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Abstract

We study methods for accelerating Monte Carlo simulations that retain most of the accuracy of conventional Monte
Carlo algorithms. These methods – called Condensed History (CH) methods – have been very successfully used to model
the transport of ionizing radiation in turbid systems. Our primary objective is to determine whether or not such methods
might apply equally well to the transport of photons in biological tissue. In an attempt to unify the derivations, we invoke
results obtained first by Lewis, Goudsmit and Saunderson and later improved by Larsen and Tolar. We outline how two of
the most promising of the CH models – one based on satisfying certain similarity relations and the second making use of a
scattering phase function that permits only discrete directional changes – can be developed using these approaches. The
main idea is to exploit the connection between the space-angle moments of the radiance and the angular moments of
the scattering phase function. We compare the results obtained when the two CH models studied are used to simulate
an idealized tissue transport problem. The numerical results support our findings based on the theoretical derivations
and suggest that CH models should play a useful role in modeling light-tissue interactions.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The physics of light propagation in tissue dictates that a typical photon will interact with the scattering cen-
ters of the tissue thousands of times for each millimeter of travel and that the vast majority of these interac-
tions will change the photon direction only slightly. More specifically, the photon mean free path (mfp) in
tissue is typically 10–50 lm and the ratio of absorption to scattering is frequently much less than 0.01. More-
over, the average cosine, g, of the scattering angle (the angle between the unit vectors that describe the direc-
tions of travel before and after collision) in tissue is in the range 0.7–0.9 so that many individual collisions are
required to deflect photons substantially from their initial orientations when directed into a tissue surface.
These conditions, which are of interest when using laser probes to interrogate biological tissue, are similar
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to those describing electron transport at high energies, for which typical electrons undergo �105 collisions
before slowing down. Under such conditions, the large computing costs associated with processing each pho-
ton or electron history in detail makes analog Monte Carlo (MC) simulations quite expensive. For such prob-
lems, it is therefore desirable to replace the exact probability model on which the conventional MC simulation
is based by an approximate probability model in which a very large number of individual events are com-
pressed into much fewer ‘‘super-events’’, so that simulations based on this approximate model are much faster,
yet sufficiently accurate to support reliable predictions. In this paper we discuss how these ideas, developed
originally for electrons and referred to as Condensed History (CH) models, might usefully be carried over
to the MC simulation of photons.

In Sections 2–4 we provide an overview of some methods previously suggested for CH models and outline a
theoretical context for understanding them. We then, in Sections 5 and 6, describe our recent work applying
two of the most promising of these CH models to photon transport. We provide numerical evidence (Sections
7 and 8) that one of these – the discrete scattering angles (DSA) approach – produces advantages over a sec-
ond one studied that is based on similarity theory (ST). In Section 9, we develop an analysis of the factors that
lead to an understanding of the tradeoffs required to balance efficiency and accuracy for CH models. Finally,
in Section 10, we summarize our results and present some ideas for future investigation stimulated by them.
Appendices A and B present derivations used in this paper.

2. Overview

We describe in this section some ideas that have been successfully applied to electron transport for many
years. We also mention one method, based on similarity theory, that appears to have been introduced with
photon transport in mind.

The idea of replacing the detailed ‘‘collision-by-collision’’ MC model by a multiple collision model to speed
up computations is due to Berger [1], and will be called here the Classical Condensed History (CCH) model. In
simulations based on one of Berger’s original formulations of this model, particles travel a fixed, user-defined,
distance s between successive collisions, where s is deliberately chosen to be larger than the mean free path
(mfp) in the medium. To accommodate this artificial selection of intercollision distances, the scattering angle
is sampled from a probability density function (pdf) derived from the original single scattering pdf, f (some-
times called the differential scattering cross-section) that represents multiple scattering events. In the CCH
model, the multiple scattering pdf is called the Goudsmit–Saunderson [2] (GS) probability density function,
designated here by fGS; it is the exact1 conditional pdf for the multiple scattering angle, conditioned upon trav-
eling a fixed, but arbitrary distance s > 0 between successive (multiple) collisions. While the CCH model has
made it possible to apply Monte Carlo methods to electron transport in problems that would otherwise be
prohibitively costly to simulate, it has several shortcomings. Apart from energy-dependent effects, such as
the neglect of energy straggling in the approach based on the continuous slowing down approximation [3],
these all stem in one way or another from the rigid way of sampling intercollision distances. As a result, var-
ious attempts to improve upon the CCH method have been attempted [4,5].

The approach that is adopted here can be traced to work of Lewis [6], Goudsmit and Saunderson [2], and
Larsen and Tolar [7,8]. We refer to this general philosophy as the Lewis–Larsen theory. This approach is
based on the observation that accuracy in a CH model might be based upon the replacement of the single scat-
tering pdf by another that preserves a certain number of low-order angular moments of the original. The so-
called similarity theory (ST) suggested by Wyman et al. [9] represents one attempt to use this approach to
accelerate the simulation of photons, while the more recent suggestion by Prinja and Franke [10] to replace
the original scattering pdf by one based exclusively on a discrete set of scattering angles (DSA), is another that
was proposed for electron transport. For both of these methods the Lewis–Larsen theory provides a theoret-
ical context.

In the next section, we review briefly the CH models that were stimulated by Berger’s seminal paper in our
attempt to explore their advantages and shortcomings for photon transport. In the section that follows, we
1 The GS probability density function is exact provided that energy losses along the path are disregarded. Since our primary interest in
this paper is in light transport, for which it is usual to assume a constant velocity, we make this assumption here and throughout the paper.
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outline the Lewis–Larsen theory that helps to frame our understanding of how to achieve a proper combina-
tion of both speed and accuracy in a CH simulation and discuss briefly Larsen and Tolar’s attempts to restore
the fully stochastic nature of CH modeling within this framework. The next two sections present our ideas for
the approaches based on ST theory and on the use of DSA.

3. The CCH and related models

The CCH model and its variants have been applied with success to electron transport in large tissue
systems (e.g. simulating the full body radiation dose delivered in treating cancer by ionizing radiation)
[11,12]. However, it is clear that CCH modeling cannot be very useful in tissue samples whose optical
dimensions are comparable to the particle mean free path. In such problems, radiation could easily pen-
etrate the tissue without, or with minimal, angular deflection making simulation relatively insensitive to
the scattering properties of the tissue. In fact, for optically thin samples any approximate Monte Carlo
method is likely to be less efficient than analog Monte Carlo. Of course, it must be borne in mind that
CCH simulation with a fixed step size produces a radiation field that fails to satisfy the radiative transport
equation (RTE), so it must be regarded as an approximate transport model. In this respect, it competes
with all other approximate RTE solvers, including deterministic ones based on various numerical approx-
imations to the RTE.

Considerable effort has been expended to modify the CCH algorithm to mitigate the effect of fixing inter-
collision distances and improve the space-angle distribution of radiation. One idea is to split the total distance
s to be traveled in each step into two substeps of lengths ns and ð1� nÞs, where the number n is chosen at
random between 0 and 1. This random hinge method (see, for example, papers by Kawrakow and Bielajew
[5] and Fernandez-Varea et al. [4]) can be shown (see Larsen [13]) to increase the accuracy in CH modeling.
However, even these improved algorithms suffer ultimately from the lack of exact knowledge of the spatial
distribution of radiation. Of equal importance for the computational success of such models, special strategies
are often needed in order to deal with model inaccuracies near abrupt changes in material properties and at
external boundaries, adding further to the cost of their implementation.

Larsen and Tolar have developed so-called moment condensed history (MCH) methods that improve upon
the accuracy of the CCH model by preserving first and second-order spatial moments of the solution. These
methods make use of the Lewis theory of moments whose main features we now outline.

Beginning with the RTE for an infinite homogeneous medium, the idea is to expand the RTE solution in
spherical harmonics whose coefficients are the space-angle moments of the solution. Accuracy can then be
controlled in the CH model by ensuring that low-order moments in this expansion are preserved in the
approximate model. This strategy, in turn, offers the hope that a rigorous error analysis might be based on
a careful analysis of the terms in the expansion that are not preserved by the approximate solution.

