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Dis
ontinuous Galerkin methods for�rst-order hyperboli
 problemsF. Brezzi1,2, L. D. Marini1,2, and E. S�uli3

In this paper we 
onsider dis
ontinuous Galerkin (DG) �nite element ap-proximations of a model s
alar linear hyperboli
 equation. We show thatin order to ensure 
ontinuous stabilization of the method it suÆ
es to adda jump-penalty-term to the dis
retized equation. In parti
ular, the methoddoes not require upwinding in the usual sense. For a spe
i�
 value of thepenalty parameter we re
over the 
lassi
al dis
ontinuous Galerkin methodwith upwind numeri
al 
ux fun
tion. More generally, using dis
ontinuouspie
ewise polynomials of degree k, the familiar optimal O(hk+1=2) error es-timate is proved for any value of the penalty parameter. As pre
isely thesame jump -term is used for the purposes of stabilizing DG approximations ofadve
tion-di�usion operators, the dis
retization proposed here 
an simplifythe 
onstru
tion of dis
ontinuous Galerkin �nite element approximations ofadve
tion-di�usion problems. Moreover, the use of the jump-stabilizationmakes the analysis simpler and more elegant.
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21 Introdu
tionLet 
 be a bounded polygonal domain in R2, and let the adve
tive velo
ity �eld � =(�1; �2)T be a ve
tor-valued fun
tion de�ned on �
 with �i 2 C1(�
); i = 1; 2. We de�nethe in
ow and out
ow parts of � = �
 in the usual fashion:�� = fx 2 � : �(x) � n(x) < 0g = in
ow;�+ = fx 2 � : �(x) � n(x) > 0g = out
ow;where n(x) denotes the unit outward normal ve
tor to � at x 2 �.Let 
 2 C(�
); f 2 L2(
); g 2 L2(��). Consider the hyperboli
 boundary valueproblem Lu � div(�u) + 
u = f in 
;u = g on ��: (1.1)We shall assume the existen
e of a positive 
onstant 
0 su
h that
(x) + 12 div�(x) � 
0 for all x 2 �
: (1.2)The dis
ontinuous Galerkin approximation of (1.1) 
onsists of 
hoosing the spa
e V kh ofdis
ontinuous pie
ewise polynomials of degree k � 0 and seeking uh 2 V kh su
h thatXT2Th ZT (�uh (� � rvh) + 
uhvh) dx+ Xe6��� Zef�uhgu � [[ vh ℄℄ ds= Z
 fvh dx� Xe��� Ze(� � n) g vh ds; vh 2 V kh ; (1.3)where f�uhgu represents the upwind value of �uh and, as usual, [[ vh ℄℄ denotes the jumpof vh a
ross the edge of an element over whi
h it is evaluated; the pre
ise de�nition isgiven in the next se
tion in (2.1) and (2.3).Here we propose a slightly di�erent stabilization of the problem. Instead of (1.3) we
onsiderXT2Th ZT (�uh (� � rvh) + 
uhvh) dx+ Xe6��� Zef�uhg � [[ vh ℄℄ ds+Xe6�� Ze 
e(s) [[ uh ℄℄ � [[ vh ℄℄ ds=Z
 fvh dx� Xe��� Ze(� � n) g vh ds; vh 2 V kh ; (1.4)where f�uhg is now the usual average (see (2.2)) and, for every internal edge e, wedenoted by 
e a nonnegative fun
tion to be 
hosen (whi
h, in pra
ti
al implementations,
ould be de�ned as 
onstant on e). For related ideas 
on
erning least-squares-typestabilization in the 
ontext of dis
ontinuous Galerkin methods, we refer to Se
