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Abstract. Event trees are a popular technique for modelling accidents in system 
safety analyses. Bayesian networks are a probabilistic modelling technique 
representing influences between uncertain variables. Although popular in expert 
systems, Bayesian networks are not used widely for safety.  Using a train 
derailment case study, we show how an event tree can be viewed as a Bayesian 
network, making it clearer when one event affects a later one.  Since this effect 
needs to be understood to construct an event tree correctly, we argue that the 
two notations should be used together.  We then show how the Bayesian 
Network enables the factors that influence the outcome of events to be 
represented explicitly.  In the case study, this allowed the train derailment 
model to be generalised and applied in more circumstances.  Although the 
resulting model is no longer just an event tree, the familiar event tree notation 
remains useful.  

1   Introduction 

Event trees are used in quantified risk analysis to analyse possible accidents occurring 
as a consequence of hazardous events in a system.  Event trees are often used together 
with fault trees, which analyse the causes of the hazardous event that initiates the 
accident sequence.  Their origin goes back at least to the WASH-1400 reactor safety 
study in 1975 [1]. 

The most serious accident may be quite improbable, so an accurate assessment of 
the risk requires the probabilities of possible accident scenarios to be determined.  
The analysis of accidents must consider both the state of the system and of its 
environment when the hazardous event occurs.  The analysis is made more difficult 
when the environment of a system is complex or variable. 

Event trees model an accident as a sequence of events: this is an intuitive approach 
but it does not explicitly represent the state of the system and its environment, which 
influences the evolution of events.  In this paper, we propose to address this limitation 
of event trees by using Bayesian Networks (BNs).  We have applied this approach to 
a case study, adapting an existing event tree modelling a train derailment accident.  
The original author of the event tree was able to explain the system and 
environmental factors that had been considered when preparing the event tree, but 
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which could not be included explicitly in it.  Using a BN, these factors can be made 
explicit in the accident model, which can still be viewed as an event tree but is now 
more general with a single BN-based model taking the place of a set of related event 
trees. 

We argue that the event tree and BN are complementary: an event tree can be 
translated into a BN allowing two views of the accident model, each view showing 
different properties of the model most clearly. The generalised model, with system 
and environmental factors that influence the events made explicit, is a BN but it can 
still be viewed using the event tree notation. 

Event trees are supported by many software packages but are sufficiently simple to 
be created with standard tools such as a spreadsheet.  Perhaps because of this, the 
notation used by different authors varies.  Since we wish to translate between event 
trees and BNs, the first step, in Section 2, is a precise description of an event tree. 

In Section 3, we introduce BNs and show how to translate an event tree into a BN.  
We first give a ‘generic’ translation based only on the number of events in the tree and 
then we give rules for simplifying the resulting BN.  Section 4 introduces the case study 
and uses it to show that the combination of event trees and BNs allows a more general 
model of possible accidents.  Conclusions and related work are in Section 5. 

2   Event Trees 

In this section, we give an informal but precise description of event trees, which will 
be the basis for the translation of event trees to BNs. 

2.1   Events and Outcomes 

The evolution of the system following the hazardous occurrence is divided into 
discrete events, starting from the initiating event.  Each event has a finite set of 
outcomes; commonly there are just two outcomes – the event happens or does not 
happen – but a greater number of outcomes can be distinguished. 
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Fig. 1. An example event tree.  There are two events: event e1 has three possible outcomes o11, 
o12 and o13 whereas e2 has only two outcomes o21 and o22.  Two different consequences are 
distinguished c1 and c2; c1 results both from the event sequence i → o11 → o21 and from the 
event sequence i → o12 → o22. 
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The events form a sequence in time: a tree of possible outcomes for all the events 
is constructed and the consequence or loss evaluated for each path through the tree.  
Some paths may be judged to lead to the same consequence.  Fig. 1 shows an example 
event tree. 

2.2   Probabilities and Consequence  

The event tree specifies a logical combination of the event outcomes for each 
consequence.  For the event tree in Fig. 1, the logical formulae for the consequences 
are c1 = (o11 ∧ o21) ∨ (o12 ∧ o22) and c2 = (o11 ∧ o22) ∨ (o12 ∧ o21) ∨ o13. 