To illustrate these derivations, consider an infinite, homogeneous medium of tissue, and let the RTE solu-
tion be described by the radiation field, or radiance, U ¼ Uðr;x; sÞ that is, in general, a function of the position
r ¼ ðx; y; zÞ, direction x ¼ ðxx;xy ;xzÞ and a timelike parameter s. The parameter s measures the distance trav-
elled in a single flight in the unit direction x along the ray between r 0 and r, so that r ¼ r0 þ sx. Specifically, the
parametrized function U satisfies the RTE
oUðr;x; sÞ
os

þ x � rUþ rtUðr;x; sÞ ¼
Z

4p
rsf ðx � x0ÞUðr;x0; sÞdx0: ð1Þ
Here rt ¼ ra þ rs is the total attenuation coefficient in tissue (=inverse of mean free path), ra is the absorption
coefficient, rs is the scattering coefficient, f is the single scattering phase function = probability density func-
tion for scattering from direction x 0 to x in a single interaction. For ease of exposition, we specialize the RTE
(1) to planar geometry and assume that initially each particle starts at r ¼ ð0; 0; 0Þ and moves along the po-
sitive z-axis, which also serves as the north pole for a spherical coordinate system that will be used to char-
acterize the unit direction vectors x, x 0. That is
Uðr;x; 0Þ ¼ dðrÞdðl� 1Þ
2p

; ð2Þ
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where l ¼ cosðhÞ, and h is the angle between the direction of travel and the positive z-axis. Under these con-
ditions, (1) and (2) simplify to
2 In
oUðz; l; sÞ
os

þ l
oU
oz
þ rtUðz; l; sÞ ¼

Z 1

�1

rsfplðl0; lÞUðz; l0; sÞdl0 ð3Þ
with the initial condition
Uðz;l; 0Þ ¼ dðzÞdðl� 1Þ: ð4Þ
The derivation of (3) can be found, for example, in [14,23]; for completeness here we include it in Appendix A.
Next we expand f in the series of Legendre polynomials, Pn
fplðl0; lÞ ¼
X1
n¼0

2nþ 1

2
fnP nðlÞP nðl0Þ:
The zeroth-order spatial moment is obtained by integrating (3) and (4) with respect to z
U0ðl; sÞ �
Z 1

�1
Uðz; l; sÞdz;
which produces the following equation (assuming that U vanishes at infinity):
oU0ðl; sÞ
os

þ rtU0ðl; sÞ ¼
X1
n¼0

2nþ 1

2
rsnP nðlÞ

Z 1

�1

P nðl0ÞU0ðl0; sÞdl0 ð5Þ
with initial condition U0ðl; 0Þ ¼ dðl� 1Þ, where rsn ¼ rsfn. Using the orthogonality of the Pn, it can be shown
that the solution of (5) is
U0ðl; sÞ ¼
X1
n¼0

2nþ 1

2
P nðlÞ expð�ransÞ; ð6Þ
where ran ¼ rt � rsn. The function U0ðl; sÞ is the Goudsmit–Saunderson probability density function2 that de-
scribes the conditional probability for scattering through an angle whose cosine is l, conditioned by having
travelled a distance s and then scattered. It is used in implementations of the CCH model to sample scattering
angles after travelling a user-supplied distance s.

The space-angle moment of U (of order n,m) is defined as
Un;mðsÞ ¼
Z 1

�1

Z 1

�1

znlmUðz; l; sÞdldz:
We observe that the zeroth space-angle moment of the radiance,
U0;0ðsÞ �
Z 1

�1

Z 1

�1
Uðz; l; sÞdzdl ¼ expð�ra;0sÞ
is a function of ra;0 and s only.
The theoretical foundation of the CH method is the following result: for infinite homogeneous media the

space-angle moments of the radiance of total order nþ m, Un;mðsÞ, depend only on s, the optical properties and
the angular moments fi of the phase function for i ¼ 0; 1; . . . ; nþ m. It is this result that we refer to as the
Lewis–Larsen theory [17] of moments. For completeness, we present the derivation of this result for planar
geometry in Appendix B.

The Lewis–Larsen theory suggests that the key to preserving space-angle moments of the radiance is to
ensure that sufficiently many angular moments of the single-scattering phase function are preserved. Below
the literature fGS is often called Goudsmit–Saunderson distribution, even though it is a probability density function.



K. Bhan, J. Spanier / Journal of Computational Physics 225 (2007) 1673–1694 1677
we outline how the moment condensed history (MCH) algorithm suggested in [7] makes use of the Lewis–Lar-
sen theory. Let
U1ðl; sÞ �
Z 1

�1
zUðz; l; sÞdz:
The function U1 can be found from the differential equation
oU1ðl; sÞ
os

þ rtU1ðl; sÞ ¼ lU0ðl; sÞ þ
X1
n¼0

2nþ 1

2
rsnP nðlÞ

Z 1

�1

P nðl0ÞU1ðl0; sÞdl0
with initial condition U1ðl; 0Þ ¼ 0. Now the mean position for photons that have travelled a total distance s

and are moving in a direction characterized by l is
�zðl; sÞ ¼
R1
�1 zUðz; l; sÞdzR1
�1 Uðz; l; sÞdz

ð7Þ
with a similar definition for the second-order spatial moment, which determines the variance in the mean po-
sition, r2

�z ðl; sÞ. Preservation of these two moments in the MC simulation leads to an improved MCH model
[7]. In the MC simulation that implements this model, intercollision distances are based on a user-specified
step size, s, and the direction of flight is sampled, as before, from the Goudsmit–Saunderson distribution.
The particle is then moved to a position that is sampled from a Gaussian distribution with mean �zðl; sÞ
and variance r2

�z ðl; sÞ. Numerical evidence reported in [7] indicates that the resulting MCH model is consider-
ably more accurate than the original CCH.

For more general geometries, a coupled system of partial differential equations for the space-angle
moments replaces (3) and could, in principle, be used to solve for the means and variances in the x-, y-
and z-coordinates. Unfortunately, the resulting expressions are given by infinite series reminiscent of the
series representation for the Goudsmit–Saunderson distribution [7] and so impose a heavy computational
burden. Thus, while the MCH models should be considerably more accurate than the CCH model, there
appears to be no easy way to use them to gain the necessary advantage in speed of execution since the cost
of sampling both angle and position from the infinite series that define their distributions is high. As well,
the non-stochastic determination of intercollision distances continues to impose additional computational
penalties when particles cross internal interfaces and near external boundaries. The next section discusses
models that address these defects.

4. Improved models: transport condensed history (TCH) methods

The developments in CH modeling of most interest to us here are also based on the Lewis–Larsen theory
[6,8]. However, in contrast to the MCH models, these lead to CH algorithms that restore the random nature of
the intercollision distances and produce models that satisfy transport equations that approximate the RTE for
the original problem in a rather precise way.

