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Discontinuous Galerkin methods for
first-order hyperbolic problems

F. Brezzi"?, L. D. Marini"?, and E. Sili’
) )

In this paper we consider discontinuous Galerkin (DG) finite element ap-
proximations of a model scalar linear hyperbolic equation. We show that
in order to ensure continuous stabilization of the method it suffices to add
a jump-penalty-term to the discretized equation. In particular, the method
does not require upwinding in the usual sense. For a specific value of the
penalty parameter we recover the classical discontinuous Galerkin method
with upwind numerical flux function. More generally, using discontinuous
piecewise polynomials of degree k, the familiar optimal O(h*+'/2) error es-
timate is proved for any value of the penalty parameter. As precisely the
same jump -term is used for the purposes of stabilizing DG approximations of
advection-diffusion operators, the discretization proposed here can simplify
the construction of discontinuous Galerkin finite element approximations of
advection-diffusion problems. Moreover, the use of the jump-stabilization
makes the analysis simpler and more elegant.

Oxford University Computing Laboratory

Numerical Analysis Group

Wolfson Building

Parks Road

Oxford, England  OX1 3QD January, 2004

!Dipartimento di Matematica, Universita di Pavia, Via Ferrata 1, 27100 Pavia, Italy

2IMATI del CNR, Via Ferrata 1, 27100 Pavia, Italy

3University of Oxford, Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD,
United Kingdom



1 Introduction

Let Q be a bounded polygonal domain in R?, and let the advective velocity field 8 =
(B1, B2)* be a vector-valued function defined on Q with 3; € C1(Q), i = 1,2. We define
the inflow and outflow parts of I' = 02 in the usual fashion:

I ={zel: B(z) n(x) <0} =inflow,
'y ={zeTl: B(z) n(x) >0} = outflow,

where n(z) denotes the unit outward normal vector to " at = € T.
Let v € C(Q), f € L*Q), g € L2(I'_). Consider the hyperbolic boundary value
problem
Lu =div(Bu) +yu = f inQ,
uw=g¢9 onl_.

(1.1)

We shall assume the existence of a positive constant ¢y such that
1 . _
v(z) + 5 divp(z) > ¢o  for all z € Q. (1.2)

The discontinuous Galerkin approximation of (1.1) consists of choosing the space V¥ of
discontinuous piecewise polynomials of degree k > 0 and seeking u;, € V/ such that

Z/ —uy (B - Vo) + yupop) do + Z /{,Buh}u- vn |

TeTh e7T_ (13)

/f?)h dr — Z / n) g vy ds, vy, € th,

eCl'_

where {Buy}, represents the upwind value of Buy, and, as usual, [ v, | denotes the jump
of v, across the edge of an element over which it is evaluated; the precise definition is
given in the next section in (2.1) and (2.3).

Here we propose a slightly different stabilization of the problem. Instead of (1.3) we
consider

Z/ —up (B - Vo) + yupvy) dz + Z/{Buh} vn |

TeT eg'_ (14)
+Z /(‘e [un] - Ton] de/fvh dr — Z / n) guv,ds, v, € V¥,
egT eCl'_

where {Bu,} is now the usual average (see (2.2)) and, for every internal edge e, we
denoted by ¢, a nonnegative function to be chosen (which, in practical implementations,
could be defined as constant on e). For related ideas concerning least-squares-type
stabilization in the context of discontinuous Galerkin methods, we refer to Section 5 of
the paper [5].

We shall prove that, when the stabilization function is taken to be ¢, = |8 - n|/2
then (1.4) collapses to the original discontinuous Galerkin method (1.3). This fact is



essentially known, and has already been used, for instance, by Cockburn and Shu [4] in
selecting the numerical flux functions for LDG methods in order to reduce the stencil.
However, the discontinuous Galerkin method (1.4) with jump-stabilization is stable more
generally, whenever there exists a 6, > 0 such that

ce > 0y |B - 1. for each internal edge e. (1.5)

This approach, in our opinion, has several potential advantages. In the first place we have
a way to tune-up the amount of upwinding that we are willing to use. Admittedly, this
is a rather insignificant advantage for a problem as simple as our model problem (1.1);
however, the technique can be relevant in more complicated situations: for instance, in
the case of advection-diffusion equations where a certain amount of viscosity is present,
possibly only in subsets of the computational domain, particularly when such subsets
are unknown a priori, or change with time, or when it is necessary to alter the amount of
local numerical dissipation in the course of an iterative procedure. In fact, if a diffusive
term is present and is also approximated by means of a discontinuous Galerkin method,
it is quite likely that a jump-penalty, identical or very similar to the present one, is
already included into the diffusive part of the discretization, and we can therefore treat
the two jump-penalty stabilizations together, both from the theoretical viewpoint as well
as in the actual implementation of the method. Finally, we believe that the present way
of dealing with upwinding provides a simpler and more elegant analysis even in the case
when we take exactly ¢, = |3 - nl|/2.

