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1 Abstract

In a network of wireless base stations, there are a certain number of frequency channels on

which each base station can run. There needs to be a mechanism in place to decide which of

these channels each base station will run on. One way of achieving this is for each base station

to have an algorithm which allows it to choose its channel itself. Ideally base stations which

are close enough together for there to be interference between them should choose di�erent

channels in order to reduce this interference. In this project we represent this situation as

a graph coloring problem, and we consider several di�erent algorithms for choosing channels,

assessing the optimality of each one.

2 Introduction

The problem of reducing interference in a wireless network is crucial to ensure the best possible

user experience. Since there are only a limited number of channels available, it may not be

possible to avoid all interference, but we wish to �nd the best way of assigning channels so that

the interference is minimal. One method of channel assignment is the so-called self-organizing

network, where each base station chooses its channel itself. This has the advantage that the

network will run itself without needing someone watching the whole network and choosing the

channels manually. These sorts of networks use distributed algorithms, a topic discussed further

in Barbosa (1996) and Tel (2000).

In this report we will present four di�erent algorithms for channel assignment along with

an analysis of each one, assessing their suitability for use in wireless networks. We will also

outline the graph coloring model and the methods used to generate these results.
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3 The graph coloring model

Consider a network of wireless base stations. We will represent this network as a graph G=

(V,E), a set of nodes V where certain pairs of nodes are connected by edges e∈E. The

nodes represent the base stations, and if two base stations are close enough together to cause

interference, then their nodes are connected by an edge. Each node has a color which represents

the frequency channel on which it is currently running. If two nodes connected by an edge have

the same color, then there will be interference between them.

We have considered two di�erent types of coloring model in this project, the �rst of which

is the tight coloring model. In this model, for each node v∈V , the set of colors available to that
node is {1, . . . , deg(v)+1}. In the second type of model, the non-tight coloring model, a global

maximum color k is speci�ed for the whole network, so that each node has the colors {1, . . . , k}
available to choose from. This type of model is more akin to real-world wireless networks where

there are a speci�c number of frequency channels from which all base stations can choose.

Furthermore, we have also considered adding a 0 color in some cases, which represents a base

station being turned o�.

In this project we have imposed certain constraints on the model. Firstly, the network must

be self-organizing, so that each node chooses its own color. When choosing its color, the only

knowledge that a node has is the colors of its neighbours; none of the nodes have any global

knowledge about the rest of the network. Moreover, nodes do not share any information about

their neighbours' colors with each other. The system is updated as follows: at each step, a

node is chosen uniformly at random. This node then looks at its neighbours' current colors

and updates its color according to the speci�ed algorithm, whilst the other nodes retain their

current colors. This updating process continues inde�nitely; the process does not stop once a

certain coloring has been reached.

4 Methodology

We represented the model as a Markov chain, in which the set of states of the chain is the

set of possible colorings of the graphs. A coloring c of the graph is an n-tuple where n is the

number of nodes in the graph, in which the ith element of c is the color of node i. To generate

our results, we used the stationary distribution of the chain. This had the advantage of giving

us exact solutions, but it limited us to looking at smaller problems since it required greater

computing power than if we had looked at simulations of the chain instead. Hence the networks

that we considered would most likely represent a tight cluster inside a larger network, such as

a group of terraced houses within a larger settlement.

In order to compute the stationary distribution, we �rst needed to generate all of the states

of the Markov chain, for which we had two methods. In the �rst method, we started with an

empty coloring and built up the coloring node-by-node. As soon as a partial coloring became
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invalid, we discarded all colorings beginning with those values. This method always generates

all valid colorings and is e�cient since it avoids having to generate every possible coloring and

then check their validity. In the second method, an initial state was chosen and we recursively

followed the transition rules of the Markov chain to �nd every coloring that one can move to.

This method however only generates all valid colorings if the Markov chain is connected, which

is not always the case in our situation.

After generating all the states, the stationary distribution was computed as follows. Let

Pi,j=P(move from state i to state j). We want to solve:

zTP=zT

⇔ zT (P−I)=0T

⇔ (P T−I)z=0

To make the solution unique and normalized, we replaced the �rst row of the matrix P T−I
by a row of 1's and the �rst element of the zero vector by a 1. We then passed it to a sparse

matrix solver which outputted the stationary distribution z.