The probability of each consequence is calculated from the event probabilities, 
determined from data or experience.  For example in Fig. 1, the probability of 
outcome o11 of e1 event is 0.1.  However, the probability of an outcome may depend 
on the outcomes of events earlier on the path: in Fig. 1 the probability of outcome o21 
of event e2 depends on the outcome of event e1.  The probabilities labelling the 
branches of the tree for e2 are therefore conditional probabilities, in this example: 
p(o21 | o11 ), p(o22 | o11 ), p(o21 | o12 ), and p(o22 | o12 ). 

The probabilities of the two consequences are calculated by multiplying the 
probabilities along each path and then adding the probabilities of paths leading to the 
same consequence.  The calculation for Fig 1 is shown below.  

Consequence Calculation Result 
C1 0.1 × 0.01 + 0.2 × 0.3 0.061 
C2 0.1 × 0.99 + 0.2 × 0.7 + 0.7 0.939 

It is notable that the logical formulae for the consequences do not carry any 
information about how the outcome of one event is influenced by earlier events or 
even of how the events are ordered in time.  The logical formulae are sufficient for 
combining the probabilities of event outcomes to give the consequence probabilities.  
On the other hand, understanding how the outcome of one event is influenced by 
earlier events is crucial for judging the event probabilities and the event tree shows 
only part of the information used during its construction: 

• The time ordering of events shows the set of earlier events on which a 
probability may be conditioned; later events cannot influence the outcome of 
earlier events. 

• However, some earlier events may have no influence and the event tree does not 
show what subset of the earlier events actually conditions each probabilities.  
Indeed, we have seen cases where inexperienced users of event trees are 
unaware that the probabilities attached to branches in an event tree are 
conditional probabilities at all. 

In the example of Fig. 1, when event e1 has outcome o13 the tree does not branch 
for the possible outcomes of event e2.  We refer to this as a don’t care condition.  
There is more than one reason why the event tree may contain such a condition: 

• Only one of the outcomes of e2 is possible following the outcome of the earlier 
event. 

• Both outcomes of e2 are possible, but the consequence is the same for both. 
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It is important to note that the event tree does not distinguish between these reasons – 
there is no need to do so to calculate the consequence probabilities. 

3   Translating an Event Tree to a Bayesian Network 

In this section we first introduce BNs and describe a ‘generic’ representation of an 
event tree as a BN before showing how it can be simplified for a specific event tree. 

3.1   Bayesian Networks 

A BN [2] is a graph with a set of probability tables.  The nodes of the graph represent 
uncertain variables and the arcs represent the causal relationships between the 
variables.  The arcs are directed from ‘parent’ to ‘child’ with, conventionally, the 
parent as the cause and the child the effect.  There is a probability table for each node, 
providing the probabilities of each state of the variable, for each combination of the 
states of parent variables.  The model of cause is probabilistic rather than 
deterministic and this makes it possible to include factors that influence the frequency 
of events, but do not determine their occurrence. 

Although the underlying theory (Bayesian probability) has been around for a long 
time, executing realistic models was only first made possible in the late 1980s using 
new algorithms.  Methods for building large-scale BNs are even more recent [3] but it 
is only such work that has made it possible to apply BNs to the problems of systems 
engineering. 

The RADAR group at QMUL, in collaboration with Agena Ltd, has built 
applications based on BNs that have shown the technology to be effective.  Several 
such applications are for dependability assessment, notably the TRACS tool [4] used 
to assess vehicle reliability by QinetiQ (on behalf of the MOD) and a tool used by 
Philips to manage software quality [5]. 

3.2   A Generic Translation from ET to BN 

Any event tree with three events e1, e2, and e3 can be represented by the BN shown in 
Fig. 2. Two types of arc complete the network: 

• Consequence arcs (shown as dotted lines in Fig. 2) connect each event node to 
the consequence node.  This relationship is deterministic: the probability table 
for the consequence node encodes the logical relationship between the events 
and the consequences. (An example is shown in Fig. 5.) 

• Causal arcs (shown as solid lines in Fig. 2) connect each event node to all events 
later in time.  We say that e1 influences the probability of (or, equivalently, is a 
causal factor for) event e2. 

We call this representation generic since the nodes and arcs depend only on the 
number of events.  However, assuming that the BN is only used to determine the 
consequence probabilities (i.e. just as the event tree), some of the arcs may not be 
necessary allowing the BN to be simplified.  In the next two sections we give rules for 
eliminating unnecessary arcs.  
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Fig. 2. Generic BN representation of an event tree.  Nodes e1, e2, and e3 represent the events; 
each node has a state for each outcome.  The node consequence has a state for each of the 
consequences in the event tree. 

