Optimal force application

Matthias, Chris D, Chris B, Stacie

Recalling the problem

Given: θ (crisp angle), F_I (applied force), F_1 (friction), F_2 (friction)

Question: Where to apply external force optimally?

Approach: - determine the right mathematical framework

- simulate effect of applied forces
- test different scenarios

Framework for fixed θ

Mathematical framework

Given: $\theta(\text{crisp angle}), F_I(\text{applied force}), F_1(\text{friction}), F_2(\text{friction})$

Question: Where to apply external force optimally?

Approach: - determine the right mathematical framework

- simulate effect of applied forces
- test different scenarios

Mathematical framework: - Optimisation problem with constraints - Find $(\alpha, \beta) \in \Omega$ such that $F_I^{\perp}(\alpha, \beta)$ and $F_I^{\parallel}(\alpha, \beta)$ satisfy certain criterions

Constraint #1

With

$$\|F_1^{\|} + F_2^{\|}\| < \|F_I^{\|}\|$$

we obtain rotation

Problem with residual force

Normal force

 F_I^{\perp}

can cause cracking or lifting of the crisp

Blue: $||F_I^{\perp}||$ small Red: $||F_I^{\perp}||$ large

Constraint #2

Enforcing

$$\|F_I^{\perp}\| \le F_{max}$$

prevents cracking or lifting of the crisp

This translates into

$$\sin(\beta - \alpha) \le \frac{F_{max}}{\|F_I\|}$$

Further considerations

- Generalisation to wider range of $(\alpha,\beta)\in\Omega$
- Determine the exact friction terms F_1^{\parallel} and F_2^{\parallel}
- Include the microstructural properties of the crisps to determine $\ F_{max}$

- Extension into three dimensions
- Include distribution of initially misaligned heta

Framework for normally distributed θ

Applying an external force to a crisp

An external force applied to a crisp

Problems with additional non-necessary force on the crisp:

- Can cause the crisp to break
- Can lift the crisp off of the support

$$F_{1} = F \cos \alpha$$

$$F_{2} = F \sin \alpha$$

$$F_{2} = F_{1} \frac{\sin \alpha}{\cos \alpha}$$
We need to minimise $\frac{\sin \alpha}{\cos \alpha}$

Model with only vertical applied force

with angular displacement

Assumptions:

- External force is always vertical pushing the crisp down
- External force is at the highest point of the crisp

We see that α and θ are related through $\alpha = |90 - \beta - \theta|$

Non-necessary force applied per unit of tangent force against crisp angular displacement

Expected normal force per unit of tangent force = 0.6341

Non-necessary force applied per unit of tangent force against crisp angular displacement

Expected normal force per unit of tangent force = 0.1356

Questions to consider

- How much force is needed to break a crisp?
- How do we optimising both reducing the angular displacement and crisp loss due to non-necessary forces?
- How effective is using a slightly alternate shape?

Thank you for your attention!