tion 5 ofthe paper [5℄.We shall prove that, when the stabilization fun
tion is taken to be 
e = j� � nj=2then (1.4) 
ollapses to the original dis
ontinuous Galerkin method (1.3). This fa
t is



3essentially known, and has already been used, for instan
e, by Co
kburn and Shu [4℄ insele
ting the numeri
al 
ux fun
tions for LDG methods in order to redu
e the sten
il.However, the dis
ontinuous Galerkin method (1.4) with jump-stabilization is stable moregenerally, whenever there exists a �0 > 0 su
h that
e � �0 j� � nej for ea
h internal edge e: (1.5)This approa
h, in our opinion, has several potential advantages. In the �rst pla
e we havea way to tune-up the amount of upwinding that we are willing to use. Admittedly, thisis a rather insigni�
ant advantage for a problem as simple as our model problem (1.1);however, the te
hnique 
an be relevant in more 
ompli
ated situations: for instan
e, inthe 
ase of adve
tion-di�usion equations where a 
ertain amount of vis
osity is present,possibly only in subsets of the 
omputational domain, parti
ularly when su
h subsetsare unknown a priori, or 
hange with time, or when it is ne
essary to alter the amount oflo
al numeri
al dissipation in the 
ourse of an iterative pro
edure. In fa
t, if a di�usiveterm is present and is also approximated by means of a dis
ontinuous Galerkin method,it is quite likely that a jump-penalty, identi
al or very similar to the present one, isalready in
luded into the di�usive part of the dis
retization, and we 
an therefore treatthe two jump-penalty stabilizations together, both from the theoreti
al viewpoint as wellas in the a
tual implementation of the method. Finally, we believe that the present wayof dealing with upwinding provides a simpler and more elegant analysis even in the 
asewhen we take exa
tly 
e � j� � nj=2.The paper is organized as follows. In the next se
tion we formulate our hypotheses,and we derive the unstabilized dis
ontinuous Galerkin method for our model problem.Then, in Se
tion 3, we introdu
e the jump-stabilization and arrive at the ultimate formof our method. The 
onsisten
y and the stability of the method are explored in Se
tion4, and the �nal a priori error estimates are proved in Se
tion 5. In parti
ular, in the 
aseof dis
ontinuous pie
ewise polynomial �nite element approximations of degree k � 0, weprove an optimal error estimate of the formjju� uhjj20;
 +Xe2Eh jj
1=2e [[ u� uh ℄℄jj20;e � Ch2k+1jjujj2k+1;
; (1.6)familiar from the theory of stabilized �nite element methods for �rst-order hyperboli
problems.2 The dis
ontinuous �nite element approximationLet Th be a regular family of de
ompositions of 
 into triangles T ; let hT denote thediameter of T , and let h = maxT2Th hT . In order to de�ne a dis
ontinuous �nite elementapproximation of problem (1.1) we �rst need to introdu
e typi
al tools su
h as jumpsand averages of s
alar- and ve
tor-valued fun
tions a
