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Abstract

This thesis presents some new results and novel techniques in the study of the spectral

density of random matrices.

Spectral density is a central object of interest in random matrix theory, capturing the
large-scale statistical behaviour of eigenvalues of random matrices. For certain ran-
dom matrix ensembles the spectral density will converge, as the matrix dimension
grows, to a well-known limit. Examples of this include Wigner’s famous semi-circle
law and Girko’s elliptic law. Apart from these, and a few other cases, little else is
known. Two factors in particular can complicate the analysis enormously - the intro-
duction of sparsity (that is, many entries being zero) and the breaking of Hermitian
symmetry. The results presented in this thesis extend the class of random matrix en-
sembles for which the limiting spectral density can be computed to include various

sparse and non-Hermitian ensembles.

Sparse random matrices are studied through a mathematical analogy with statistical
mechanics. Employing the cavity method, a technique from the field of disordered
systems, a system of equations is derived which characterises the spectral density of
a given sparse matrix. Analytical and numerical solutions to these equations are ex-

plored, as well as the ensemble average for various sparse random matrix ensembles.

For the case of non-Hermitian random matrices, a result is presented giving a method



for exactly calculating the spectral density of matrices under a particular type of per-
turbation. The techniques of the so-called simple approach to Hermitian random
matrix theory are then adapted for the non-Hermitian case, yielding novel results for

the spectral density of sums and products of deterministic and random matrices.
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Introduction

1.1 Random matrix theory

Although random matrices had been considered earlier by Wishart and contempo-
raries in the context of multivariate statistics [Wis28], it was the work of the Hun-
garian physicist Eugene Wigner in the 1950’s that lay the foundations for the vast
field of study now known as Random Matrix Theory (RMT). Seeking to understand
the excitation spectra of heavy nuclei, whose interactions are sufficiently complicated
cause an analytical impasse, Wigner proposed to instead study a model in which the
Hamiltonian is drawn at random (whilst maintaining the appropriate symmetries).
This paradigm shift was described by Dyson, a great early proponent of RMT, as “a
new kind of statistical mechanics in which we renounce the exact knowledge not of

the state of the system but of the nature of the system itself” [Dys62a].

Over the last half century, RMT has established itself as a cornerstone of modern the-
oretical physics, with problems in quantum physics [GMGW98], finance [PBL05] and
number theory [KS03] amongst its innumerable applications. Thorough treatments of
the fundamentals and history of the subject are given in the book of Mehta [Meh91]
and reviews of Forrester et al [FSV03] and Edelman and Rao [ENO05].



1.1.1 Random matrix ensembles and eigenvalue distributions

A random matrix ensemble is defined by the joint probability density function (JPDF)
P of the matrix entries, usually given for square matrices of arbitrary size N. Our
main interest will be in behaviour in the limit N — oo, and we assume the depen-

dence of P upon N to be understood.

Very often, research in RMT is concerned with ensembles of matrices endowed with
certain symmetry properties, in particular the body of work on Hermitian matrices
vastly outweighs that on the more general non-Hermitian case. The initial focus of
this section will be on Hermitian RMT, with discussion of the non-Hermitian case

saved for the end of the section.

The most famous and well-studied Hermitian random matrix ensembles are the Gaus-
sian orthogonal (GOE), unitary (GUE) and symplectic (GSE) ensembles. Their names
are derived from Dyson’s categorisation of random matrix ensembles by symmetry

class [Dys62b], corresponding to the possible symmetries of a random Hamiltonian®.

As an example, let us consider the orthogonal case. GOE matrices are real and sym-

metric, with JPDF of entries
P(A) = (m) " NWN=D/4(97)=N/2 exp <—iTr AAT> : (1.1)

Since, for real and symmetric matrices, Tr AAT = Z;Njﬂ A?j,

we see that the prob-
ability density function factorises, and entries of A are independent Gaussian ran-
dom variables. It is also clear to see that this density is invariant under orthogonal
transformations A — OAO7, from which the name GOE is derived. Similarly, the
GUE/GSE ensembles have complex/quaternionic entries, with JPDFs invariant un-

der unitary/symplectic transformations.