We used two types of random graph to generate our results. The simplest type is the Erd®s-

Rényi random graph, in which n nodes are created and each pair of nodes is connected by an

edge with some speci�ed probability p. The second type that we used are geometric random

graphs. Here n nodes are placed at random inside a unit square, and circles of some speci�ed

radius r are created centred on each node. If two nodes' circles overlap, then they are connected

by an edge. These graphs are most like the real-world networks we are considering since the

nodes have a physical location and are connected if they are close enough to each other.

Our aim in this work was to try to �nd the optimal algorithm for the nodes to use to

update their color. In order for an algorithm to be considered optimal, the Markov chain needs

to spend as much time as possible in proper colorings, i.e., colorings in which each node is

colored di�erently to all of its neighbours. Proper colorings represent the system being in a

state with no interference, which is desirable. However we also wish to use as few colors as

possible. This is because in a real-world network there will be a limit on the number of channels

available. To assess this, we compared the average number of colors used with the chromatic

number χ of the graph, which is the smallest number of colors that can be used to obtain a

proper coloring.

5 Results

We now present four di�erent algorithms for coloring the nodes, analyzing each of them in turn.
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5.1 Variant (a)

At each time step:

• Choose a node v uniformly at random to update

• Create a set {1, . . . , deg(v)+1} and remove any colors that a neighbour of v is using

• With probability α, choose the smallest color from the above set of valid colors

• Otherwise, choose a color uniformly from the set of valid colors

This variant is a tight coloring variant. Bullimore and Briggs (2011) make use of the

tight coloring theorem, conjectured by Keith Briggs and proven by Colin McDiarmid, which is

repeated below for reference:

Theorem: Call a proper graph coloring tight if each node i is colored from the set {0, 1, . . . , δ(i)},
where δ(i) is its degree. Every graph has at least one tight χ-coloring, where χ is the chromatic

number.

This theorem tells us that the Markov chain will always be in a proper coloring under

this variant. Thus we analyze this variant by looking at the number of colors used. Figure 1

shows this for 250 realizations of a 10-node Erd®s-Rényi graph, whilst Figure 2 instead uses

100 realizations of a 10-node geometric random graph.

In both cases the number of colors used gets closer to the chromatic number as the parameter

α increases, suggesting that going directly to the smallest valid color is bene�cial. Since there

are never any color clashes in the network, we can conclude that this variant with a large value

of α could potentially be a good algorithm to use.

5.2 Variant (b)

At each time step:

• Choose a node v uniformly at random to update

• Create a set {1, . . . , deg(v)+1} and remove any colors that a neighbour of v is using

• With probability α, choose the largest color from the above set of valid colors

• Otherwise, choose a color uniformly from the set of valid colors

This is the same algorithm as in Variant (a), except that the largest color is chosen with

probability α instead of the smallest. Again this is a tight coloring variant so we only need

to consider the number of colors used. Figure 3 shows this for 250 realizations of a 10-node

Erd®s-Rényi graph, and Figure 4 uses 100 realizations of a 10-node geometric random graph.
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Figure 1: Mean and standard error for 250 Erd®s-Rényi(10,0.25) graphs under Variant (a)
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Figure 2: Mean and standard error for 100 GRG(10,0.33) graphs under Variant (a)
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Figure 3: Mean and standard error for 250 Erd®s-Rényi(10,0.25) graphs under Variant (b)
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Figure 5: Mean number of clashes per edge under Variant (c) with maximum color 3

It is apparent that the results get worse as α increases, since the mean number of colors

moves further away from the chromatic number and the chain spends less time with χ colors.

Thus directly choosing the largest valid color with any probability does not do any better than

simply choosing a valid color uniformly at random, and so this variant would not be the best

one to use regardless of the value of α chosen.

5.3 Variant (c)

We now �x a maximum color k for the whole graph. At each time step:

• Choose a node v uniformly at random to update

• Look at the colors one higher and one lower than its current color

• Choose whichever of the two is least used by its neighbours (or choose uniformly from

the two if they are equally used)

• If already at the maximum color, then instead of considering one higher it considers its

current color. Similarly if at the minimum color, it considers its current color instead of

one lower

This is not a tight coloring variant, so there is the possibility of clashes occurring. The

maximum color k can be �xed to represent the number of frequency channels available. Hence

we analyze this variant by considering the number of clashes in the network, as shown in Figure

5 for 1000 8-node Erd®s-Rényi graphs and 1000 8-node geometric random graphs.

