use of the fat that [[ Æ ℄℄ is also normal to e, and using (3.6) one again, we thenhave that Zef��g � [[ Æ ℄℄ ds � 1�0 jj1=2e f�gjj0;e jj1=2e [[ Æ ℄℄jj0;e: (5.8)Next, Ze e[[ � ℄℄ � [[ Æ ℄℄ ds � jj1=2e [[ � ℄℄jj0;ejj1=2e [[ Æ ℄℄jj0;e: (5.9)Inserting (5.8) and (5.9) into the de�nition (3.7) of bsh, and then using the Cauhy-Shwarz inequality and (5.3), it follows thatbsh (�; Æ) �Xe2Eh � 1�0 jj1=2e f�gjj0;e + jj1=2e [[ � ℄℄jj0;e�jj1=2e [[ Æ ℄℄jj0;e� Chk+1=2jjujjk+1;
�Xe2Eh jj1=2e [[ Æ ℄℄jj20;e�1=2: (5.10)



10Substituting (5.6) and (5.10) in (5.4), and using the de�nition (4.2) we obtainCSjjjÆjjj2 � Chk+1=2jjujjk+1;
 jjjÆjjj; (5.11)whih implies immediately that jjjÆjjj � Chk+1=2jjujjk+1;
: (5.12)Hene jjju� uhjjj � Chk+1=2; (5.13)thus ompleting the error analysis of the method.6 ConlusionsWe onsidered disontinuous Galerkin �nite element approximations of a model salarlinear hyperboli equation div(�u) + u = f in 
 � R2 , subjet to nonhomogeneousboundary ondition u = g at the inow part of �
. We showed that in order to ensureontinuous stabilization of the method it suÆes to add a jump-penalty term to thedisretized equation. A partiular value of the penalty funtions e results in the standardupwind sheme, but, using disontinuous pieewise polynomials of degree k, an optimalO(hk+1=2) error estimate was proved for any hoie of penalty funtions e that satisfye � �0 j� � nej with �0 > 0 independent of e and h. The latter property an beeasily ensured by simply hoosing the penalty funtion as a suitable onstant on eahedge. As preisely the same jump-term is used for stabilizing DG approximations ofdi�usion operators, the disretization proposed here an simplify the analysis and theimplementation of disontinuous Galerkin �nite element approximations of advetion-di�usion problems.If the jump-penalty terms are omitted from the sheme by formally setting e � 0 oneah e 2 EÆh, then the sheme (3.8) ollapses to (2.12). Sine the latter is only stable inthe L2(
)-norm, in the error analysis of (2.12) one is fored to use the inverse inequalityk[[ Æ ℄℄k0;e � Ch�1=2e kÆk0;T 1[T 2to revert from the edgewise L2-norm to the elemental L2-norm in the ourse of boundingthe left-hand side of (5.8). Hene, instead of (5.8) one hasZef��g � [[ Æ ℄℄ ds � Ck�k0;1;ekf�gk0;eh�1=2e kÆk0;T 1[T 2 � ChkkÆk0;T 1[T 2; (6.1)where T 1 and T 2 are the two triangles whose ommon edge is e; the inequality (6.1), inturn, results in the suboptimal error bound ku � uhk0;
 � Chk for (2.12), | in sharpontrast with the optimal-order error bound (1.6) for the stabilised sheme (3.8). Thisundesirable loss of optimality of the unstabilised sheme (2.12) further highlights thehelpful role played in the stabilized sheme (3.8) by the jump-penalty terms.



11Referenes[1℄ S. Agmon, Letures on Ellipti Boundary Value Problems, Van Nostrand Mathe-matial Studies, Prineton, NJ, 1965.[2℄ D. N. Arnold, An interior penalty �nite element method with disontinuous ele-ment, SIAM J. Numer. Anal., 19 (1982), pp. 742{760.[3℄ D.N. Arnold, F. Brezzi, B. Cokburn, and L.D. Marini, Uni�ed analysisof disontinuous Galerkin methods for ellipti problems, SIAM J. Numer. Anal., 39(2002), pp. 1749{1779.[4℄ B. Cokburn and C.W. Shu, The loal disontinuous Galerkin �nite ele-ment method for onvetion-di�usion systems, SIAM J. Numer. Anal., 35 (1998),pp. 2440{2463.[5℄ P. Houston, M. Jensen, and E. S�uli, hp-Disontinuous Galerkin �nite elementmethods with least-squares stabilization, Journal of Sienti� Computing, 17 (2002),pp. 1{26.[6℄ P. Houston, C. Shwab, and E. S�uli, Stabilized hp-�nite element methods for�rst-order hyperboli problems, SIAM J. Numer. Anal., 37 (2000), pp. 1618{1643.[7℄ C. Johnson and J. Pitk�aranta, An analysis of the disontinuous Galerkinmethod for a salar hyperboli onservation law, Math. Comp., 46 (1986), pp.1{23.[8℄ P. Lesaint and P.-A. Raviart, On a �nite element method for solving theneutron transport equation, in Mathematial Aspets of Finite Elements in PartialDi�erential Equations, C.A. deBoor, ed., Aademi Press, New York, 1974, pp. 89{123.