The details of the derivations involved in the TCH model may be found in [8,15]. To summarize them here,
we again begin with Eq. (1), which we rewrite as
oUðr;x; sÞ
os

þ x � rUþ ðra þ rsÞUðr;x; sÞ ¼
Z

4p
rsf ðx � x0ÞUðr;x0; sÞdx0 ð8Þ
with the same boundary conditions (2). Once again expanding the single scattering phase function f in Legen-
dre polynomials, and rearranging, (8) may be rewritten
oUðr;x; sÞ
os

þ x � rUþ raUðr;x; sÞ ¼ �
X1
n¼0

2nþ 1

4p
1� fn

k

� �Z
4p

P nðx � x0ÞUðr;x0; sÞdx0; ð9Þ
where k ¼ 1
rs

is the scattering mean free path in the medium. Now by introducing a parameter called the excess
mean free path, ks and constants anðksÞ that depend on it by means of the equation
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1� fn

k
¼ 1� anðksÞ

kþ ks

; k P 0
the equation
oUðr;x; sÞ
os

þ x � rUþ raUðr;x; sÞ þ 1

kþ ks

Uðr;x; sÞ ¼ 1

kþ ks

Z
4p

fksðx � x0ÞUðr;x0; sÞdx0 ð10Þ
where
fksðx � x0Þ ¼
X1
n¼0

2nþ 1

4p
anðksÞP nðx � x0Þ
replaces (9) and is algebraically identical to it. This equation incorporates an enlarged scattering mean free
path kþ ks that approaches the original scattering mean free path k as the excess mean free path, ks, ap-
proaches 0. It would be ideal to use (10) as a basis of a CH model except for the fact that the new single scat-
tering phase function fksðx � x0Þ is not, in general, nonnegative and so may not be used as it stands as a
probability density function for sampling directions after scattering. The idea used in [15] to circumvent this
flaw is to replace the function fks by a legitimate probability density function F ks , thus making the new
equation
oUðr;x; sÞ
os

þ x � rUþ raUðr;x; sÞ þ 1

kþ ks

Uðr;x; sÞ ¼ 1

kþ ks

Z
4p

F ksðx � x0ÞUðr;x0; sÞdx0
an RTE that can be simulated as a true transport process with an increased scattering mean free path. This
device completely obviates the need to use special boundary and interface crossing strategies to overcome
model inaccuracies in those portions of phase space, a distinct advantage. Furthermore, Tolar has selected
the function F ks in such a way that the resulting transport process converges to the original transport process
as the excess mean free path tends to 0. Numerical results reported in [8,15] are impressive and this TCH algo-
rithm appears to be a useful technique potentially for modeling both electron and photon transport. However,
the mechanisms employed in [8,15] only preserve the first two moments of the original scattering process so
that, even for an infinite medium, second-order quantities like the standard deviation about mean locations
will be simulated inaccurately. Tolar also shows that the truncation error associated with the TCH algorithm
as presented in his dissertation [15] is OðksÞ. Ideally, higher-order accuracy would be very desirable.

In the next two sections, we describe other TCH models that use somewhat different approaches to taking
advantage of the Lewis–Larsen theory. In both of these cases, as we shall see, the idea is once again to alter
both the mean free path and the scattering properties to speed up the computation without sacrificing too
much accuracy. However, the order of selection will be reversed: we will first identify a new scattering phase
function that preserves a predetermined number of angular moments, and this choice will determine the
increase in mean free path that is possible in the model. Pursuing this approach guarantees that the scattering
phase function is non-negative everywhere and that the increase in mean free path is the largest possible that is
consistent with the new scattering law.
5. Similarity theory (ST model)

This CH type algorithm for efficient simulation of photon transport was developed by Wyman et al. [9]; we
outline their derivation below.

We begin with the RTE for the photon density, or radiance U in the time-independent case
x � rUþ rtU ¼
Z

4p
rsfHGðx � x0ÞUðr;x0Þdx0 þ Qðr;xÞ ð11Þ
which, together with appropriate boundary and initial conditions, characterizes the problem. In (11), Q defines
a possible internal volumetric source and, because our interest now narrows to the treatment of photon trans-
port in tissue, we make use of the Henyey–Greenstein single scattering phase function, fHG, traditionally used
to model scattering of light in tissue
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fHGðl0Þ ¼
1

2p
1� g2

2ð1� 2gl0 þ g2Þ3=2
;

where l0 ¼ x � x0 and g is a parameter chosen to describe anisotropy
g ¼
Z 1

�1

l0fHGðl0Þdl0:
(see Appendix A for additional detail). To proceed, we rewrite Eq. (11) combining the terms containing tissue
optical properties into one term Iðr;xÞ,
x � rU� Qðr;x; tÞ þ Iðr;xÞ ¼ 0; ð12Þ

where
Iðr;xÞ ¼ rtUðr;xÞ �
Z

4p
rsfHGðx � x0ÞUðr;x0Þdx0: ð13Þ
It is now clear that one can substitute altered optical coefficients, r�a; r�s and a new phase function f* in (12)
without affecting the solution as long as the quantity I remains unchanged. This leads to the similarity rela-
tions requirement:
½ ra � r�a
� �

þ ðrs � r�s Þ�Uðr;x; tÞ ¼
Z

4p
Uðr;x0; tÞ½rsfHGðx � x0Þ � r�s f �ðx � x0Þ�dx0: ð14Þ
Upon expanding the radiance and phase functions in spherical harmonics, using orthogonality and the addi-
tion theorem for Legendre polynomials, one arrives at the following system of equations:
½ðra � r�aÞ þ rsð1� fnÞ � r�s ð1� f �n Þ� ¼ 0; n ¼ 0; 1; . . . ; ð15Þ

which can also be written
In � rt � rsfn ¼ r�t � r�s f �n � I�n; n ¼ 0; 1; . . . ; ð16Þ

where fn, f �n are the Legendre moments of fHG; f �, respectively. The quantities In combine the optical prop-
erties of the medium and the properties of the scattering phase function. We will call In the nth optical invari-

ant; these quantities characterize the solution and contain the information required for the simulations. The
CH modeling approach that we take in this paper relies on preserving a certain number, S þ 1, of the optical
invariants of the exact model
In ¼ In;CH; n ¼ 0; . . . ; S: ð17Þ

Note that since both f and f* are density functions, we must have f0 ¼ f �0 ¼ 1 and thus ra ¼ r�a in (15). This
implies that the system (15) is trivially satisfied for n ¼ 0. Truncating the system (15) at n ¼ S then provides S

additional equivalence relations
r�s
rs

¼ 1� fn

1� f �n
; n ¼ 1; . . . ; S ð18Þ
called similarity relations of order S. Note also that the system (18) is underdetermined: it has S equations and
S þ 1 unknowns: f �1 through f �S and r�s . To make this system uniquely solvable, one usually assumes that
f �S ¼ 0.

The system of Eq. (18) suggests that we are free to choose the new scattering law incorporated in r�s and
f*, as long as they satisfy these similarity relations; that is, as long as they leave the optical invariants
unchanged. We would like to choose these new parameters in such a way that the particle intercollision dis-
tances increase. The particle intercollision distance, or mean free path (mfp), is 1/rt and in tissue, often
absorption is small relative to scattering so 1=r�t � 1=r�s . Thus, we would like to choose r�s to be as small
as possible. Also, we want to select S, the order of the similarity relation, as large as possible, in order to
achieve good accuracy.

By assumption, f �S ¼ 0 and for fHG we have: fn ¼ gn, therefore the new scattering cross-section becomes
r�s ¼ rsð1� gSÞ. Since gS ! 0 as S !1, we see that r�s ! rs as S !1. This also follows from the uniqueness
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of the RTE solution: as the degree, S, of the approximation increases we are led back to the original solution.
Thus, there is a trade-off between accuracy and speed when applying the similarity relations.

For a given S the expected speed-up in the Monte Carlo simulation can be estimated by the ratio of mean
free paths, 1=r�s

1=rs
¼ 1

1�gS while the accuracy of the method is determined by S: similarity relations of order S pre-
serve M ¼ S þ 1 optical invariants.

Now with r�s given by r�s ¼ rsð1� gSÞ, one can solve the system (18) for f �n , n ¼ 1; . . . ; S � 1. To implement
the simulation, we could reconstruct f* according to its Legendre expansion. To simplify the sampling from f*,
the authors [9] defined f* as a linear combination of orthogonal step functions on [�1,1], constructed using
Legendre polynomials. We describe our implementation of this construction for orders S ¼ 2; 4; 12 in
Section 8.
6. Discrete scattering angles (DSA model)

For electron transport, Prinja and Franke [10] suggested seeking an approximation to the scattering phase
function in the form of a linear combination of delta functions chosen to preserve the momentum transfer
moments
nn �
Z 1

�1

ð1� l0Þ
nf ðl0Þdl0; n ¼ 0; 1; . . . ð19Þ
corresponding to the single scattering phase function f. This choice was motivated by the highly forward-
peaked nature of electron scattering: since l0, on average, is very close to 1, one might expect that fnng1n¼0

converges rapidly to 0. Hence an approximate phase function that preserves only a few of the momentum
transfer moments should be a good approximation to the exact phase function. However, the precise behavior
of the momentum transfer moments as n increases depends very sensitively on the specific description of the
single scattering function f. For example, the Henyey–Greenstein phase function, fHG, is such that even when
the average cosine g of the scattering angle l0 is close to 1 (but not equal to 1) its momentum transfer coef-
ficients, nn do not decrease with increasing n [16,17]. Indeed, the merit of each CH method requires a more
careful analysis than intuitively based arguments can provide. Our approach to this crucial issue is described
in Section 9.