ross the edges of Th. Followingthe notation of [3℄, let e be an interior edge shared by elements T1 and T2. De�ne theunit normal ve
tors n1 and n2 on e pointing exterior to T1 and T2, respe
tively. For a



4fun
tion ', pie
ewise smooth on Th, with 'i := 'jTi we de�nef'g = 12('1 + '2); [[' ℄℄ = '1n1 + '2n2 on e 2 EÆh; (2.1)where EÆh is the set of interior edges e. For a ve
tor-valued fun
tion � , pie
ewise smoothon Th, with analogous meaning for � 1 and � 2, we de�nef�g = 12(� 1 + � 2); [[ � ℄℄ = � 1 � n1 + � 2 � n2 on e 2 EÆh: (2.2)Noti
e that the jump [[' ℄℄ of the s
alar fun
tion ' a
ross e 2 EÆh is a ve
tor parallelwith the normal to e, and the jump [[ � ℄℄ of the ve
tor fun
tion � is a s
alar quantity.The advantage of these de�nitions is that they do not depend on the ordering that isassigned to the elements Ti. For e 2 E�h , the set of boundary edges, we let[[' ℄℄ = 'n; f�g = � on e 2 E�h : (2.3)We do not require either of the quantities f'g or [[ � ℄℄ on boundary edges, and leavethem unde�ned there.Next, with any integer k � 0 we asso
iate the �nite element spa
e of dis
ontinuouspie
ewise polynomial fun
tionsV kh = fv 2 L2(
) : vjT 2 Pk(T ) T 2 Thg; (2.4)where, as usual, Pk is the spa
e of polynomials of degree k or less. On multiplyingequation (1.1) by a fun
tion vh 2 V kh and integrating by parts, we getXT2Th �ZT (�u (� � rvh) + 
uvh) dx + Z�T (� � n) u vh ds� = Z
 fvh dx: (2.5)Re
all the following identity (see [3℄) whi
h holds for ve
tors � and s
alars ', pie
ewisesmooth on Th:XT2Th Z�T (� � n)' ds = Xe2Eh Zef�g � [[' ℄℄ ds+Xe2EÆh Ze[[ � ℄℄ f'g ds: (2.6)Now, from (2.6) with � = �u and ' = vh, sin
e [[�u ℄℄ = 0 on internal edges, we dedu
ethat XT2Th Z�T (� � n) u vh ds = Xe2Eh Zef�ug � [[ vh ℄℄ ds= Xe6��� Zef�ug � [[ vh ℄℄ ds+ Xe��� Ze � � n g vh ds: (2.7)Setting ah (u; vh) = XT2Th ZT (�u (� � rvh) + 
uvh) dx; (2.8)



5bh (u; vh) = Xe6��� Zef�ug � [[ vh ℄℄ ds; (2.9)(f; vh) = Z
 fvh dx; hg; vhi = � Xe��� Ze(� � n) g vh ds; (2.10)we then have thatah (u; vh) + bh (u; vh) = (f; vh) + hg; vhi; vh 2 V kh : (2.11)Inspired by the identity (2.11), we now de�ne the unstabilized dis
rete problem as� �nd uh 2 V kh :ah (uh; vh) + bh (uh; vh) = (f; vh) + hg; vhi; vh 2 V kh : (2.12)3 Stabilization with a jump-penaltyThe formulation (2.12) is stable, but only in the L2(
)-norm. The pra
ti
al 
onsequen
esof this 
an be detrimental: dis
ontinuities in the boundary data may trigger large,nonphysi
al os
illations in the numeri
al solution. In order to design a formulation thatis stable in a stronger norm, on every internal edge e, 
ommon to the triangles T 1 andT 2, one usually substitutes the average f�uhg that appears in bh (uh; vh) (see (2.9)) bythe upwind value of �uh, de�ned asf�uhgu = 8><>: �u1h if � � n1 > 0�u2h if � � n1 < 0�fuhg if � � n1 = 0: (3.1)As f�uhgu, in bh (uh; vh), is multiplied by [[ vh ℄℄, whi
h is dire
ted as the normal n toe, it is 
lear that only the normal 
omponent of f�uhgu will feature in the s
heme.On the other hand, it is a simple matter to 