Beyond these three ensembles, many other random matrix models have been well

1See [Zir10] for a modern review of Dyson’s ‘threefold way’.
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studied over the years, with notable examples including Dyson’s (non-Hermitian)
circular ensembles, the chiral ensembles of quantum chromodynamics (QCD) and the
Wishart-type ensembles of multivariate statistics. Other types of ensemble appear on
an ad-hoc, model specific basis, such as those involved in studying phenomena in
sparsely interacting systems. A large part of this thesis will be concerned with these

sparse ensembles.

From its origins in the study of the energy levels of heavy nuclei, a primary concern
of RMT is to understand the behaviour of the eigenvalues of a given random matrix
ensemble. For the Gaussian ensembles, one can in fact compute the JPDF of eigen-
values for arbitrary matrix size. Continuing with the GOE as an example, changing
variables in (1.1) and integrating over unused degrees of freedom (see [Meh91] for

details) leads to the JPDF for the eigenvalues of a GOE matrix 4,

N
1 1
P()‘17"'7)\N) = Z_Nexp <_§Z)\?> H’)\z_)\j‘ )
i=1

i<j
where Zy is a normalising constant. Similar expressions hold for the GUE and GSE,
and all the information about the statistical behaviour of the eigenvalues of these

ensembles is contained within their JPDF.

Apart from the Gaussian ensembles and some other simple cases however, the full
JPDF of eigenvalues of a general random matrix ensemble is likely to be extremely
difficult to compute. All is not lost though if one is interested (as we very often are) in
behaviour as N — oco. In this limit, the JPDF of eigenvalues is disregarded in favour of

quantities such as the overall density of eigenvalues and correlations between them.

Eigenvalue correlations are often regarded as particularly important, both to the-
ory and application, and have been studied in depth over the years. The main de-
velopments in this area are covered in [Meh91], though it is worth making special
mention of the curious fact that the form of the eigenvalue correlations is universal

across many different random matrix ensembles, often depending only upon symme-
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try class, see for example [KHKZ95, BHZ95, DZ96]. Interestingly, the same correla-
tions have also been observed in areas seemingly unrelated to RMT, for example in

the distribution of zeros of the Riemann zeta function [Mon73].

Important as eigenvalue correlations are, there is still much to be said about the

broader features of the distribution eigenvalues.

1.1.2 Spectral density

The focus of this thesis will be the macroscopic distribution of eigenvalues, captured
in the spectral density. For an N x N matrix X, we label the eigenvalues of the X as
{)\Z(X) N |, and define the following discrete measure known as the empirical spectral

density of X:
1 N X)
o X)==S"5(x=a%),
L3 ()

where ¢ here is a Dirac delta. Generally, the empirical spectral density is a probability
measure over the complex plane, however, if the eigenvalues of X are known to be
confined to a certain subset of the complex plane then it is convenient to treat the
empirical spectral density as a measure on that subset. In particular, all eigenvalues
of Hermitian matrices are real, and the spectral density thus defines a real probability

measure.

If the matrix X is drawn from some random matrix ensemble, then the empirical
spectral density is a random probability measure. For a specified random matrix
ensemble it becomes pertinent to ask if we can deduce anything about the empirical
spectral densities of random matrices from this ensemble, particularly in the limit

N — 0.

For certain ensembles, the answer is well known. The average empirical spectral

12



density can be expressed in terms of the JPDF of (unordered) eigenvalues by

1 N

EQ()‘EAN):/P(Ala---,)\N)NZ(;()‘—)\i) dAi -+ dAn

i=1

:/P()\,)\g...,)\N) Ao Ay,

where here and hereafter we use E to denote the ensemble average, that is, the av-
erage over the JPDF of entries. For the Gaussian ensembles, this integral can in fact
be computed exactly for any N [Meh91], though the calculation is rather involved.
A simpler analysis is possible in the large N limit, for instance by analogy with a
Coulomb gas as also given in [Meh91]. Again taking the GOE as an example, one

obtains the expression

1

EQ()\; AN) ~ m\/ AN — )2 H[f2\/ﬁ,2\/ﬁ}()\)’ (12)

where here and hereafter, I, denotes the indicator function for the set €2 and we use
the symbol ~ to denote the dominant term in the limit N — oco. This semi-circular
density was observed by Wigner, who in fact demonstrated it to hold not just for the
GOE but also for many other random matrix ensembles. Specifically, Wigner showed

the following [Wig58]:

Theorem (Wigner’s Law). Let {An} be a sequence of N x N random matrices such that
for each N the entries of An are independent random variables of unit variance, drawn from

symmetric distributions with bounded moments. Then for fixed A,

1
Jim Eg ()\; Ay NN) = VA= XI5 (1.3)

This result can be thought of as an analogue of the central limit theorem, in that an
ever increasing number of random variables of an unknown type combine to produce
a known deterministic limit. Matrices satisfying the conditions of Wigner’s law are
known as Wigner-class. In fact, the conditions given above can be considerably re-

laxed, with the most general form given by a specification similar to the Lindeberg
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condition for the central limit theorem [Pas72]. Moreover, the pointwise in A conver-
gence of the average of the spectral density stated above may be upgraded to strong

convergence in the sense of probability measures.

Winger’s original proof proceeded via an analysis of the moments of the spectral den-
sity, though other approaches are possible. For a review of the techniques applied to

this and related problems, see [Bai99].

1.1.3 The ‘simple approach’

One method for computing the spectral density of certain random matrices (including
Wigner-class matrices and various functions thereof) will turn out to be particularly
relevant to the work contained in this thesis. Techniques introduced by Marc¢enko
and Pastur [MP67] to compute the spectral density of Wishart-type matrices were
developed by Pastur and collaborators over many years to form what became known

as the simple approach [Pas72, KP93, KKP96, Pas98].

To introduce the method, we first require a few definitions. For a fixed N x N matrix

X, the resolvent R is given by
R(zX)=(X -2 . (1.4)

This matrix-valued function is defined for all complex numbers z outside of the spec-
trum of X (known as the resolvent set). We will refer to the normalised trace of the

resolvent as the Green’s function,
G2 X) = —~Tr R(=: X
2, X) = ~ I Bz ).
The Green’s function is related to the spectral density of X by the formula

G(zX) Z/ﬁQ(M;X) dp (1.5)
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where the integral runs over the domain of the spectral density (for example R in the
case of Hermitian matrices), proof of this fact is given in Appendix B. In probability
theory, the RHS of the above expression is known as the Stieltjes (or Cauchy-Stieltjes)

transform of the density p. For Hermitian X, several useful properties are known:

1. The Green’s function is a closed analytic map on C* = {z : Imz > 0}

2. The empirical spectral density can be recovered from the Green’s function by
the inverse Stieltjes transform

1
A X) = lim = ImG(\ + ie: X 1.6
o(X; X) 8{%ﬂfﬂ(+%& ) (1.6)

3. Neglecting the limit ¢ — 0 in the above, one obtains a regularised form of the
empirical spectral density, in which each delta peak is replaced by a Lorentzian

(i.e. a Cauchy probability density) with width parameter ¢:

1
0:(N\ X) = ;ImG()\—i—ie;X)
1 €
= — _—_— ’A
-] Fro oA (1.7)
N

1 €

TN i—1 52 + ’)\EX) — )\‘2

1=

4. Suppose random matrices { Xy } have Green’s functions which converge in prob-
ability (resp. almost surely) to a function G(z) which is the Stieltjes transform
of a probability measure p(\). Then the spectral densities o(\; X) converge
weakly (resp. strongly) to p(\)

In the work of Pastur and collaborators, straightforward and robust techniques were
developed for studying the Green’s functions of random matrices in the large N
limit, from which the limiting spectral densities can be deduced. Though this method
was first applied to Wishart-type matrices in the derivation of the famous Marcenko-

Pastur law [MP67], for our purposes it will be instructive to present a brief sketch of
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the proof of Wigner’s semicircle law using the simple approach, following the notes

[BAMKO1].

Let {An} be a sequence of N x N random matrices such that for each V the entries of
Ay are independent random variables of unit variance, drawn from symmetric dis-
tributions with bounded moments. We wish to prove the convergence of the spectral

densities of Ay /v/N to Wigner’s law.