We use the ideas of Sloan [18] to approximate the phase function by a set of discrete scattering angles that
are chosen to preserve the regular Legendre moments of f � fHG, but with the proviso that one of the angles is
pre-assigned to be equal to zero, corresponding to l ¼ 1
fdðl0Þ ¼
XD�1

i¼1

widðl0 � liÞ þ wDdðl0 � 1Þ ð20Þ
with wD 6¼ 0. The weights wi; i ¼ 1; . . . ;D and scattering cosines li; i ¼ 1; . . . ;D� 1 in (20) are then found by
requiring that the 2D� 1 angular moments taken with respect to fd and with respect to the exact phase func-
tion, fHG, are equal to each other
Mk �
Z 1

�1

lk
0fHGðl0Þdl0 ¼

Z 1

�1

lk
0fdðl0Þdl0; k ¼ 0; . . . ; 2D� 2: ð21Þ
The representation (20) identifies a forward-peaked component of scattering in the term wDdðl0 � 1Þ and uses
the remaining constraints to correct for this exaggeration of the l0 ¼ 1 term. Since scattering in the forward
l0 ¼ 1 direction amounts to no scattering at all in the simulation, the remaining terms prescribe scattering that
is much more isotropic. The increased mean free path can be determined exactly from (20), as will be seen
shortly.

Wyman and Patterson [19] also attempted to represent their phase function as a linear combination of delta
spikes. Rather than solving the non-linear system (21), however, those authors pre-assign the spike locations,
li, and solve the resulting linear system for the spike amplitudes, wi. This approach often resulted in negative
weights, wi, when the number of discrete angles exceeded four. Sloan [18] pointed out that the use of Gauss–
Radau quadrature method eliminates this flaw. That is, all discrete scattering angles determined by the Gauss–
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Radau prescription have cosines l0 that satisfy �1 6 l0 6 1, and the associated weights must also be positive
when the Gaussian weight function is nonnegative, as in our case [21].

We note that preserving regular moments in the sense of (21) is equivalent to preserving Legendre moments
of fHG, as well as momentum transfer moments, since any monomial of degree k can be represented as a finite
sum of Legendre polynomials up to order k. Since, as we remarked earlier, scattering with l0 ¼ 1 is equivalent,
from the simulation point of view, to no scattering at all, we can simply sample the scattering angle from
f �ðl0Þ ¼

PD�1
i¼1 widðl0 � liÞ=

PD�1
i¼1 wi. The weight wD associated with l0 ¼ 1 then determines how much the

mean free path increases and hence, the saving in time of computation.
Consider again the time-independent RTE for the radiance
x � rUþ rtU ¼ rs

Z
4p

fHGðx � x0ÞUðr;x0Þdx0 þ Qðr;xÞ: ð22Þ
Making use of the derivation in Appendix A again, we can write the integral in (22) as
rs

Z
4p

fHGðx � x0ÞUðr;x0Þdx0 ¼ rs

2p

Z
4p

fHGðl0ÞUðr;x0Þdx0 ¼ rs

2p

Z 2p

0

Z 1

�1

fHGðl0ÞUðr;x0Þdl0 du0: ð23Þ
Upon substituting Eq. (20) for fd in place of fHG in (23), the integral becomes
Z 2p

0

Z 1

�1

fHGðl0ÞUðr;x0Þdl0 du0 ¼
Z 2p

0

Z 1

�1

XD�1

i¼1

widðl0 � liÞUðr;x0Þdl0 du0

þ
Z 2p

0

Z 1

�1

wDdðl0 � 1ÞUðr;x0Þdl0 du0: ð24Þ
The second term in (24) can be simplified since l0 ¼ 1 implies that x0 ¼ x
Z 2p

0

Z 1

�1

wDdðl0 � 1ÞUðr;x0Þdl0 du0 ¼
Z 2p

0

wDUðr;xÞdu0 ¼ 2pwDUðr;xÞ: ð25Þ
Thus, (22) becomes
x � rUþ rtU ¼
rs

2p

Z
4p

XD�1

i¼1

widðl0 � liÞUðr;x0Þdx0 þ rswDUðr;xÞ þ Qðr;xÞ: ð26Þ
The function that replaces the original phase function under the integral sign in (26) must be re-normalized so
that it remains a probability density function. Upon rearranging terms and re-normalizing we obtain
x � rUþ raUþ rs½1� wD�U ¼ rs

XD�1

i¼1

wi

" #
1

2p

Z
4p

PD�1
i¼1 widðl0 � liÞPD�1

i¼1 wi

Uðr;x0Þdx0 þ Qðr;xÞ: ð27Þ
It follows from (21) that for k ¼ 0 we have
PD

i¼1wi ¼ 1, so we can rewrite Eq. (27) as
x � rUþ raUþ rs½1� wD�U ¼ rs½1� wD�
1

2p

Z
4p

PD�1
i¼1 widðl0 � liÞ
½1� wD�

Uðr;x0Þdx0 þ Qðr;xÞ: ð28Þ
Since (28) has the same algebraic form as the starting Eq. (22), the quantity rs½1� wD� in Eq. (28) can be inter-
preted as the new scattering cross-section, r�s , and we can select intercollision distances for this CH model
according to the exponential distribution with mean 1=r�s . From the expression r�s ¼ rs½1� wD� we see that
the more forward-peaked the original phase function, the more the intercollision distance can be stretched.
The expected speed-up of such a simulation is estimated by the ratio 1=r�s

1=rs
¼ 1

1�wD
.

7. Evaluating CH models

In this section we compare the theoretical accuracy of the DSA and ST models. By construction, the phase
function with D discrete angles
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fdðl0Þ ¼
XD�1

i¼1

widðl0 � liÞ þ wDdðl0 � 1Þ ð29Þ
has its first 2D� 1 Legendre moments equal to the corresponding Legendre moments of the original single
scattering phase function, fHG
Z 1

�1

P nðl0Þfdðl0Þdl ¼
XD�1

i¼1

wiP nðliÞ þ wD ¼ gn; n ¼ 0; . . . ; 2D� 2: ð30Þ
With the phase function f* used in the simulation in place of (29), where
f �ðl0Þ ¼
PD�1

i¼1 widðl0 � liÞ
1� wD

ð31Þ
the new scattering cross-section becomes: r�s ¼ rsð1� wDÞ. The nth Legendre moment of f �; f �n , is then
f �n ¼
Z 1

�1

P nðl0Þf �ðl0Þdl ¼
PD�1

i¼1 wiP nðliÞ
1� wD

; n ¼ 0; 1; 2; . . . : ð32Þ
From (30) and (32) it follows that for n ¼ 0; . . . ; 2D� 2:
f �n ¼
gn � wD

1� wD
; r�s ¼ rsð1� wDÞ ð33Þ
and thus the familiar system of equations derived for similarity of order S
rsð1� gnÞ ¼ r�s ð1� f �n Þ; n ¼ 0; . . . ; S
for the f �n and r�s given by (33), is satisfied for n ¼ 0; . . . ; 2D� 2, since
r�s ð1� f �n Þ ¼ rsð1� wDÞ 1� gn � wD

1� wD

� �
¼ rsð1� gnÞ: ð34Þ
We conclude that the DSA model with D distinct scattering directions, including the directly forward direc-
tion, has similarity order S ¼ 2D� 2 and therefore should be roughly twice as accurate as the similarity rela-
tion of order D which preserves only Dþ 1 optical invariants in infinite homogeneous media.