As is to be expected, in graphs with a higher chromatic number, each edge causes a clash

more often. However even when the chromatic number is equal to the maximum color, each
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Figure 6: Mean number of clashes per edge under Variant (d) with maximum color 3

edge still causes a clash roughly one tenth of the time. Hence it may be possible to �nd a

better variant than this, since when χ=3 there are proper colorings available but the chain is

spending some time away from them, meaning there is interference in the network.

5.4 Variant (d)

Again a maximum color k is �xed for the whole graph. At each time step:

• Choose a node v uniformly at random to update

• With probability α, choose color 0

• Otherwise, choose the color least used by its neighbours from the range {1, . . . , k} (if

there is more than one such color, then choose uniformly from them)

This variant has the possibility of clashes, but it also introduces the color 0 which represents

the base station being turned o�. We looked at how the number of clashes in the network is

a�ected by the parameter α, and this is shown for 10 6-node Erd®s-Renyi graphs and 10 6-node

geometric random graphs in Figure 6.

The plots show that by increasing the probability of choosing color 0, the number of clashes

in the network is reduced (except when χ=3 and α is small). However, in practice it would not

be feasible to require the base stations to have a large probability of switching o�. Hence there

is a playo� between reducing interference and allowing a large proportion of the base stations

to be turned on.
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6 Future ideas

In this project we have considered many di�erent algorithms for channel assignment in a wireless

network. Although some of these algorithms show promising results, it is not clear whether

they can be improved on or not. We wish to �nd an algorithm which reduces the amount of

interference and at the same time uses as few colors as possible, and based on our results it

does not appear that we have found the optimal algorithm yet.

There are a large number of di�erent ways that colors can be assigned to the nodes of

a graph under our constraints, and we have only really scratched the surface here with the

algorithms we have considered. Future work in this area could look at a much wider range of

algorithms in order to �nd the optimal one to use. One particular algorithm we would like to

look into further is given in Section 7 below.

Another factor which could be investigated is the mixing time of the Markov chains used

(Levin, Peres, and Wilmer 2009). Although we have generated our results using the stationary

distribution in each case, we have not taken into account how long it takes for each chain to

reach this distribution. It would be useful to consider this when analyzing each variant, and to

be able to optimize both the quality of the stationary distribution and the time taken to reach

it.

7 A proposed new variant

1. First run the Markov chain with transition probabilities proportional to

exp[−β
∑

v,w:v∼w b(η(v)−η(w))], where b(0)>b(1)>· · ·>b(15) are constants calibrated to

account for how much we care about the frequency overlap between η(v) and η(w), the

colors of v and w.

Run this for a �xed time, e.g., 10 times the mixing time, then stop.

2. Select a node v at random, and check if η(v) can be changed so that
∑

w:w∼v b(η(w)−η(v))

is reduced. If so, change η(v) to that value, otherwise leave it unchanged.

Run this for a su�cient time so that a local minimum has been found, or has been found

with high probability.

3. Keep that coloring for some speci�ed time, e.g., until the graph changes, when we might

repeat it, perhaps on a local neighbourhood of where the change has occurred.

This two-step strategy appears to have certain desirable properties. It can be considered

`fair' in the sense that no user is favoured. The quality of the coloring only improves in step 2,

so the result from step 1 can be used as a rigorous upper bound on performance even if step 2 is

di�cult to analyze. Moreover, if a local minimum is found in step 2, then no user can improve
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their connection by switching channel. In the future we would like to analyze how this model

performs to assess if it is indeed a good algorithm to use.