Using the shothands Ry = R(z; AN/\/N) and Gy = G(z; AN/\/N), we begin with
the easily checked identity

ZGN Tr [RN AN] —1. (18)

1
T ON3/2

With straightforward arguments it is possible to establish both that the variance of the
Green’s function Gy vanishes as N — oo, a property we will refer to as self-averaging,
and that

E Tr[Ry An] +EGY —0 as N — oo,

1
N3/2
Together with (1.8), these facts are enough to obtain the convergence in probability of

G(z; Ax/V/N) to a non-random limit G(z), which must satisfy
2G(z) = —G(2)* - 1. (1.9)

Solving for G(z) € C* and applying the inverse Stieltjes transform, one obtains

Wigner’s semicircular law.

Much more can be determined using this technique. For example, suppose the ma-
trices { Dy} are Hermitian and non-random with a known limiting spectral density
pp. Then the limiting Green’s function G(z) of the sum Ay + Dy is given by the fixed

point of what is known as Pastur’s equation [Pas72],

1
G(z) :/M—Z——G(Z)pD('u) dp .
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1.1.4 Non-Hermitian random matrix theory

As mentioned earlier, non-Hermitian random matrices, with their generally complex
eigenvalues, have received a great deal less attention over the years than their Her-
mitian counterparts. The reasons for this are two-fold: firstly, for the vast majority of
physical applications, a Hermitian matrix provides the correct model; secondly, many
useful mathematical techniques of RMT (including the simple approach) rely heavily
on the symmetry properties of Hermitian matrices and quite simply do not work in

their absence.

These drawbacks have not entirely stymied research into non-Hermitian random ma-
trices however, and the list of applications is steadily growing: important examples
of applications in physics include the works of Hatano and Nelson on vortex pinning

[HN96] and Stephanov on QCD with chemical potential [Ste96].

Once again, the most well understood non-Hermitian random matrix ensembles are
Gaussian. Following the proposal of Ginibre [Gin65], we consider matrices in which
all the entries are independent identically distributed Gaussian random variables. Re-
ferred to as the Ginibre orthogonal (GinOE), unitary (GinUE) and symplectic (GinSE)
ensembles, these models are the natural non-Hermitian analogue of the Gaussian en-
sembles. As in the case of the Hermitian Gaussian ensembles, the JPDF of eigenvalues

can be calculated exactly for Ginibre’s ensembles. For example, in the GinUE case we

have
1 N
P(A1,..., AN) = = exp SO TTIN = A
N i—1 i<j
J
where Zy is again the required normalising constant, but this time \,..., Ay are

complex. This formula leads to the following limiting spectral density for suitably

normalised GinUE matrices Ay / VN,
lim Eo (X Ax/VN) = 21011 (|A
Nljnoo Q( AN/ >—; [0,1}(’ D
In light of the universality of Wigner’s law, it was conjectured that this circular distri-
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bution should hold universally for random matrices with independent entries. Known
as the Circular Law, this conjecture remained an open problem for many years. Im-
portant progress was made by Girko [Gir90] and Bai [Bai97], but the strongest and
most general version was proved only recently by Tao and Vu [TV08, TV09].

Theorem (Circular Law). Let {An} be a sequence of N x N random matrices such that
for each N the entries of Ay are independent random variables of zero mean and unit vari-
ance. Then as N — oo the spectral densities o(\; Ax /v/'N) converge strongly to the uniform

density on the unit disc.

A generalisation of this law to elliptic distributions has been observed [Gir90, SCSS88],
interpolating between the circular and semi-circular densities, and in the “almost Her-

mitian’ scaling limit these matrices display different behaviour again [FKS97, FS03].

The methods used in Tao and Vu’s proof of the Circular Law, as well as those applied
in other areas of non-Hermitian RMT, do not immediately resemble those from the
Hermitian theory. For non-Hermitian matrices, the Green’s function does not pro-
vide the same useful regularisation of the spectral density as was exploited in the
Hermitian case. Because of this, techniques used in the study of the spectral density
of non-Hermitian matrices often involve alternative methods of regularisation, exam-
ples include the integral transforms used in [Gir90, Bai97, TV08, TV09] and an anal-
ogy with electrostatic potential introduced in [SCSS88] and used frequently thereafter
[Kho96, Chal0, GT07a, GT07b, PZ07].