he
k that, if n is normal to e, thenf�uhgu � n 
an also be written asf�uhgu � n = (f�uhg+ 
�[[ uh ℄℄) � n (3.2)where f�uhg is again the usual average and 
� is given by
� = j� � nj=2: (3.3)Motivated by (3.2) and (3.3), we now hypothesize (and will prove later on) that we
ould still a
hieve stability in a norm that is stronger than k � k0;
 if we repla
e theupwind average f�uhgu by f�uhg + 
e[[ uh ℄℄, provided that 
e is a nonnegative fun
tion
hosen on ea
h e in su
h a way that 
e � �0 j� � nj; (3.4)



6with �0 a positive 
onstant independent of e and h. In order to make our proofs moreelegant, it will be 
onvenient to de�ne 
e on the boundary �
 as well by setting
e = ( � � n
=2 on �+� � � n
=2 on ��; (3.5)where n
 is the unit normal ve
tor to �
.We emphasize here that, trivially, the 
onditions (3.4) and (3.5) imply that
e � 0 for all e 2 Eh: (3.6)We therefore assume that 
e satis�es (3.4) and we repla
e bh (uh; vh) in (2.12) by itsstabilized version bsh (uh; vh) := bh (uh; vh) +Xe2EÆh Ze 
e[[ uh ℄℄ � [[ vh ℄℄ ds; (3.7)thus obtaining the stabilized dis
rete problem� �nd uh 2 V kh :ah (uh; vh) + bsh (uh; vh) = (f; vh) + hg; vhi; vh 2 V kh : (3.8)We note, in parti
ular, that (3.8) in
ludes, as a spe
ial 
ase, the 
lassi
al dis
ontinuousGalerkin �nite element method (see, [7℄ and [8℄) with the numeri
al 
ux fun
tion takenas the upwind 
ux. Indeed, we 
an always 
hoose 
e = 
�, given by (3.3).We also note that in 
ertain 
ases taking f�uhg+
e[[ uh ℄℄ instead of the usual average
orresponds to taking a di�erent type of average. To see this, 
onsider an internal edgee (
ommon to the triangles T1 and T2) and assume in parti
ular that the fun
tion 
evanishes whenever � � ne does. In this 
ase we 
an de�ne, for i = 1; 2,�i = 8><>: 12 + 
e� � ni if � � ni 6= 012 if � � ni = 0: (3.9)Clearly, �1 + �2 = 1. We 
an, therefore, de�ne the tilted averagef�uhg� := �(u1h�1 + u2h�2): (3.10)It then follows that, whenever ne is orthogonal to e, we have that(f�uhg+ 
e[[ uh ℄℄) � ne = f�uhg� � ne: (3.11)Therefore our jump-stabilization 
ould also be seen as using the tilted average (3.10)instead of the usual average.



74 Consisten
y and stability of the methodConsisten
y. Consisten
y follows immediately from (2.11) and (3.7) upon observingthat, sin
e � � [[ u ℄℄ = 0 on internal edges, bsh (u; vh) � bh (u; vh). In parti
ular, Galerkinorthogonality holds:ah (u� uh; vh) + bsh (u� uh; vh) = 0; vh 2 V kh : (4.1)Stability. We shall prove stability and error estimates in the normjjj � jjj =  jj � jj20;
 +Xe2Eh jj
1=2e [[ � ℄℄jj20;e!1=2 : (4.2)The norm (4.2) is well de�ned on H1(
) + V kh , thanks to (3.6). After integration byparts, the de�nition (2.8) of ah (�; �) yields thatah (vh; vh) = XT2Th ZT (12div� + 
) v2h dx� 12 XT2Th Z�T (� � n)v2h ds: (4.3)Furthermore, from (2.6) with � = � and ' = v2h, sin
e [[� ℄℄ = 0, we haveXT2Th Z�T (� � n)v2h ds = Xe2Eh Zef�g � [[ v2h ℄℄ ds= Xe2EÆh Zef�g � [[ v2h ℄℄ ds+Xe2E�h Zef�g � [[ v2h ℄℄ ds: (4.4)Combining (4.3) and (4.4), and splitting the 