3.3   Eliminating Consequence Arcs 

The consequence arc from an event can be eliminated if the logical formulae for the 
consequences do not refer to any outcome of the event.  Fig. 3 shows an example: the 
logical expression for c1 is (o11 ∧ o21) ∨ (o12 ∧ o21) but this can be simplified to o21; 
since this expression (and the similar expression for c2) includes only the outcomes of 
the e2 event, the BN node e1 is not needed as a parent of the consequence node.  The 
set of consequence arcs is not determined by the branching structure of the event tree 
but by the assignment of consequences to each of the paths through the tree. 
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Fig. 3. Example of an event tree allowing a consequence arc to be eliminated, since e2 
determines the consequence whatever the outcome of the first event: the first event influences 
the relative probability of the two outcome of e2 but does not change the consequence 

3.4   Eliminating Causal Arcs 

A causal arc to an event et from an earlier event ef can be eliminated if and only if the 
probabilities labelling branches for event et do not depend on the outcome of event ef.  
We can see this in the event tree: are the probabilities labelling an outcome oxy the 
same on all branches for this outcome or do they differ?  An example of this is shown 
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in Fig. 4, where both branches for o21 have probability 0.1 and both branches for o22 
have probability 0.9: 

p(e2 = o21 | e1 = o11 ) = p(e2 = o21 | e1 = o12 ) = 0.1 
p(e2 = o22 | e1 = o11 ) = p(e2 = o22 | e1 = o12 ) = 0.9 

Because the probabilities of the outcome of event e2 do not depend on the outcome of 
event e1 no causal arc is needed from e1 to e2.  More generally, if for all outcomes of 
et the probability p(et | …, ef, … ) does not depend on the outcome of ef (given the 
outcome of the other events) then the two events are ‘conditionally independent’ and 
the arc from ef to et is not needed.   

The complete BNs, including the probability tables, for the event trees in Figs 4 & 
5, showing the two types of elimination, are given in Fig. 5. 
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Fig 4. Example of an event tree allowing a causal arc to be eliminated: the probabilities of the 
two outcomes of event e2 are the same whatever the outcome of event e1.  Note that this figure 
and Fig. 3 have the same shape but differ in the pattern of probabilities and consequences. 

3.5   Handling ‘Don’t Care’ Conditions 

The event trees in Figs. 3 and 4 are both complete: a path exists for all possible 
combinations of outcomes of the two events.  An event tree that is complete in this 
way includes all the probabilities needed to complete the node probability tables for 
the event nodes.  However, this is not the case when there are don’t care conditions in 
the event tree.  In this section we show how the rules described above can be adapted 
for don’t care conditions. 

Consider the don’t care branch in the event tree of Fig. 1: suppose that it is instead 
split into the two outcomes of event e2, the first given probability α and the other 1-α.  
Any probability α could be used: since the two branches both lead to the same 
consequence (or set of consequences) the value chosen has no effect on the 
consequence probabilities.  We are free to choose α to simplify the BN as far as 
possible, so we choose α to create conditional independence whenever this is possible.   

This procedure produces the fewest causal arcs but it does not distinguish between 
the two reasons given at end of section 0 why a don’t care condition may occur.  This 
is satisfactory because the distinction doesn’t affect the calculation of the 
consequence probabilities in either the event tree or the BN.  However, by assuming 
that event outcomes are conditionally independent except when the probabilities 
shown in the event tree force the opposite conclusion we may have ignored causal 
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relationships between events that really exist.  If we use the BN model of the event 
sequence for other calculations we may need to add the causal arcs modelling these 
causal relationships to the BN.  We could do this by determining the probabilities of 
the outcomes of don’t care conditions and adding extra branches into the event tree.  
The resulting BN has some interesting properties but we do not need it to calculate 
consequence probabilities. 

e1
e2

consequence

e1 o11 o12 
e2 o21 o22 o21 o22 
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consq = c3 0 0 0 1 

e1 = o11 0.7 
e1 = o12 0.3 

e2 = o21 0.1 
e2 = o22 0.9 

 

e1
e2

consequence

e1 o11 o12 
e2 = o21 0.01 0.1 
e2 = o22 0.99 0.9 

 

e2 o21 o22 
consq = c1 1 0 
consq = c2 0 1 

 

 
e1 = o11 0.7 
e1 = o12 0.3 

 

Causal Arc 
Eliminated

Consequence 
Arc Eliminated

 

Fig. 5. Complete BNs for event trees of Figs. 4 & 5, showing the two types of arc elimination 

3.6   Using a Hierarchy of Nodes for Consequence 

Rather than having a single BN ‘consequence’ node with a probability table 
determined from the logical relationship between events and consequences, it is 
possible to represent this relationship using a hierarchy of nodes, determined from the 
event tree structure.  A node can be introduced for each vertical line (representing a 
branch or decision point) in the event tree provided that more than two sequences lead 
from the branch.  The parents of this node are the node representing the event and the 
nodes from the decision points to the right.  Using a hierarchy of nodes has two 
potential advantages: 

• more efficient propagation of the BN 
• clearer representation (for the risk analyst) of the logical relationship between 

events and consequences. 