8 Mixing time proofs

In addition to the work presented above, we also looked at the mixing time of a di�erent

proposed coloring algorithm. In this section we present proofs of a lower bound and an upper

bound on the mixing time of this variant. The dynamics of the variant are as follows:

• Choose a node v uniformly at random to update

• Set v to be white with probability p, and non-white with probability 1−p

• If v is set to be non-white, select its color c with probability proportional to the weight

exp(−βN(v, c)), where N(v, c) is the number of neighbours of v with color c

8.1 Lower bound on the mixing time

Levin, Peres, andWilmer (2009) proved that for Glauber dynamics on the set of proper colorings

of the empty graph, a lower bound for the mixing time is 1
2
n log n−c(q)n for a constant c(q)

(solution to Exercise 7.3, pp. 335-336). I will adapt this proof to show that for the above

variant, a lower bound for the mixing time is c(p)n log n for a constant c(p).

Let {v1, . . . , vn} be the node set of the graph, and let(Xt) be the Markov chain started at initial

coloring 0, where every node is colored white.

Let

N=
n∑
i=1

I{x(vi)=0}=number of white nodes in coloring x

First consider N under the measure P t(0, ·):

Let Xi(t)=I{xt(vi)=0}. Then Xi(t)=0 if and only if vi has been updated at least once in the �rst

t time steps and at the latest update it is colored non-white.

This occurs with probability
[
1−
(
1− 1

n

)t]
(1−p).

So

E0(Xi(t))=1−

[
1−
(

1− 1

n

)t]
(1−p)

=1−(1−p)+(1−p)
(

1− 1

n

)t
=p+(1−p)

(
1− 1

n

)t
10



Hence E0(N(t))=np+n(1−p)
(
1− 1

n

)t
.

We next prove that Var0(Nt)6 n
4
by adapting the solution to Exercise 7.1 (p. 334).

Let Yi=p−Xi, so that Xi=1⇔Yi=p−1 and Xi=0⇔Yi=p.

Then the conditional expectation of Yi given that vi has been chosen in the �rst t steps is

(p−1)p+p(1−p)=0.

So

E(Yi)=P(vi not chosen in �rst t steps)E(Yi|vi not chosen in �rst t steps)

=

(
1− 1

n

)t
(p−1)

Similarly

E(YiYj)=

(
1− 2

n

)t
(p−1)2

So

Cov(Yi, Yj)=E(YiYj)−E(Yi)E(Yi)

=

(
1− 2

n

)t
(p−1)2−

(
1− 1

n

)2t

(p−1)2

=(p−1)2

((
1− 2

n

)t
−
(

1− 1

n

)2t
)

60

Hence Cov(Xi, Xj)60 since Cov(Xi, Xj)=Cov(Yi, Yj), as Yi=p−Xi.

Since Xi(t) are indicators, Var(Xi(t))6 1
2
∗ 1

2
= 1

4
.

So

Var0(Nt)=
n∑
i=1

Var(Xi(t))+
∑
i 6=j

Cov(Xi(t), Xj(t))

6
n∑
i=1

1

4

=
n

4

Now consider N under the measure π:
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Since the 0 colors are independent percolation on V , each node is colored white with probability

p independently of all the other nodes.

So under π, N∼Bin(n, p).

Hence Eπ(N)=np and V arπ(N)=np(1−p)6 1
2
∗ 1

2
= 1

4
.

So E0(N(t))−Eπ(N)=n(1−p)
(
1− 1

n

)t
.

Let σ2 :=max{Var0(Nt),Varπ(N)}6 n
4
.

Then

|E0(N(t))−Eπ(N)|>σ2
√
n(1−p)

(
1− 1

n

)t
>σ2(1−p) exp

{
− t
n

(
1+

1

n

)
+

log n

2

}
Let r(t)=2(1−p) exp

{
− t
n

(
1+ 1

n

)
+ logn

2

}
.

Evaluating at tn :=
[

1
2
n log n−

(
c(p)− 1

2

)
n
] [

1− 1
n+1

]
gives r(tn)=2(1−p)ec(p)− 1

2 .

So r2(tn)=4(1−p)2e2c(p)−1.

Choosing c(p)= 1
2

[
1+log

(
32

12(1−p)2

)]
gives r2(tn)= 32

3
.

Thus for t6tn, r2(t)> 32
3
.

Hence by Remark 7.11, tmix>tn> 1
2
n log n−c(p)n. �

8.2 Upper bound on the mixing time

Levin, Peres, and Wilmer (2009) proved an upper bound for the mixing time of the Metropolis

chain on proper colorings (Theorem 5.7, pp. 70-73). I will adapt this proof to �nd an upper

bound for the mixing time of the variant outlined at the beginning of this section.