The paper is organized as follows. In the next section we formulate our hypotheses,
and we derive the unstabilized discontinuous Galerkin method for our model problem.
Then, in Section 3, we introduce the jump-stabilization and arrive at the ultimate form
of our method. The consistency and the stability of the method are explored in Section
4, and the final a priori error estimates are proved in Section 5. In particular, in the case
of discontinuous piecewise polynomial finite element approximations of degree k£ > 0, we
prove an optimal error estimate of the form

[u—unlgq + D lee*[u—undl5. < OB uli g, (1.6)

ecéy

familiar from the theory of stabilized finite element methods for first-order hyperbolic
problems.

2 The discontinuous finite element approximation

Let 7, be a regular family of decompositions of €2 into triangles 7T'; let hy denote the
diameter of T', and let h = maxycy, hr. In order to define a discontinuous finite element
approximation of problem (1.1) we first need to introduce typical tools such as jumps
and averages of scalar- and vector-valued functions across the edges of 7,. Following
the notation of [3], let e be an interior edge shared by elements 7} and Ty. Define the
unit normal vectors n' and n? on e pointing exterior to 7} and 75, respectively. For a



function ¢, piecewise smooth on Ty, with ' := ¢|y, we define

2

{o} =3 (90 +¢°), [el=¢'n"+¢°n* onecé;, (2.1)

where &} is the set of interior edges e. For a vector-valued function 7, piecewise smooth
on 7, with analogous meaning for 7' and 72, we define

1
{7}25(7-]4_7-2), [f]=7"-n'+7*-n° onecé&. (2.2)

Notice that the jump [¢] of the scalar function ¢ across e € &£ is a vector parallel
with the normal to e, and the jump [ 7] of the vector function 7 is a scalar quantity.
The advantage of these definitions is that they do not depend on the ordering that is
assigned to the elements T;. For e € £, the set of boundary edges, we let

[¢]=¢n, {r}=7 onecé&. (2.3)

We do not require either of the quantities {¢} or [7] on boundary edges, and leave
them undefined there.

Next, with any integer £ > 0 we associate the finite element space of discontinuous
piecewise polynomial functions

V;{C = {v e L*(Q): vr € Po(T) T €T, (2.4)

where, as usual, P, is the space of polynomials of degree k or less. On multiplying
equation (1.1) by a function v, € V}¥ and integrating by parts, we get

)3 (_/T(U (B'Wh)Jrvuvh)der/

TET Jor

(8- n) uvhds) — /fvhda?. (2.5)
JQ

Recall the following identity (see [3]) which holds for vectors 7 and scalars ¢, piecewise
smooth on 7j:

Z/ (7-m) %Dd‘?_Z/{T} d9+2/ 1{p} ds. (2.6)

TeTh ec&y ec&y

Now, from (2.6) with 7 = Bu and ¢ = vy, since [ Bu] = 0 on internal edges, we deduce
that

> [ @ mumas = 3 [gguy-fu)as

TeT, " ecéy
(2.7)
= Z /{Bu} [vn d9+z /B n g vy, ds.
egT_ eCl'_

Setting

(u, vp) Z / B - Vo) + yuvy,) dz, (2.8)

TeTh



(o) = Y /{BU} vn | (2.9)

eg'_

(f, vn) / fondz, (gu)=-Y_ / ) g up ds, (2.10)

eCl'_

we then have that

ap (u,v) + b (u,v) = (f,vn) + (g, vp), v, € Vi (2.11)
Inspired by the identity (2.11), we now define the unstabilized discrete problem as

find uj, € V¥ (2.12)
an (up, vp) + bp (un, o) = (f,vn) + (g, va), vy, € VIE. '

3 Stabilization with a jump-penalty

The formulation (2.12) is stable, but only in the L?(€2)-norm. The practical consequences
of this can be detrimental: discontinuities in the boundary data may trigger large,
nonphysical oscillations in the numerical solution. In order to design a formulation that
is stable in a stronger norm, on every internal edge e, common to the triangles 7" and
T?, one usually substitutes the average {Buy} that appears in by, (up,vs) (see (2.9)) by
the upwind value of Buy, defined as

Buy, if B-n'>0
{Buntu =14 Bu; if B-n'<0 (3.1)
B{un} if B-n'=0.
As {Bup}y, in by, (up,vp), is multiplied by [vy, |, which is directed as the normal n to
e, it is clear that only the normal component of {Buy}, will feature in the scheme.

