
0.1 DG Tests

0.1.1 The Aim

We will conduct tests on a 2D code that uses discontinuous Galerkin finite elements to solve the

neutron transport equation. The equation that will be solved is given by

Ω · ∇ψ(r,Ω) + σT (r)ψ(r,Ω) = σS(r)φ(r) +Q(r), (1)

with r ∈ V ⊂ R2 and Ω ∈ S1, the unit sphere with radius 1 centred at the origin. The so-called

neutron flux, ψ, is subject to the incoming boundary condition

ψ(r) = g(r), if Ω · n(r) < 0,∀r ∈ δV. (2)

The value, φ, is called the scalar flux and is defined to be

φ(r) ≡ 1

2π

∫
S1
ψ(r,Ω) dΩ. (3)

To discretise in space, the code uses a mesh with the structure given in figure 0-1 (where Mx

and My are also defined). We will always take V ≡ [0, 1]× [0, 1], but will vary Mx, My, σS and

σT .

Figure 0-1: Mesh structure, and definitions of Mx and My.

The code uses a discrete ordinates discretisation for N different angles, chosen via the quadra-

ture rule

Ω ∈
{(

cos
2πj

N
, sin

2πj

N

)}N
j=1

. (4)

with weights ω = 2π/N for each angle.

Whenever we talk about the error in an approximate solution we mean the L2-norm of the

difference between the approximate and true solutions. This is calculated using a quadrature
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rule as follows. We denote by κi the ith element of the mesh, and define |κi| to be the area of

the ith element. Also, let mi
1,m

i
2 and mi

3 be the three midpoints of the edges of κi (see figure

0-2), and use φA and φT to denote the approximate and true solutions respectively. Then we

calculate the error as follows

‖φT − φA‖2L2(V ) ≡
2MxMy∑
i=1

|κi|
3

3∑
j=1

(
φT (mi

j)− φA(mi
j)
)2

(5)

Figure 0-2: Mipoints, mi
1,m

i
2 and mi

3 for a standard mesh element, κi.

The code solves for the solution by forming a full matrix vector system, representing the

full transport equation, and then solving using Matlab’s inbuilt ‘backslash’ solver. As a partial

explanation, we are solving

∫
κ
(Ω·∇ψh)vh dr+σT,κ

∫
κ
ψhvh dr−

∫
δκ

(Ω·n(r))(ψ+
h −ψ

−
h )vh dr−σS,κ

∫
κ
φhvh dr =

∫
κ
Qhvh dr,

(6)

and build a matrix-vector system of the form

T1 | −Σ1

. . . |
...

TN | −ΣN

−− −− −− | −−
−W1 · · · −WN | I





ψ1

...

ψN

−−
φ


=



Q− F1

...

Q− FN
−−−

0


. (7)

In this: the T -blocks contain the ‘∇’ and ‘σT ’ integrals from (6), as well as the internal element

boundary integrals; the ‘Σ’-blocks contain the ‘σS ’ integral; the ‘Q’-blocks contain the ‘Q’

integral; and the ‘F ’-blocks contain the part of the element boundary integrals that lie on

the domain boundary. For the bottom row, the ‘W ’-blocks contain quadrature weights scaled

by 1/2π, and that line imposes the relationship between ψ and φ.
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0.1.2 Test 1

In this test we see if the code can produce the correct solution in the case where

ψ(r,Ω) = r · Ω. (8)

In this case,

φ(r) = 1
2π

∫
S1
r · Ω dΩ

= 1
2π

∫
[0,2π]

x cos (θ) + y sin (θ) dθ

= 0,

(9)

and so

Q(r) = Ω · Ω + σT (r)r · Ω. (10)

Using this source, we solved the transport equation (with constant cross-sections) for varying

mesh resolutions, and tabulated the error in each case. These results are in the table below, and

show that the code finds the exact solution to machine precision.

h N ‖φT − φA‖L2(V )

1/2 12 6e-017

1/4 16 5e-017

1/8 23 5e-017

1/16 32 6e-017

Table 1

0.1.3 Test 2

Johnson and Pitkäranta, 1983, provide an error estimate for the solution to the neutron transport

equation in terms of the number of discrete ordinates used, N , and the mesh width, h. This

estimate is in remark would like to verify the error estimate given in Remark 5.1, and is as

follows ∥∥∥φ− φhN∥∥∥
L2(V )

≤ C(N−1 +
√
h)(‖φ‖1 + ‖Q‖1). (11)

Here φhN is the solution obtained via DG with discrete ordinates, using N angles and spatial

mesh width h. The value C is a constant and ‖·‖1 denotes the H1-norm.

In this test we want to verify that the estimate is satisfied by our code. We chose a model

solution of ψ(r) = r · r which implies

Q(r,Ω) = 2Ω · r + σA(r)r · r. (12)
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To test Johnson and Pitkäranta’s estimate we solved the transport equation with this source and

with boundary conditions implied by the true solution. We did this for a range of mesh widths,

h, and chose N such that N−1 and
√
h varied proportionally. For this we used the relation

N = 8
⌈√

1/h
⌉
, (13)

where the scaling factor of 8 ensured a reasonable number of angles were used for all mesh

widths. For each mesh width we measured the error in the solution, and have tabulated these

below along with the corresponding values of N−1 +
√
h.

h N ‖φT − φA‖L2(V ) N−1 +
√
h

1/2 12 3e-002 8e-001

1/4 16 8e-003 6e-001

1/8 23 2e-003 4e-001

1/16 32 5e-004 3e-001

1/32 46 1e-004 2e-001

Table 2

This does follow the estimate above for some constant C, as can be seen easily by plotting

the last two columns, as in the following figure.

Figure 0-3: Graph of the Table 2 data. The red continuous line is column 3, the blue dashed line is
column 4
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