ontributions on E�h into their parts on �+and �� we 
an then writeah (vh; vh) = XT2Th ZT (12div� + 
) v2h dx� 12Xe2EÆh Zef�g � [[ v2h ℄℄ ds� 12 Xe��+ Zef�g � [[ v2h ℄℄ ds� 12 Xe��� Zef�g � [[ v2h ℄℄ ds: (4.5)On the other hand, using the 
ontinuity of � and the de�nitions of averages and jumps(2.1), (2.2), and (2.3), we have thatf�vhg � [[ vh ℄℄ � f�g[[ v2h ℄℄: (4.6)Formula (4.6) is straightforward, but 
ru
ial. Its validity allows a simpler treatment ofthe jump-stabilization (where the usual average still appears expli
itly), 
ompared withthe 
lassi
al upwind stabilization. Indeed from (4.6) we immediately havebh (vh; vh) = Xe2EÆh Zef�vhg � [[ vh ℄℄ ds+ Xe��+ Zef�vhg � [[ vh ℄℄ ds= 12 Xe2EÆh Zef�g � [[ v2h ℄℄ ds+ Xe��+ Zef�g � [[ v2h ℄℄ ds: (4.7)



8Consequently, using (4.7) and (3.7) with (3.4) we obtainbsh (vh; vh) = 12 Xe2EÆh Zef�g � [[ v2h ℄℄ ds+ Xe��+ Zef�g � [[ v2h ℄℄ ds+Xe2EÆh Ze 
ej[[ vh ℄℄j2 ds: (4.8)Finally, we note that the 
onditions on the boundary (3.5) and (2.3) imply that
ej[[ vh ℄℄j2 = ( f�g � [[ v2h ℄℄=2 on �+�f�g � [[ v2h ℄℄=2 on ��: (4.9)Colle
ting (4.5) and (4.8), using (4.9), then (1.2) and (3.6), and �nally (4.2), we obtainah (vh; vh) +bsh (vh; vh)= XT2Th ZT (12div� + 
) v2h dx� 12 Xe��� Zef�g � [[ v2h ℄℄ ds+ 12 Xe��+ Zef�g � [[ v2h ℄℄ ds+Xe2EÆh Ze 
ej[[ vh ℄℄j2 ds= XT2Th ZT (12div� + 
) v2h dx+Xe2Eh Ze 
ej[[ vh ℄℄j2 ds� 
0jjvhjj20;
 +Xe2Eh jj
1=2e [[ vh ℄℄jj20;e � CSjjjvhjjj2; (4.10)
with CS := min f
0; 1g.5 A priori error estimatesIn what follows C will denote a generi
 positive 
onstant whi
h depends only on thedegree k of the polynomials, on the minimum angle of the mesh, and on the maximumvalue of the stabilizing fun
tions 
e.Let P kh be the L2�proje
tor onto V kh , for whi
h the following standard estimate holdsjju� P khujjr;p;T � Chk+1�rjjujjk+1;p;T ; r = 0; 1; 1 � p � 1; T 2 Th: (5.1)We re
all the following tra
e inequality (see [1℄, [2℄):jju� P khujj20;e � C(jej�1jju� P khujj20;T + jejju� P khuj21;T ); (5.2)with C a positive 
onstant depending only on the minimum angle of T . Thus, from(5.1)-(5.2) we dedu
e thatjju� P khujj0;e � Chk+1=2T jjujjk+1;T ; e 2 Eh: (5.3)



9Let us de�ne � = u� P khu; Æ = uh � P khu:Hen
e from (4.10) and (4.1) we have thatCS jjjÆjjj2 � ah (Æ; Æ) + bsh (Æ; Æ) = ah (�; Æ) + bsh (�; Æ): (5.4)Next, observe that rÆ 2 V kh , so that, by the de�nition of the proje
tor P 0h ,ZT (P 0h� � rÆ) � dx = 0: (5.5)Using this, together with (5.1), the Cau
hy-S
hwarz inequality and the inverse inequality,we dedu
e that ah (�; Æ) = XT2Th ZT (�� (� � rÆ) + 
Æ�) dx= XT2Th ZT ((P 0h� � �) � rÆ) � + 
Æ�) dx� C� XT2Th jjP 0h� � �jj0;1;T jÆj1;T + jjÆjj0;T�jj�jj0;T� C� XT2Th hT j�j1;1;Th�1T jjÆjj0;T + jjÆjj0;T�jj�jj0;T� Chk+1jjÆjj0;
jjujjk+1;
:
(5.6)

It remains to estimate bsh (�; Æ). For this purpose, we �rst make use of (3.4) and the
ontinuity of � to obtain, for every edge e and for every unit ve