On the other hand, it is a simple matter to check that, if n is normal to e, then
{Bup}, - n can also be written as

{Bup}ty -mn= ({Bup} +cun]) -n (3.2)

where {Bu;} is again the usual average and ¢* is given by
— 8-n)/2 (3.3)

Motivated by (3.2) and (3.3), we now hypothesize (and will prove later on) that we
could still achieve stability in a norm that is stronger than || - ||o.o if we replace the
upwind average {Bup}, by {Bun} + c.[up], provided that ¢, is a nonnegative function
chosen on each e in such a way that

Ce Z 00 |,3 . Il|, (34)



with #y a positive constant independent of e and h. In order to make our proofs more
elegant, it will be convenient to define ¢, on the boundary 0¢) as well by setting

. 2 r
Co = B-me/2 ol (3.5)
— B -nq/2 onI_,
where nq is the unit normal vector to 0f).
We emphasize here that, trivially, the conditions (3.4) and (3.5) imply that
ce >0 for alle € &. (3.6)

We therefore assume that c. satisfies (3.4) and we replace by, (up, vy) in (2.12) by its
stabilized version

by (up, vg) = by (up, vp) + Z /ce[[uh]] [ wn]ds, (3.7)

ecty €

thus obtaining the stabilized discrete problem

k.
{ find u, € V) : (3.8)

an (up, vp) + 05 (un, vn) = (f,vn) + (g, vn), v, € ViE.

We note, in particular, that (3.8) includes, as a special case, the classical discontinuous
Galerkin finite element method (see, [7] and [8]) with the numerical flux function taken
as the upwind flux. Indeed, we can always choose ¢, = ¢*, given by (3.3).

We also note that in certain cases taking {Buy} + c.[ us | instead of the usual average
corresponds to taking a different type of average. To see this, consider an internal edge
e (common to the triangles 77 and T3) and assume in particular that the function c,
vanishes whenever 8 - n, does. In this case we can define, for 1 =1, 2,

Ce
+

R if B-n' #£0
' (3.9)
if 3-n’ = 0.

~
DN | —DN| =

Clearly, o' + a? = 1. We can, therefore, define the tilted average
{Bup}ta = Bluya! +upa?). (3.10)
It then follows that, whenever n, is orthogonal to e, we have that
({Bur}t + celun]) - ne ={Bun}a - ne. (3.11)

Therefore our jump-stabilization could also be seen as using the tilted average (3.10)
instead of the usual average.



4 Consistency and stability of the method

Consistency. Consistency follows immediately from (2.11) and (3.7) upon observing
that, since 8- [u] = 0 on internal edges, b} (u,vs) = by, (u,v,). In particular, Galerkin
orthogonality holds:

ap (u— up,vp) + 05, (u — up, vy) =0, v, € Vi (4.1)

Stability. We shall prove stability and error estimates in the norm

1/2
-l = (| 60+ D I IOe) : (4.2)

ecéy

The norm (4.2) is well defined on H'(Q2) + V¥, thanks to (3.6). After integration by
parts, the definition (2.8) of ay (-, ) yields that

(vn, vp) Z / —divB +v)vid Z / n)v; ds. (4.3)
TET, TeT
Furthermore, from (2.6) with 7 = 8 and ¢ = v}, since [ 8] = 0, we have

> [ 8wias= 3 [(8)- 1411

TGT PES,,

(4.4)
- /{B} dlds+ Y [18)- 12 ]as

eef}‘? we

Combining (4.3) and (4.4), and splitting the contributions on £/ into their parts on T';
and I'_ we can then write

(vn, vn) Z/ —divB + ) vp d Z/{B}

Tei Z /{5} vplds — 5 ;/{5} [vh] )

On the other hand, using the continuity of 8 and the definitions of averages and jumps
(2.1), (2.2), and (2.3), we have that

{Bun} - [vn] = {BHwi]. (4.6)

Formula (4.6) is straightforward, but crucial. Its validity allows a simpler treatment of
the jump-stabilization (where the usual average still appears explicitly), compared with
the classical upwind stabilization. Indeed from (4.6) we immediately have

by (vp, vp) = /{,Bq)h} [vp]ds + Z /{B?)h} [on]
PGS eCl'4 (47)

=—Z/{B} s+ 3 (181 Ik

ecéy eCl'y



Consequently, using (4.7) and (3.7) with (3.4) we obtain

b (vp, vp) = Z/{,B} [v7]

PGS

(4.8)
+ {B} - [v;]ds+ cel[vn ] ds.
YICRE eezgo/ ”

Finally, we note that the conditions on the boundary (3.5) and (2.3) imply that

BT B B O A T B
ellenl { S T (19)

Collecting (4.5) and (4.8), using (4.9), then (1.2) and (3.6), and finally (4.2), we obtain

an (vp, vp) +05 (Uh,vh)

_Z/ —divB +7) vhdx——Z/{B} i

TGT eCl'_
+ = Z/{B} vi ds+Z/c€ vy ] ds
PCF+ ec&y (410)
—Z/ d1vB+7vth+Z/(’e v ]| ds
TeTh ecéy,
> colonlga + Y le* [ondls,. = Cslllonlll®
ecty,

with C's := min {¢g, 1}.