We do not consider the efficiency of propagation further in this paper.  In section 4.2, 
we assess whether the clarity of the model improves using this translation for a 
realistic event tree. 

4   Why Use Bayesian Networks to Model Event Sequences 

The previous section showed how to construct a BN equivalent to an event tree; 
however, if the two models are equivalent what purpose does the BN serve?  We 
examine this using a case study of train derailment, which is introduced in section 4.1.  
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In the following sections, we first argue that an event tree and a BN provide 
complementary views of the relationship between events.  Secondly, we show how an 
event tree expressed using a BN can usefully be generalised by making the factors 
influencing the evolution of events explicit, producing a more widely applicable 
model of the accident. 

4.1   Case Study: Train Derailment 

A ‘Derailment Study’ was carried out in 2001 as part of development studies for a 
proposed upgrade to an urban railway.  The objective of the study was to quantify the 
risks to passengers and staff arising from derailment.  This required the consequences 
of derailment to be analysed and event trees were constructed for this.  Other models 
were used to analyse the frequency of derailment and, given the accident sequences, 
the likely toll of injuries.  Since the ultimate aim was to ensure that risks were 
tolerable, some conservative assumptions were made. 
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Fig. 6. An event tree from the ‘Derailment Study’ covering derailment in open track areas.  The 
structure of the event tree, and the event probabilities, were adapted from a network-wide 
model by considering factors specific to the local circumstances. 

The analysis used separate event trees for six different infrastructure areas, each 
with different characteristics including open track, in tunnels and on bridges.  Here, 
we consider only derailments on areas of open track, which is track not in tunnels or 
carried on bridges.  The analysis drew on a version of the ‘Safety Risk Model’ (SRM) 
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[6], which analyses the risk arising from different hazards using historic accident data 
and expert judgement for the UK rail network as a whole.  The event trees for the 
derailment study used the structure of the SRM but had to be tailored to the local 
circumstances: for example, the maximum speed limit is 30 miles per hour, the trains 
are electric multiple units with third-rail electrification.  The original author of the 
derailment study was available and assisted the authors with the case study. 

The event tree for open track derailment is shown in Fig. 6.  The events, all of 
which have only two outcomes, are described in Table 1.  Twelve consequences or 
‘derailment accidents’ are distinguished: for example ‘d2’ is ‘minor derailment within 
clearance’ and ‘d7’ is a ‘major derailment to cess, striking line-side structure’.  Given 
the frequency of the initiating ‘derailment’ event, the frequency of each accident can 
be calculated.  The ‘equivalent fatalities’ for each accident are estimated by a separate 
method, which is not relevant here.  

 

Table 1. Derailment Events 

Event Description 

1 Derailment containments 
controls the train. 

An extra raised ‘containment’ rail, if fitted, limits 
movement sideways. 

2 The train maintains 
clearance. 

The train remains within the lateral limits and does 
not overlap adjacent lines or obtrude beyond the edge 
of the track area. 

3 Derails to cess or 
adjacent line. 

The train can derail to either side of the track: 
derailing to the ‘cess’, or outside, may lead to a 
collision with a structure beside the line, while 
derailing to the ‘adjacent’ side brings a risk of 
colliding with another train. 

4 One or more carriages 
fall on their side. 

The carriages may remain upright or fall over. 

5 Train hits a line-side 
structure. 

The train hits a structure beside the line. 

6 The train structure 
collapses. 

Collision with a line-side structure causes the train 
structure to collapse. 

7 Secondary collision with 
a passenger train. 

A following or on-coming train collides with the 
derailed train. 