For the numerical results presented in Section 9 we chose the orders of the ST and DSA methods, S and D,
respectively, so that the methods preserve the same number M of optical invariants. We picked the values
shown in Table 1.

Our interest in this paper on problems in biomedical optics that model light-tissue interactions motivates us
to test our candidate CH models on highly simplified photon transport problems. For this purpose, we study a
volume of homogenous tissue in three-dimensional slab geometry with a source of light impinging on the z ¼ 0
surface. We are interested in estimating the amount of light that is either reflected or transmitted from such a
slab when the slab thickness is a large number of optical mean free paths. For our study we chose the following
optical properties typical of tissue: rs ¼ 0:994466; ra ¼ 0:0055; rt ¼ 1; g ¼ 0:9, and we set the length of the
slab L for the largest problem we studied to 100 mfp.

The propagation of light in the absence of internal volumetric sources is governed generally by the time-
independent RTE
1
d CH orders and the corresponding number of optical invariants

D M

2 3
3 5
7 13

ilarity order, D = number of discrete scattering cosines, M = number of optical invariants preserved.
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x � rUðr;xÞ þ rtUðr;xÞ ¼
Z

4p
rsfHGðx � x0ÞUðr;x0Þdx0;
where we have assumed a homogeneous medium with known optical properties rs, ra, g and specialized again
to the Henyey–Greenstein scattering law, fHG. Focusing on slab geometry, where the tissue ranges from z ¼ 0
to z ¼ L, we add the boundary conditions
Uðx; y; 0; l0Þ ¼ Q0; 0 < l0 6 1;

Uðx; y; L; l0Þ ¼ 0 � 1 6 l0 < 0;
corresponding to a light source at the z ¼ 0 end of the slab directed inward, with no source at the z ¼ L end.
The problem we would like to solve is to estimate the amounts of light reflected and transmitted, R and T,
respectively, by Monte Carlo simulation.

We will solve this prototype problem in several different ways for the purpose of making meaningful com-
parisons of the results obtained using our proposed CH models with those obtained by conventional Monte
Carlo simulation. For all of our simulations, we modeled light absorption by a continuously varying photon
weight [20]. This weight, initially unity, is reduced by a factor of expð�ralÞ when the photon travels a distance
l, where the intercollision distances l are distributed exponentially with mean 1/rs. This means that if the
weight of a photon leaving a collision is W 0, and it travels a distance l before arriving at the next collision
point, the arriving weight is W 1 ¼ W 0 expð�ralÞ and the complementary weight, W 2 ¼ W 0ð1� expð�ralÞÞ
has been allocated to absorption along the track of length l.
8. Three implementations

8.1. Analog Monte Carlo

We processed 106 photon biographies and tallied their weights upon either being reflected or transmitted
from 100 mean free paths of tissue with the optical parameters described above. The Henyey–Greenstein
scattering phase function was sampled to determine a new direction following each scattering interaction.
Since absorption of light internal to the tissue is not allowed to terminate the photon history, every biog-
raphy processed leads ultimately either to transmission or reflection. The averages of the weights transmit-
ted and reflected, and their standard deviations, provide the estimates of R and T for this analog
simulation.
8.2. Similarity theory

As we described in Section 5, this method is implemented by replacing the Henyey–Greenstein func-
tion with a new scattering law based on a phase function f* and a scattering coefficient, r�s , in such a
way that the similarity relations (18) are satisfied. We mimicked the construction in [9] of f* using
orthogonal step functions. Our treatment of absorption through continuous weight reduction results
in accurate simulation of particle transport everywhere in the tissue. This eliminates the need to sup-
plement the ST simulation with the use of analog MC near the boundaries, as was done in [9]. For the
selected optical properties the resulting altered scattering cross-sections, r�s , for ST of orders 2, 4 and
12 are
S
 2
 4
 12
r�s ¼ rsð1� gSÞ
 0:1889
 0:3420
 0:7136
The corresponding f* are shown in Figs. 1–3.
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8.3. Discrete scattering angles

For this CH model, we describe scattering in terms of the probability density function fd given by Eq. (20)
making use of the distinct scattering cosines, one of which results in no change in direction. For the selected
optical properties we solve the system (21) by Gauss–Radau quadrature (see [21]).
D
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_

Fig.
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 0:0135
 0:2472
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The corresponding f* are shown in Figs. 4 and 5.
Using 106 random walks for each of the 2 CH model simulations, we compare the estimates (sample means

and standard deviations) of R and T obtained by analog Monte Carlo with the estimates obtained using these
two CH algorithms. These results are listed in Table 2.

We observe that the accuracy of each CH method appears to increase as the number M of optical invariants
preserved increases. Also notice that for a given M, the DSA method is 40–50% faster than ST. Apart from the
smaller values of r�s for DSA when compared to ST, we have traced this gain primarily to the reduced cost of
sampling the scattering angles in DSA.

With only 106 random walks processed for each method, the comparisons of accuracy displayed in Table 2
are far from conclusive. That is why we carry out additional error analysis in Section 9.



Table 3
Comparison of expected and observed speed gains for each CH method studied

ST speed gains: expected/observed S D DSA speed gains: expected/observed

5.3/5.2 2 2 7.3/7.9
2.9/2.9 4 3 4.0/4.0
1.4/1.4 12 7 1.9/1.9

Table 2
Comparison of reflectivity and transmissivity estimates from analog Monte Carlo (AMC), similarity theory (ST) and discrete scattering
angles (DSA)

M Method R ± std T ± std time (s)

1 AMC 0.503295 ± 3.6079e�004 0.013521 ± 4.9879e�005 311
3 DSA, D ¼ 2 0.500835 ± 3.6379e�004 0.013653 ± 5.3778e�005 39
3 ST, S ¼ 2 0.501182 ± 3.6297e�004 0.013772 ± 5.2102e�005 60
5 DSA, D ¼ 3 0.503861 ± 3.6461e�004 0.013572 ± 5.0982e�005 77
5 ST, S ¼ 4 0.504340 ± 3.6280e�004 0.013460 ± 5.0632e�005 109

13 DSA, D ¼ 7 0.503340 ± 3.6246e�004 0.013481 ± 5.0488e�005 163
13 ST, S ¼ 12 0.503382 ± 3.60996e�004 0.013512 ± 5.0688e�005 230

Table 4
Comparison of figures of merit for AMC, ST and DSA

ST, S ¼ 4 DSA, D ¼ 3 AMC

FR 6.9701e+004 9.7690e+004 2.4702e+004
FT 3.5787e+006 4.9966e+006 1.2924e+006
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The theory presented earlier also enables us to estimate the expected gain in speed of execution from each
CH simulation by the ratio of scattering cross-sections: 1=r�s

1=rs
. From Table 3 we see that the expected and the

observed speed gains are in good agreement.
Finally, we define a figure of merit, Fx, from each MC simulation that produces an estimate of a quantity

x through the formula: F x ¼ ðvariancex � runtimeÞ�1, where variancex is the variance obtained in estimating x

and runtime measures the total elapsed computer time in obtaining this estimate. This combination of sta-
tistical uncertainty and time of execution on a single computational platform is appropriate for comparing
the overall efficiency of one MC simulation method with another because Fx should be roughly independent
of the number H of histories processed (since the variance should be inversely proportional to H) while run-

time should be roughly directly proportional to H. In Table 4 we compare the figures of merit, FR and FT,
of the two CH algorithms as well as AMC in estimating R and T, respectively, when, for example,
S ¼ 4; D ¼ 3. We chose these values for this comparison to illustrate how CH might perform even for small
S and D. A more efficient algorithm has a higher figure of merit. From Table 4 we see that the DSA method
has better figures of merit than the ST method and that both improve upon AMC. We observe similar
results for other values of M.