5 A priori error estimates

In what follows C' will denote a generic positive constant which depends only on the
degree k of the polynomials, on the minimum angle of the mesh, and on the maximum
value of the stabilizing functions c,.

Let PF be the L?—projector onto Vi, for which the following standard estimate holds

lu — Pful,pr < CR* ™ ulpi1pr, 7=0,1, 1<p<oco, TET,. (5.1)
We recall the following trace inequality (see [1], [2]):
Ju— Prul2, < C(lel |u— Plull+ lellu — Phult ), (52)

with C' a positive constant depending only on the minimum angle of 7. Thus, from
(5.1)-(5.2) we deduce that

[u—Pfuloe < Chy™ P lulepir, e €& (5.3)



Let us define
n=u— Pfu, § = uy — Plu.

Hence from (4.10) and (4.1) we have that
Cs [[8]1” < an (3,0) + b}, (5,6) = an (n,0) + bj, (1. 9). (54)

Next, observe that V& € V%, so that, by the definition of the projector P?,

/(P,?B -Vo)ndx =0. (5.5)

Using this, together with (5.1), the Cauchy-Schwarz inequality and the inverse inequality,
we deduce that

Z/ n (8- V) + ~on) dz

TeTh
=3 [ s 8- 9o+ as
e 5.6
<O(' Y2128 = Blos ol + 1810 ) Inloce (56)
TeTy,
< (Y2 hrlBlioirhz 18lor + 101o.r ) Inlo.r
TeTh

< P doalules o

[t remains to estimate b} (n,0). For this purpose, we first make use of (3.4) and the
continuity of B to obtain, for every edge e and for every unit vector n normal to e,

{Bn}-n| =8 -nl{n}/< ;—Z{n}- (5.7)

Making use of the fact that [ 4] is also normal to e, and using (3.6) once again, we then
have that

1
/ (B} - 15145 < el (o 1627161 (5.8)
Next,

/Ce[[n]] [81ds < lle?[nTlo.elee* 8T o.e- (5.9)

e

Inserting (5.8) and (5.9) into the definition (3.7) of b5, and then using the Cauchy-
Schwarz inequality and (5.3), it follows that

1
601.6) < 3 (g1t os + et [l ) et T8 o
ee&y

o (5.10)
< CW P uli v 3 1615,

ecéy
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Substituting (5.6) and (5.10) in (5.4), and using the definition (4.2) we obtain
Csllo]* < Ch* 12 ulisr g 0] (5.11)
which implies immediately that
81 < CR*H 2 u 0. (5.12)

Hence
[ — up|| < ChHEFV2, (5.13)

thus completing the error analysis of the method.

6 Conclusions

We considered discontinuous Galerkin finite element approximations of a model scalar
linear hyperbolic equation div(Bu) +yu = f in Q C R?, subject to nonhomogeneous
boundary condition u = ¢ at the inflow part of €. We showed that in order to ensure
continuous stabilization of the method it suffices to add a jump-penalty term to the
discretized equation. A particular value of the penalty functions ¢, results in the standard
upwind scheme, but, using discontinuous piecewise polynomials of degree k, an optimal
(’)(hk“/Q) error estimate was proved for any choice of penalty functions ¢, that satisfy
ce > 00|B - n.| with 6, > 0 independent of e and h. The latter property can be
easily ensured by simply choosing the penalty function as a suitable constant on each
edge. As precisely the same jump-term is used for stabilizing DG approximations of
diffusion operators, the discretization proposed here can simplify the analysis and the
implementation of discontinuous Galerkin finite element approximations of advection-
diffusion problems.

If the jump-penalty terms are omitted from the scheme by formally setting ¢, = 0 on
each e € &, then the scheme (3.8) collapses to (2.12). Since the latter is only stable in
the L?(Q)-norm, in the error analysis of (2.12) one is forced to use the inverse inequality

I[8Tlloe < Ch 2 (18]lo/r10r2

to revert from the edgewise L2-norm to the elemental L2-norm in the course of bounding
the left-hand side of (5.8). Hence, instead of (5.8) one has

/{ﬁn} [81ds < CllBlloc.ell{n}llo.ehe " 16llo1ur2 < ChE||d]o o2, (6.1)

where T and T? are the two triangles whose common edge is e; the inequality (6.1), in
turn, results in the suboptimal error bound ||u — upllo.o < Ch* for (2.12), — in sharp
contrast with the optimal-order error bound (1.6) for the stabilised scheme (3.8). This
undesirable loss of optimality of the unstabilised scheme (2.12) further highlights the
helpful role played in the stabilized scheme (3.8) by the jump-penalty terms.
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