We create a grand coupling by doing the following at each step:

• Pick a node v at random.

• Flip a coin with probability p of heads.

• If heads, color the node white in each chain

• If tails, then for each chain split the interval [0, 1] up as follows:

� Starting at 0, create segments of length minx∈Ω{P(Xx
1 (v)=i)} for i∈{1, . . . , k},

where P(Xx
1 (v)=i) is the probability of coloring node v with color i (proportional to

e−βN(v,i))
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� Then �ll in the rest of the interval so that for each i the proportion of the interval

designated to color i is equal to P(Xx
1 (v)=i)

Then generate a random number in [0, 1] and color the node with the color whose part of

the interval the random number lies in

Note: This gives us a common source of randomness for all of the chains as required for a

grand coupling, namely the node chosen, the result of the coin toss and the random number

generated.

By splitting up the intervals in this way, at least the �rst k segments will be the same length

in every chain. For example, suppose Xx
1 (v) has probabilities (0.2, 0.2, 0.2, 0.2, 0.2) and Xy

1 (v)

has probabilities (0.1, 0.1, 0.4, 0.2, 0.2). Then the intervals would be split like this:

Let

ρ(x, y)=
∑
v∈V

I{x(v)6=y(v)}=number of nodes where x and y disagree

Suppose ρ(x, y)=1, so that x and y only disagree at some node v0.

Let ρ(Xx
1 , X

y
1 ) be the distance after updating x and y in one step of the grand coupling.

The distance goes to zero if and only if v0 is chosen (if the coin is heads then v0 will be white

in both cases; if it is tails then the split intervals for x and y are the same so v0 will go to the

same non-white color in both cases).

So P(ρ(Xx
1 , X

y
1 )=0)= 1

n
.

Let w be a neighbour of v0. Suppose w is chosen.

If the coin is heads, then w will be colored white in both x and y, so ρ(Xx
1 , X

y
1 )=1.

If the coin is tails, then w may not be the same in x and y since x(v0) 6=y(v0).

So

P(ρ(Xx
1 , X

y
1 )=2)=P(a neighbour of v0 is chosen, coin toss is tails

and colors picked disagree)

6
∆

n
(1−p)P(colors picked disagree)
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Suppose the coin toss is tails. Then

P(colors picked agree)=proportion of [0, 1] where split intervals agree

>
k∑
i=1

min
x∈Ω
{P(Xx

1 (w)=i)}

since at least the �rst k segments of the split intervals agree.

Now

P(X1(w)=i)=
e−βN(w,i)∑k
j=1 e

−βN(w,j)

=
1∑k

j=1 e
−β(N(w,j)−N(w,i))

>
1

keβ∆
since N(w, j)−N(w, i)>−∆

So

P(colors picked agree)>
k∑
i=1

1

keβ∆
=

1

eβ∆

and so

P(colors picked disagree)61− 1

eβ∆

Hence

P(ρ(Xx
1 , X

y
1 )=2)6

∆

n
(1−p)

(
1− 1

eβ∆

)
So

E(ρ(Xx
1 , X

y
1 )−1)6

∆

n
(1−p)

(
1− 1

eβ∆

)
− 1

n

Thus

E(ρ(Xx
1 , X

y
1 ))61+

∆

n
(1−p)

(
1− 1

eβ∆

)
− 1

n

=1− 1

n

[
1−∆(1−p)

(
1− 1

eβ∆

)]
<1 for β su�ciently small(

speci�cally, for β<− 1
∆

log
(

1− 1
∆(1−p)

))
De�ne c(∆, p, β):=1−∆(1−p)

(
1− 1

eβ∆

)
Then

E(ρ(Xx
1 , X

y
1 ))61− c(∆, p, β)

n
<1 for β su�ciently small (1)

14



The rest of the proof is identical to the proof of Theorem 5.7, since the form of the inequality

(1) matches exactly the form of the inequality (5.17) from the proof of Theorem 5.7.

Therefore it follows that tmix(ε)6c(∆, p, β)−1n
[
log n+log 1

ε

]
, giving us an upper bound for the

mixing time when β is su�ciently small. �
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