This efficiency analysis, based as it is on statistical uncertainties, does not directly address the absolute
accuracies of the two CH methods. We anticipate that the accuracy of each CH algorithm is measured by
the number M of optical invariants preserved. In the next section we will refine this statistically based
analysis of efficiency with an analytical error analysis in order to confirm these preliminary findings.

9. Further error analysis

Because the Monte Carlo simulation comparisons discussed in the last section have statistical uncertainties
that make comparisons treacherous, we seek in this section to carry our analysis of the error a step further.
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For this purpose, we re-examine the idealized tissue problem equation (11) that describe transport in a
semi-infinite homogeneous volume of tissue and consider the projection of the solution on the depth axis. This
simplifies the analysis since the resulting radiance becomes a function of only the depth coordinate, z, and the
cosine of the unit direction of travel, l. We refer to this as the (z, l) problem. Because there is no exact ana-
lytical solution of the ðz;lÞ problem in closed form, our strategy is to compare Nth order spherical harmonics
expansions of the solutions that correspond to the true rs and phase function, f, and their CH substitutes,
r�s ; f �; denote these by UN and UN ;CH, respectively. Solutions of the truncated spherical harmonic representa-
tion, described in the literature [14] as PN-approximations, can be obtained by various numerical methods
other than simulation and, for sufficiently large choices of the order N of approximation, can serve to reinforce
further the stochastic comparative analysis of Section 8. For the analysis carried out in Sections 9.1 and 9.2,
we chose N ¼ 16, which produces a P17 solution.

9.1. (z,l)-Problem equations

We show in Appendix A that when the idealized tissue problem equation
x � rUþ rtU ¼
Z

4p
rsfHGðx � x0ÞUðr;x0Þdx0 ð35Þ
is projected onto the z-axis, the governing equation becomes
l
dUðz; lÞ

dx
þ rtUðz; lÞ ¼ rs

Z 1

�1

fplðl0; lÞUðz; l0Þdl0; ð36Þ
where
fplðl0; lÞ ¼
X1
n¼0

2nþ 1

2
gnP nðlÞP nðl0Þ ð37Þ
with the boundary conditions
Uð0; lÞ ¼ Q0; l > 0;

UðL; lÞ ¼ 0; l < 0:
In our implementation we chose to solve the PN-equations by using the equivalent [22,23] discrete ordinates
ðSN Þ method, whose solution is obtained by discretizing the angular variable, l. The SN algorithm that we
implement was suggested by Gelbard [23] specifically to minimize the effect of round-off errors and produces
robust solutions, even for thick slabs. Numerical solutions of the PN equations are notoriously unstable and
subject to considerable loss of precision generally, but Gelbard’s analytically-based method works very well
for slab geometry. Numerical stability is particularly important to us since we want to examine the differences
between UN and UN ;CH which we expect will be very small. Thus, high accuracy and robustness with respect to
growth of round-off errors are essential.

9.2. Numerical results and discussion

For the figures below we set the slab length, L, to 100 mean free paths, the number of terms in the Legendre
expansion of the radiance, N, to 16 and we varied M – the number of optical invariants preserved; i.e. the
number of equations satisfied in the system (16). First, in Fig. 6 we plot the differences between the optical
invariants of the P17 model and the two CH models; i.e. we plot
In � I�n ¼ rsð1� fnÞ � r�s ð1� f �n Þ; n ¼ 0; . . . ; 16:
In all the plots, circles represent ST method results and crosses represent DSA method results. The data shown
in Fig. 6 illustrates that for a given M, the DSA parameters satisfy 2M � 1 equations in (16) while the ST
parameters satisfy only the first M þ 1 of these equations.
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Next, in Fig. 7 we plot log10 of the mean square error for each method as a function of M. Note that with
M > 8 and N ¼ 16 the DSA error is Oð10�12Þ as we would expect, since with, say, 9 optical invariants pre-
served in the DSA model the corresponding radiance is, in fact, a P 17 approximation, and should, therefore,
agree with the analytically obtained P 16 radiance. A similar argument applies in the N ¼ 20 case. We observe
that for M P 3 DSA is more accurate than ST, in conformity with the analysis presented in Section 7.

We supplement these estimates of accuracy with theoretical estimates of the computational advantage fac-
tor of the two CH methods when compared to analog Monte Carlo. This advantage is measured by the ratio
of the scattering mean free paths: 1=r�s

1=rs
. In Fig. 8, we plot these estimates as a function of M. We see that for

small M, gains of at least a factor of 4 can be expected and that a factor of 2 or so should be expected when
somewhat larger M values are chosen. Roughly speaking, then, the ST and DSA methods reduce the cost of
analog Monte Carlo by a factor of 2 or more, with minimal effect on accuracy. This reinforces the data pre-
sented in Tables 2–4.

10. Conclusions

We have provided a brief review of condensed history methods, developed initially for modeling electron
transport efficiently. Our treatment emphasizes the crucial role played by the Lewis–Larsen theory that relates
low-order angular moments of the scattering phase function to low-order space-angle moments of the RTE
solution. We have seen that the CCH model of Berger is substantially improved by both MCH and TCH
methods that use the Lewis–Larsen theory, but problems remain, either (in the case of MCH) because of
the increased costs when crossing interfaces and boundaries and those associated with sampling from density
functions represented as infinite series, or because (in the case of TCH) the precision may be difficult to
increase beyond OðksÞ, where ks is the excess mean free path of the method.

These model shortcomings have led us to investigate two other CH methods that are also derivative of the
Lewis–Larsen theory: similarity theory (ST) and the use of discrete scattering angles (DSA). In both of these
cases, rather than determining the altered scattering properties from the desired increase in mean free path, the
approximate scattering function is prescribed first through control of the number of angular moments to be
preserved, and the resulting increase in mean free path is then uniquely specified from this constraint. Our
analysis suggests that both of these methods should be useful in simulating photon transport in tissue. A fea-
ture of our implementation is that, by treating absorption of light continuously along the photon path, rather
than as a discrete collision event, absorption can be treated consistently in both the exact and the approximate
models and the relationship between altered scattering and increased mean free path is clarified. Since both of
these methods model RTEs in a fully stochastic fashion, no special treatment of boundary and interface cross-
ing is needed for them.

Both the theory and our numerical results seem to confirm that the discrete scattering angles CH method
produces nearly twice the accuracy of similarity CH for comparable computational costs and that each is
about twice as fast as analog Monte Carlo. Such gains are modest in comparison with the benefits reported
for electron transport. We believe that the difference is due mainly to the more forward-peaked nature of elec-
tron scattering, as well as subtle, but important differences between the higher moments of the phase functions
used for electron and photon scattering.

When the Henyey–Greenstein phase function describes the scattering of photons, the anisotropy factor,
g, characterizes the phase function, and we observe that the predicted speed gains of CH MC over analog
MC increase sharply as g approaches 1. To illustrate this point, we compare gains in speed for ST and DSA
that preserve the same number, say 5, of optical invariants for two different values of g. For g ¼ 0:9 and
g ¼ 0:9999 we compute gains for ST of 2.9 and 2500.4, while for DSA we obtain gains of 4.0 and
3273.4, respectively. This suggests that the use of alternative descriptions of photon scattering might prove
to be useful experimentally and also enhance the advantages of using CH models in place of analog Monte
Carlo.

In summary, we believe that the DSA method is the most promising for CH modeling of light-tissue inter-
actions and deserves consideration when fast, but quite accurate, RTE solutions are needed. In future work,
we plan to apply these CH modeling techniques to realistic, heterogeneous problems arising in biomedical
optics.
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Appendix A

In this appendix, we begin with the RTE
3 Th
oUðr;x; sÞ
os

þ x � rUþ rtU ¼
Z

4p
rsf ðx0 � xÞUðr;x0Þdx0 ðA:1Þ
of Section 3, subject to the identical assumptions, boundary conditions and notation adopted there. Our pur-
pose here is to outline the derivation of the governing equation for the solution of (A.1) projected onto the
depth axis, z.

