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Understanding and forecasting
the weather is essential to the
future of planet earth and maths
place a central role in doing this
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Accurate weather forecasting is a mixture of

 Careful of the complex physics of the
ocean and atmosphere

» Accurate computations on these models
« Systematic collection of data

A fusion of data and computation

Data assimilation is the optimal way of
combining a complex model with uncertain data



Basic Idea of Data Assimilation

True state of a systemis X,

A calculation (eg. NWP) gives a predicted state X,
with an estimate of the error

Make a series of observations y of some
function H(x,) of the true state

Eg. Limited set of temperature
measurements with error

Now combine the prediction with the observations



Data: Sources of observation

METEOSAT geostationary
meteorological satellite

Polar-orbiting
_ satellites

s

Satellite ground
station

y  Ground stations
Automatic

i, weather stations




Both the prediction and the data have errors.

Can we optimally estimate the system state which is
consistent with both the prediction and the data and
estimate the resulting error?

NOTE: In weather prediction we
have approximately

1079 degrees of freedom

1076 data points

So significantly underdetermined problem



Best state y
estimate S /
analysis =—
— — )Cf
xa
 ’/’*
NWP Xp Use X, to produce
prediction X, forecast X,

Assume Iinitially:
1. Errors are unbiased Gaussian variables
2. Data and prediction errors are uncorrelated

3. H(x) is a linear operator



Assumptions about the error

Data error: (Gaussian, Covariance R

Background prediction error: Gaussian, Covariance B

Maximum likelihood of data y given truth x is

M = P(x‘y)/P(x) =’

4 N
J(x,) = %(xa —x,) B (x, - x,)+ %(Hxa WY R (Hx, - y)
\_ J

BLUE: Find X_ which maximises M

So X, minimises J



Implementation 1.

If R and B are known then the best estimate of the analysis is

x =x, +K(y-Hx,), K=BH'(R+HBH")™

Covariance of the analysis error

A=KRK" + I-KH)B(I-KH)"

Kalman filter: Continuously
updates the forecast and its error
given the incoming data.




Ensemble Kalman Filter

This is a widely used Monte Carlo method that uses an ensemble
of forecasts to estimate the terms in the Kalman filter

|dea: Take a large number of initial states #:and estimate the
resulting background states X3

xl > .xB,l
X, » Xp.
» X
X, .xl- xB,l
Xp
B
xi
_ 1 1 _ N\T
X=—>X,., B=—— (xB’l—x)(xBl—x)



Implementation 2:

Minimise the functional

4 N
J(x,) = %(xa —x,) B (x, - x,)+ %(Hxa WY R(Hx, - y)
\_ )

This is implemented as 3D-VAR (since 1999 in the Met Office)

Xp 1 Background, derived from 6 hour NWP forecast

X4 : Analysis

Xro using X, as initial data



Implementation 3.

4D VAR ... Preferred variational method

Use window of several observations (over 6 hours)

N

Corrected
forecast
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Assimilation Window




4D-VAR idea: Evolutionary model M (nonlinear)

Unknown initial state  Xg

Times [ =1,,l,[,,** Over a time window

Leads to state estimates X, X,,...
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estimates fit the data . —

Smoothing



Minimise

I 1<
J(x,) = E(XO - xb)TB_l(xo = xb) t EE(Hxi - yz')TR_l(Hxi - )
i=0

Subject to the strong model constraint

- \
X =M(x,)

\. J

At present assume perfect model, but can also deal with
certain types of model error (both random and systematic) by
using a weak constraint instead



Usually solved by introducing Lagrange multipliers

1 1 S
J(x,)= E(XO - xb)TB_l(xO - x,)+ EE(HXZ' -y) R'(Hx,-y,)

i=0

N-1
+E Alx,, —Mx,)
i=0

And solving the

! 0=VJ, = HTR_l(Hxi -y)+A L —-AM'(x) :

8 =VJ, = B‘l(xO —xb)+HTR_1(HxO - V) — A, M, (xo)




Estimation of the background and covariance errors

Good estimates of the covariance matrices R and B are
of 3D-VAR

1. To get the physics correct

2. To avoid spurious correlations between parameters

3. To give well conditioned systems

NOTE: B is a very large matrix, difficult to store and
very difficult to update. Impractical to calculate using

the Fokker-Plank equation



Build meteorology into the calculation of B through

Control Variable Transformations (CVTs)

IDEA: Choose more ‘natural’ physical variables X which
have so that the transformed

covariance matrix is block diagonal or even the identity

4 )

Set | x=Ux=UUU,x, B=UU"

\. J

Reduces the complexity of the system AND gives better
conditioning for the linear systems



U -1 Separates into
uncorrelated ones eg. temperature, wind,
balanced and unbalanced

|
U y Reduces by projecting
onto empirical orthogonal vertical modes

[~ Reduces horizontal by
h projecting onto spherical harmonics

Effective, but errors arise due to lack of resolution of
physical features leading to

[Cullen]



Eg. Problems with stable boundary and inversion
layers and assimilating radiosonde data

Poor resolution leads to inaccurate predictions of fog and ice
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Solution one

Increase global resolution

VERY EXPENSIVE!!!

Solution two

locally redistribute the computational mesh to resolve the features

Cheap and effective! [Piccolo, Cullen, B,Browne, Walsh]



Modsl Leval

Monitor function and the Adaptive Grid
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Model Levels

Model Levels

RMS error: Analysis - Observations
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Used together with Met Office Open Road software to
advise councils on road gritting over Christmas

Public Products and services Research

=2 Met Office

m Transport Public sector Health Defence Multi-media

» Home P Products and services P Transport P Road P OpenRoad

OpenRoad share: K 228

OpenRoad is an online weather forecasting package designed to help minimise the effects of weather
on the roads.

Keeping the roads open during bad ’ £ _
weather is critical for those i " _ e 1] Related articles
managing the road networks. e P . *B Route Based

' ‘8l Forecasting
With the variable weather the UK e 3 _ s e
faces this can be a challenge during &% = & & T ZAg Bridges
both summer and winter. e 3

Telephone
OpenRoad on the web is an online % . consultancy
weather forecasting package that is A "
designed to help minimise the
effects of weather on the roads. By
providing all your key rcad weather information in a clear format, it enables road decision-makers to do their jobs
more easily, more cost-effectively and with greater confidence.




Adaptive mesh implemented operationally since
November 2010.

Now extending it to a fully three dimensional implementation
using optimal transport methods [B,Browne,McRae,Piccolo]

201204250300




Dealing with nonlinearity

Lot of research into finding a compromise between
dealing with the high dimensionality and nonlinearity in
the system

Better use of appropriate (eg. Lagrangian) data

[Jones, Stuart, Apte]

Use of particle filters
and MCMC methods [Peter Van Leeuwan]



Conclusions

Data assimilation is an optimal way of

merging models with data
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Useful for model tuning, validation,

evaluation, uncertainty quantification and reduction

Very effective in meteorology

Can be significantly improved with adaptivity
and OT