4.2   Causality in the Event Sequence 

Fig. 7 shows the BN generated for the event tree, using the algorithm described  
in section 3.  Comparing the two notations – the BN of Fig. 7 and the event tree of  
Fig. 6 – we see that: 

1. The logical combination of events leading to each accident is most clearly 
shown in the event tree.   

2. The occurrence of conditional probabilities – arising from dependence between 
the events – is shown more clearly in the BN.   
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Fig. 7. Equivalent BN for open track derailment 

The first point remains true even if the single ‘derailment accident’ node is 
replaced by a hierarchy of nodes as described in section 0, producing the BN shown 
in Fig. 8.  Although this alternative translation may improve the efficiency of 
Bayesian propagation, the logical relationship between events and consequence is still 
more clearly shown in the original event tree. 
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Fig. 8. Alternative translation of open track derailment event tree, using a hierarchy of nodes to 
encode the logical relationship between events and consequences 

It may seem surprising that there is only a single causal arc – from ‘falls’ to ‘hits 
structure’ between the nodes representing events.  This arc occurs because the 
probability p(hits | falls = yes) ≠ p (hits | falls = no).  For other events, the probability 
of each outcome is the same on all the branches.  The absence of other causal arcs 
depends on our treatment of don’t care conditions.  For example, a collision is only 
possible following a derailment to the adjacent side, but we do not need to represent 
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this relationship by a causal arc since it is captured by the branching structure of the 
event tree.  Since the two views of the event tree show different information most 
clearly, we propose to use them together: the BN view is used to ensure that 
conditional probabilities are handled correctly and the tree view is used for mapping 
event sequences to consequences.  The BN can be shown without the consequence 
node and arcs, so this part of the BN can be chosen to optimise propagation. 

4.3   Generalised Event Trees 

As described above, the event tree was originally prepared from a network-wide event 
tree for derailment accidents.  To be applied to an analysis in a specific location, the 
network-wide model has to be tailored.  In this section, we show how a more general 
model can be represented as a BN, which can be tailored automatically. 

The author of the event tree was asked to identify the conditions of the 
infrastructure and the operation of the railway that influence a derailment accident.  
Table 2 shows the conditions identified.  The causal relationships between these 
conditions were then elicited together with the probability tables.  Fig. 9 shows the 
resulting BN, with the consequence node and arcs omitted for clarity. 

Table 2. Derailment Operating and Infrastructure Conditions 

Conditions Description 
Fitted Whether the derailment containment is fitted: Yes, No 

Curvature The curvature of the track: Severe, Mild, None 

Number of tracks  The number of adjacent tracks: 2, 4 

Track Speed The running speed of the track (mph): 0-10, 10-30, 30-60, 60> 

Derailment Speed The speed of the derailment (mph): >15, <15 

Lineside Density The density of objects beside the line: High, Low 

Lineside Type The type of equipment beside the line: Fixed, Anchored 

Density of Traffic The traffic density: High, Low 

Peak The time of day when the incident occurs: Peak, Off peak 

Passenger Loading How full the coaches are: >50%, <50% 

Crashworthiness The crashworthiness of the train: High, Low 

Rolling Stock The type of rolling stock: High Speed Train, EMU 

The relationships in the model are causal.  For example, a train derailing on a tight 
curve will be more likely to exceed its clearances while one travelling in a straight 
line is more likely to maintain its clearances, as its momentum will tend to carry it 
forward in the direction of travel.  The probability table for the event ‘clear’ (whether 
the train maintains clearance in a derailment) is: 

Derailment Speed > 15 mph <15mph 
Curvature None Mild Severe None Mild Severe 
Yes 0.75 0.6 0.29 0.9 0.7 0.4 
No 0.25 0.4 0.71 0.1 0.3 0.6 
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The values 0.29 and 0.71 are taken from the original event tree (Fig. 6), since the 
circumstance of the original study were ‘Derailment Speed’ > 15 mph and severe 
track ‘Curvature’.  The author of the original event trees judged the other 
probabilities: although the generalised model requires more such judgements they are 
similar to those needed to construct an event tree.  

 

Fig. 9. Derailment BN generalised with the factors that determine the event probabilities.  
Event nodes are shaded; the consequence node and arcs are not shown. 