We assume that scattering depends only on the scalar product of the unit vectors before and after collision,
x 0 and x.3 Then we can write
f ðx0 � xÞ ¼ 1

2p
f ðl0Þ:
Now if we project the solution of (A.1) onto the depth axis, here denoted here by z, we obtain the function
U ¼ Uðz; lÞ
Uðz;lÞ �
Z 2p

0

Uðz;x0Þdu ¼ 2pUðz;x0Þ:
In terms of the newly defined variables (A.1) becomes
oUðz; l; sÞ
os

þ l
oU
oz
þ rtU ¼

rs

2p

Z
4p

f ðl0ÞUðz; l0Þdx0: ðA:2Þ
Next, we expand the phase function f in Legendre polynomials, Pn, in l0
f ðl0Þ ¼
1

2p

X1
n¼0

2nþ 1

2
fnP nðl0Þ; ðA:3Þ
where the expansion coefficients, fn, are given by
fn ¼
Z 1

�1

P nðl0Þf ðl0Þdl0; n ¼ 0; 1; 2; . . .
and we have made use of the orthogonality of the Pn. We note here that it can be shown that the Henyey–
Greenstein phase function, fHG, has the following property:
gn ¼
Z 1

�1

P nðl0ÞfHGðl0Þdl0; n ¼ 0; 1; 2; . . .
To proceed with the derivation we use the addition theorem for Legendre polynomials
P nðl0Þ ¼ P nðlÞP nðl0Þ þ 2
Xn

m¼1

ðn� mÞ!
ðnþ mÞ! P m

n ðlÞP m
n ðl0Þ cos½mðu� u0Þ�: ðA:4Þ
Here l ¼ cosðhÞ and the pair: ðh;uÞ is, respectively, the polar and azimuthal angles that determine the direc-
tion x. Now substitute (A.3) and (A.4) into (A.1). Then, since
is follows from the rotational invariance of the scattering process.
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Z
4p
ð�Þdx0 ¼

Z 2p

0

Z p

0

ð�Þ sin h0 dh0 du0 ¼
Z 2p

0

Z 1

�1

ð�Þdl0 du0; ðA:5Þ
the integral in (A.2) becomes
Z
4p

f ðl0ÞUðz; l0Þdx0 ¼
Z 2p

0

Z 1

�1

X1
n¼0

2nþ 1

2
fn

� P nðlÞP nðl0Þ þ 2
Xn

m¼1

ðn� mÞ!
ðnþ mÞ! P m

n ðlÞP m
n ðl0Þ cos½mðu� u0Þ�

( )
Uðz; l0Þdl0 du0:
We next notice that if we integrate the last equation with respect to u 0, the infinite series that contains the
associated Legendre functions, P m

n , vanishes because of the presence of the cosine term. Thus, we arrive at
the following equation governing the ðz; lÞ problem:
oUðz; l; sÞ
os

þ l
oUðz; l; sÞ

oz
þ rtUðz; l; sÞ ¼ rs

Z 1

�1

fplðl0; lÞUðz; l0; sÞdl0; ðA:6Þ
where
fplðl0; lÞ ¼
X1
n¼0

2nþ 1

2
fnP nðlÞP nðl0Þ: ðA:7Þ
Appendix B

In this Appendix we prove a theorem that validates the Lewis–Larsen theory of moments for planar geom-
etry. We adopt the notation and assumptions of Appendix A and start with the transport equation for the
ðz; lÞ-problem, Eq. (A.6). It can be shown [23,14] that the PN equations corresponding to (A.6) are
oamðz; sÞ
os

þ mþ 1

2mþ 1

oamþ1ðz; sÞ
oz

þ m
2mþ 1

oam�1ðz; sÞ
oz

þ amðz; sÞIm ¼ 0; ðB:1Þ
where m ¼ 0; 1; 2; . . . Here am denotes the mth coefficient in the Legendre expansion of the radiance, U,
amðz; sÞ ¼
Z 1

�1

Uðz; l; sÞP mðlÞdl ðB:2Þ
and Im ¼ rt � rsfm denotes the mth optical invariant (Eq. (16)). We impose the following initial condition on
U:
Uðz; l; 0Þ ¼ dðzÞdðl� 1Þ: ðB:3Þ

Earlier we have defined the nth space and mth angular moment of U as Un;mðsÞ
Un;mðsÞ �
Z 1

�1

Z 1

�1

znlmUðz; l; sÞdldz: ðB:4Þ
Now we introduce the nth space and mth angular Legendre moment of U, Un;m
L ðsÞ
Un;m
L ðsÞ �

Z 1

�1

Z 1

�1

P nðzÞP mðlÞUðz; l; sÞdldz ¼
Z 1

�1
amðz; sÞP nðzÞdz: ðB:5Þ
We observe that since any monomial of degree n can be expressed as a linear combination of Legendre poly-
nomials up to the nth order, we can also express Un;m as a linear combination of Un;m

L

Un;mðsÞ ¼
Xn

i¼0

Xm

j¼0

ci;jU
i;j
L ðsÞ; ðB:6Þ
where ci;j are the coefficients of combination and cn;m 6¼ 0. Next we derive a coupled system of ordinary dif-
ferential equations for Un;m

L which we state as
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Lemma. The functions Un;m
L ðsÞ satisfy the equations
dU0;m
L ðsÞ
ds

þ U0;m
L ðsÞIm ¼ 0; n ¼ 0; m ¼ 0; 1; . . . ; ðB:7Þ

dUn;m
L ðsÞ
ds

�
X½ðn�1Þ=2�

i¼0

2n� 4i� 1

2mþ 1
ðmþ 1ÞUn�2i�1;mþ1

L ðsÞ þ mUn�2i�1;m�1
L ðsÞ

� 	
þ Un;m

L ðsÞIm ¼ 0; n > 0; m ¼ 0; 1; . . . ðB:8Þ
The initial condition here
Un;m
L ð0Þ �

Z 1

�1

Z 1

�1

dðzÞdðl� 1ÞP nðzÞP mðlÞdldz ¼ P nð0Þ ðB:9Þ
follows from (B.3).

Proof. First, operate on Eq. (B.1) by
R1
�1ð�ÞP 0ðzÞdz. The assumption that the radiance vanishes at infinity

implies that the terms containing the derivatives with respect to z in (B.1) disappear. We obtain
dU0;m
L ðsÞ
ds

þ U0;m
L ðsÞIm ¼ 0:
Next, operate on (B.1) by
R1
�1ð�ÞP nðzÞdz, n > 0. This results in
dUn;m
L ðsÞ
ds

þ mþ 1

2mþ 1

Z 1

�1

oamþ1ðz; sÞ
oz

P nðzÞdzþ m
2mþ 1

Z 1

�1

oam�1ðz; sÞ
oz

P nðzÞdzþ Un;m
L ðsÞIm ¼ 0: ðB:10Þ
To simplify the integrals in (B.1) we use integration by parts
Z 1

�1

oam	1ðz; sÞ
oz

P nðzÞdz ¼ �
Z 1

�1
am	1ðz; sÞP 0nðzÞdz: ðB:11Þ
Using (B.11) we can re-write (B.10) as
dUn;m
L ðsÞ
ds

þ mþ 1

2mþ 1

Z 1

�1
amþ1ðz; sÞP 0nðzÞdzþ m

2mþ 1

Z 1

�1
am�1ðz; sÞP 0nðzÞdzþ Un;m

L ðsÞIm ¼ 0 ðB:12Þ
Making use of elementary properties of Legendre polynomials [24] we can write P 0n as
P 0nðzÞ ¼ ð2n� 1ÞP n�1ðzÞ þ ð2n� 5ÞP n�3ðzÞ þ ð2n� 9ÞP n�5ðzÞ þ � � � þ
3P 1ðzÞ; if n is even

P 0ðzÞ; if n is odd




¼
X½ðn�1Þ=2�

i¼0

ð2n� 4i� 1ÞP n�2i�1ðzÞ; n ¼ 1; 2; . . . ; ðB:13Þ
where square brackets in the upper limit of summation denote the integer part. Substituting the representation
(B.13) of P 0n in (B.12), using the definition (B.5) of Un;m

L , we can re-write Eq. (B.10) in terms of Un;m
L . This results

in (B.8) and completes the proof of the Lemma. h

Theorem. The (n,m)th order spatial-angular moment of U, Un;mðsÞ, depends only on s and Ik; k 6 nþ m.