tor n normal to e,jf��g � nj = j� � njjf�gj� 
e�0 jf�gj: (5.7)Making use of the fa
t that [[ Æ ℄℄ is also normal to e, and using (3.6) on
e again, we thenhave that Zef��g � [[ Æ ℄℄ ds � 1�0 jj
1=2e f�gjj0;e jj
1=2e [[ Æ ℄℄jj0;e: (5.8)Next, Ze 
e[[ � ℄℄ � [[ Æ ℄℄ ds � jj
1=2e [[ � ℄℄jj0;ejj
1=2e [[ Æ ℄℄jj0;e: (5.9)Inserting (5.8) and (5.9) into the de�nition (3.7) of bsh, and then using the Cau
hy-S
hwarz inequality and (5.3), it follows thatbsh (�; Æ) �Xe2Eh � 1�0 jj
1=2e f�gjj0;e + jj
1=2e [[ � ℄℄jj0;e�jj
1=2e [[ Æ ℄℄jj0;e� Chk+1=2jjujjk+1;
�Xe2Eh jj
1=2e [[ Æ ℄℄jj20;e�1=2: (5.10)



10Substituting (5.6) and (5.10) in (5.4), and using the de�nition (4.2) we obtainCSjjjÆjjj2 � Chk+1=2jjujjk+1;
 jjjÆjjj; (5.11)whi
h implies immediately that jjjÆjjj � Chk+1=2jjujjk+1;
: (5.12)Hen
e jjju� uhjjj � Chk+1=2; (5.13)thus 
ompleting the error analysis of the method.6 Con
lusionsWe 
onsidered dis
ontinuous Galerkin �nite element approximations of a model s
alarlinear hyperboli
 equation div(�u) + 
u = f in 
 � R2 , subje
t to nonhomogeneousboundary 
ondition u = g at the in
ow part of �
. We showed that in order to ensure
ontinuous stabilization of the method it suÆ
es to add a jump-penalty term to thedis
retized equation. A parti
ular value of the penalty fun
tions 
e results in the standardupwind s
heme, but, using dis
ontinuous pie
ewise polynomials of degree k, an optimalO(hk+1=2) error estimate was proved for any 
hoi
e of penalty fun
tions 
e that satisfy
e � �0 j� � nej with �0 > 0 independent of e and h. The latter property 
an beeasily ensured by simply 
hoosing the penalty fun
tion as a suitable 
onstant on ea
hedge. As pre
isely the same jump-term is used for stabilizing DG approximations ofdi�usion operators, the dis
retization proposed here 
an simplify the analysis and theimplementation of dis
ontinuous Galerkin �nite element approximations of adve
tion-di�usion problems.If the jump-penalty terms are omitted from the s
heme by formally setting 
e � 0 onea
h e 2 EÆh, then the s
heme (3.8) 
ollapses to (2.12). Sin
e the latter is only stable inthe L2(
)-norm, in the error analysis of (2.12) one is for
ed to use the inverse inequalityk[[ Æ ℄℄k0;e � Ch�1=2e kÆk0;T 1[T 2to revert from the edgewise L2-norm to the elemental L2-norm in the 
ourse of boundingthe left-hand side of (5.8). Hen
e, instead of (5.8) one hasZef��g � [[ Æ ℄℄ ds � Ck�k0;1;ekf�gk0;eh�1=2e kÆk0;T 1[T 2 � ChkkÆk0;T 1[T 2; (6.1)where T 1 and T 2 are the two triangles whose 
ommon edge is e; the inequality (6.1), inturn, results in the suboptimal error bound ku � uhk0;
 � Chk for (2.12), | in sharp
ontrast with the optimal-order error bound (1.6) for the stabilised s
heme (3.8). Thisundesirable loss of optimality of the unstabilised s
heme (2.12) further highlights thehelpful role played in the stabilized s
heme (3.8) by the jump-penalty terms.
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