The generalised model can be used to calculate the accident probabilities in 
different scenarios.  We can compare the scenario in the original study (a dense urban 
line) with a scenario more typical of an inter-city line: 

 Urban Scenario Inter-city Scenario 
Fitted  ‘No’ ‘No’ 
Curvature ‘Severe’ ‘None’ 
Number of Tracks 4 2 
Derailment Speed ‘> 15’ mph ‘> 15’ mph 
Lineside Density  ‘High’ ‘Low’ 
Lineside Type ‘Anchored Equipment’ ‘Fixed Equipment’ 
Rolling Stock ‘EMU’ ‘High Speed Train’ 
Density of Traffic ‘High’ ‘Low’ 

These data can be entered into the BN and new event probabilities calculated.  The 
probabilities (relative to the probability of the initial derailment event) of the 
derailment accidents for the two scenarios are shown in Fig. 10.  In the new scenario 
the less severe accidents are more likely: this results mainly from the absence of 
curvature.  However, following the original study, we have considered only two 
possible derailment speed ranges and this should be re-examined before drawing any 
real conclusions.  We also note that speed is a factor in the severities (equivalent 
fatalities) of the accidents, which are estimated using another method. 
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Fig. 10. Accident probabilities for two scenarios calculated using the BN. The ‘urban’ scenario 
is identical to the original derailment study giving the same probabilities as the event tree; the 
hypothetical scenario shows an example of the use of the generalised BN to adapt the accident 
analysis to different circumstances. 

5   Discussion 

5.1   Summary 

We have shown how a BN can represent an event tree.  The translation from BN to 
event tree is automatic (though we have not yet automated it) and reversible.  We 
argue that the two notations are complementary and should be used together.  The 
event tree shows the logical relationship of events, which is not shown clearly on the 
BN diagram where it is encoded in a probability table.  On the other hand, the BN 
diagram shows clearly where event probabilities are conditioned on earlier events. 

A greater advantage of using a BN is that the accident model can be generalised by 
including the conditions that influence the evolution of the events in the accident.  
This generalisation reverses the process used originally to analyse derailments in our 
case study, where an event tree for a specific location was developed from a network-
wide model.  The original author of the event tree remarked on the value of analysing 
causal influences on the events and was lead to re-examine some of the allocated 
probabilities.   

It is advantageous to retain the familiar event tree notation when building the more 
general accident model.  In the case study we were easily able to explain our approach 
to the author of the derailment event tree: only a short explanation of BNs was needed 
for this analyst to identify influencing factors and the causal relationships between 
them.  Of course, generalising the accident model in the way we have shown is not 
automatic.  A rigorous elicitation process is needed to understand the influences: 
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some remained unresolved in our case study, for example the influence of the train 
weight on the probability of the train falling over in a derailment.  The process of 
judging probabilities for the BN, though time consuming, is similar to that required 
for building an event tree though potentially many more probabilities are needed.   

The validity of the network-wide SRM rests on its use of historic accident data and 
it is desirable that an accident model for a specific location should have the same 
basis.  At present, the SRM does not include influencing factors although the potential 
advantages of generalising it have been noted [7].  Clearly, further investigation of the 
cost-benefit of building such a model is needed. 

5.2   Related Work 

Others have used BNs to analyse risk.  The SCORE project [8] has applied a BN to 
model accidents in an air-traffic control case study, based on a barrier model of 
accidents.  In [9], an influence diagram is used to model the occurrence of rail 
breakage, also starting from a barrier model.  In both cases the BN replaces the 
accident model used as a starting point – a barrier model rather than an event tree – 
rather than providing an alternative view as we have described. 

Organisational and management causes of accidents are modelled using BNs in 
[10] and [8].  Organisational and management causes are examples of ‘influencing 
factors’ that could be included in our generalised event trees, so both are generalised 
representations of accidents, but without the connection to an underlying accident 
model such as an event tree, in the way we have proposed. 

The SABINE emergency planning system [11] for accidents in nuclear power 
plants uses BNs.  Part of this system is an accident diagnosis BN, derived from event 
trees constructed for level 2 PSA.  Accident diagnosis requires back propagation from 
effects to causes and this is prevented by our simple and automatic treatment of don’t 
care conditions (section 3.5) which may hide further causal relationships between 
event outcomes; rather than minimising the number of causal arcs in the BN, we 
could maximise it, including a causal arc wherever this is possible.  We have not 
followed this approach because diagnosis is not required in our case study. 

5.3   Further Work 

The derailment study included six separate event trees for different areas of the 
infrastructure: we are examining how to merge these models.  Existing software tools 
do not allow the event tree and BN views of the accident to be combined 
conveniently: we would like to investigate how to automate this in practice. 

More fundamentally, some of the operating and infrastructure conditions also 
influence the causes of the initiating event: this is important because such factors 
introduce correlations between the probability of the initial event and the probabilities 
of different accident sequences.  The present analysis does not capture such 
correlation and this could lead to an incorrect estimate of the risk.  We plan to 
examine this in future. 
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