Proof. We prove the theorem by induction on n. First set n ¼ 0 and write again Eq. (B.7) for U0;m
L ðsÞ :
dU0;m
L ðsÞ
ds

þ U0;m
L ðsÞIm ¼ 0
with the initial condition U0;m
L ð0Þ ¼ 1. The solution is, of course
U0;m
L ðsÞ ¼ e�Ims
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and thus U0;m
L depends on s and Im for any m. Since Eq. (B.13) takes two forms depending on the parity of n, we

also need to verify the theorem for n ¼ 1 to begin the induction. That is, we want to show that U1;mðsÞ depends
only on s and Ik, k 6 mþ 1. Putting n ¼ 1 in (B.8) we get
U1;m
L ðsÞ
ds

� mþ 1

2mþ 1
U0;mþ1

L ðsÞ � m
2mþ 1

U0;m�1
L ðsÞ þ U1;m

L ðsÞIm ¼ 0: ðB:14Þ
From the n ¼ 0 case it follows that U0;mþ1
L depends on Imþ1; U0;m�1

L depends on Im�1 and hence U1;m
L depends on

Im�1; Im; Imþ1. By (B.6) we can write
U1;mðsÞ ¼
Xm

j¼0

c0;jU
0;j
L ðsÞ þ

Xm

j¼0

c1;jU
1;j
L ðsÞ ðB:15Þ
where c0;m 6¼ 0; c1;m 6¼ 0. The first term in (B.15) shows that U1;m depends only on I0; . . . ; Im while the second
term brings in the dependence on Imþ1 and thus the theorem is true for n ¼ 1 and any m.

Suppose now that the theorem is true for some fixed n and arbitrary m; i.e. that Un;mðsÞ is a function only of
s and Ik; k 6 nþ m. We want to show that Unþ1;mðsÞ is a function only of s and Ik; k 6 nþ mþ 1. Using (B.8)
we write the equation for Unþ1;m

L

dUnþ1;m
L ðsÞ
ds

�
X½n=2�

i¼0

2n� 4iþ 1

2mþ 1
ðmþ 1ÞUn�2i;mþ1

L ðsÞ þ mUn�2i;m�1
L ðsÞ

� 	
þ Unþ1;m

L ðsÞIm ¼ 0 ðB:16Þ
Examining Eq. (B.16) reveals that Unþ1;m
L is defined in terms of Un�2i;mþ1

L and Un�2i;m�1
L and thus the highest pos-

sible Legendre moment of the radiance determining Unþ1;m
L occurs for i ¼ 0; i.e. it is Un;mþ1

L . By the inductive
assumption, Un;mþ1

L ðsÞ depends on s and Ik; k 6 nþ mþ 1, establishing the theorem for Unþ1;m
L ðsÞ and hence,

by (B.6), for Unþ1;mðsÞ as well. h
References

[1] M.J. Berger, Monte Carlo calculation of the penetration and diffusion of fast charged particles, Nucl. Instrum. Methods Phys. Res. B
134 (1963) 135–215.

[2] S. Goudsmit, J.L. Saunderson, Multiple scattering of electrons, Phys. Rev. 57 (1940) 24–29.
[3] T.M. Jenkins, W.R. Nelson, A. Rindi, Monte Carlo Transport of Electrons and Photons, Plenum Press, New York and London,

1988.
[4] J.M. Fernandez-Varea, R. Mayol, J. Baro, F. Salvat, On the theory and simulation of multiple elastic scattering of electrons, Nucl.

Instrum. Methods Phys. Res. B 73 (1993) 447–473.
[5] A.F. Bielajew, I. Kawrakow, On the condensed history technique for electron transport, Nucl. Instrum. Methods Phys. Res. B 142

(1998) 253–280.
[6] H.W. Lewis, Multiple scattering in infinite medium, Phys. Rev. 78 (5) (1950) 526–529.
[7] D.R. Tolar Jr., E.W. Larsen, The moment condensed history algorithm for Monte Carlo electron transport simulations, in:

Proceedings of the ANS Topical Meeting: International Conference on Mathematical Methods to Nuclear Applications, Salt Lake
City, Utah, September 9–13, American Nuclear Society, 2001.

[8] D.R. Tolar Jr., E.W. Larsen, A transport condensed history algorithm for Monte Carlo simulations, Nucl. Sci. Eng. 138 (1) (2001)
47–65.

[9] D.R. Wyman, M.S. Patterson, B.C. Wilson, Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply
penetrating neutral particles, J. Comput. Phys. 81 (1989) 137–150.

[10] A.K. Prinja, B.C. Franke, Monte Carlo electron dose calculations using discrete scattering angles and discrete energy losses, Nucl. Sci.
Eng. 149 (1) (2005) 1–22.

[11] H. Neunschwander, T.R. Mackie, P.J. Reckwerdt, MMC – a high-performance Monte Carlo code for electron beam treatment
planning, Phys. Med. Biol. 40 (1995) 543–574.

[12] I. Kawrakow, Accurate condensed history Monte Carlo simulation of electron transport EGSnrc, the new EGS4 version, Med. Phys.
27 (2000) 485–498.

[13] E.W. Larsen, Theoretical derivation of the condensed history algorithm, Ann. Nucl. Energy 19 (10-12) (1992) 701–714.
[14] G.I. Bell, S. Glasstone, Nuclear Reactor Theory, Van Nostran Reinhold, New York, 1970.
[15] D.R. Tolar, Advanced multiple scattering algorithms for electron transport, Ph.D. dissertation, University of Michigan, 1999.
[16] G.C. Pomraning, The Fokker–Planck operator as an asymptotic limit, Math. Models Methods Appl. Sci. 2 (1992) 21–36.
[17] C.L. Leakeas, E.W. Larsen, Generalized Fokker–Planck approximations of particle transport with highly forward-peaked scattering,

Nucl. Sci. Eng. 137 (2001) 236–250.



1694 K. Bhan, J. Spanier / Journal of Computational Physics 225 (2007) 1673–1694
[18] D.P. Sloan, A new multigroup Monte Carlo scattering algorithm suitable for neutral and charged particle Boltzmann and Fokker–
Planck calculations, Ph.D. thesis, University of New Mexico, Albuquerque, NM, 1983.

[19] D.R. Wyman, M.S. Patterson, A discrete method for anisotropic angular sampling in Monte Carlo simulations, J. Comput. Phys. 76
(1988) 414–425.

[20] J. Spanier, E.M. Gelbard, Monte Carlo Principles and Neutron Transport Problems, Addison-Wesley Publishing Company, 1969.
[21] R.W. Hamming, Numerical Methods for Scientists and Engineers, Dover Publications, New York, 1973.
[22] E. Lewis, W.F. Miller Jr., Computational Methods of Neutron Transport, Wiley, New York, 1984.
[23] E.M. Gelbard, Spherical harmonics methods: PL and double PL approximations, in: H. Greenspan, C.N. Kelber, D. Okrent (Eds.),

Computing Methods in Reactor Physics, Argonne National Laboratory, Gordon and Breach, 1969 (Chapter 4).
[24] J. Spanier, K.B. Oldham, An Atlas of Functions, Springer-Verlag, 1987.


	Condensed history Monte Carlo methods for photon transport problems
	Introduction
	Overview
	The CCH and related models
	Improved models: transport condensed history (TCH) methods
	Similarity theory (ST model)
	Discrete scattering angles (DSA model)
	Evaluating CH models
	Three implementations
	Analog Monte Carlo
	Similarity theory
	Discrete scattering angles

	Further error analysis
	(z, mu )-Problem equations
	Numerical results and discussion

	Conclusions
	Acknowledgments
	Appendix A
	Appendix B
	References