Very often, such methods rely upon the study of Hermitian proxies, of which there are
several equally good (and often equivalent) choices. In the series of papers [FZ97a,

FZ97b, FSZ01] Feinberg and Zee worked with 2N x 2NN block matrices of the form

—ie (X =X

He()‘§X) =
(X -t —ie

, (1.10)

a process they christened ‘Hermitization’. Around the same time, Janik, Nowak and
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collaborators proposed a similar block extension techniques, obtaining a generalisa-

tion of the Green’s function with a quaternionic structure [[NPZ97, INP*97].

1.2 Complex networks

In recent years there has been an explosion of interest from all over the scientific com-
munity in the properties of networks. From social science [Sco88] to finance [NS97]
and biology [CN85], it is hoped that analysis of the network structures underlying
complex real world systems may provide insight into the properties and behaviour
of those systems. Well-known examples include scientific collaboration networks, the
internet and world wide web and protein interaction networks. Each of these sys-
tems can be modelled as a large collection of agents linked together in pairs to form a

network (for example, a pair of scientists are linked if they have co-authored a paper).

To treat complex networks mathematically we turn to graph theory and in particular
to the study of large random graphs. Much like the heavy nuclei deemed complex
enough to warrant a random matrix model, the modern approach to complex net-
works is to treat them as typical objects from a random ensemble. The book of Doro-
govtsev and Mendes [DM02] and reviews of Barabasi [AB02] and Newman [New03]
all provide introductions to the subject, though the field is expanding in all directions

with novel techniques and applications appearing frequently.

1.2.1 Graph theory definitions

A graph is a pair G = (V, E) of sets, such that £ C V' x V. We refer to the elements
of V as vertices, and those of E as edges. Unless otherwise stated, all graphs we
work with are assumed to be simple, meaning that the edge-sets satisfy the rules

(i,j) € E < (j,i) € E and (i,i) ¢ E forall 7,5 € V. Occasionally we will consider
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directed graphs, in which there exist edges (i, j) € E such that (j,7) ¢ E.

We will usually take V' = {1,..., N}, and refer to NV as the size of the graph. A pair of
vertices ¢, j € V are said to be neighbours if they are joined by an edge (i, j) € E. The
collection of all neighbours of a vertex i € V' is refereed to as its neighbourhood and
is denoted 04, and the number of neighbours of a vertex ¢ € V' is known as the degree.
A glossary of these and all other graph theory terms used in the thesis is provided in

Appendix A.

All the information about a graph G = (V, E) is encoded in the adjacency matrix C,
an N x N matrix whose entries are given by
1 if(i,j) € E
Cij =
0 otherwise.
Some properties of the graph are easily recovered from simple operations on the ad-

jacency matrix, for example, the degree of vertex i € V' is given by

From the definition we see that the adjacency matrix of a simple graph is real and
symmetric and hence has IV real eigenvalues. Investigation of the eigenvalues of
adjacency matrices (and other related matrices such as the graph Laplacian) forms a

field of study in its own right, known as spectral graph theory [Chu97].

The relationship between the topology of a graph and its spectral density is detailed,
for example: the graph is bipartite if and only if the spectral density is symmetric; the
mean degree of the graph is given by the variance of the spectral density; the maxi-
mum degree of a vertex in the graph is at least as big as supremum of the support of
the spectral density. The spectral density also has important consequences for the be-
haviour of random processes defined on the graph, and has been used to characterise

the robustness of the graph under attack [WTD*08].
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1.2.2 Random graphs

The study of random graphs first appeared in mathematics at around the same time
that random matrix theory was gaining momentum amongst the physics community,
though early work in the field was purely mathematical and the idea of modelling

real world systems using random graphs is perhaps more recent.

Formally speaking, the notion of a random graph reduces to defining a probability
measure on the set of all graphs on a given vertex set V; a random graph can then
be thought of as a random variable with respect to that measure. For our purposes, it
will be much easier to phrase the problem in terms of random matrices by introducing

a joint probability density P of the entries of an N x N adjacency matrix.

The first and simplest example of a random graph was proposed by Gilbert [Gil59],
in which each edge is independently chosen to be present or absent with fixed proba-
bility p. In this case, the joint probability density of entries of the adjacency matrix is
given by?

P(C) =] (pécyn+ (1 =p)dc,0)

1<j
where here ¢ is the Kronecker delta. The introduction of this and the closely related
model of Erdés and Rényi [ER59] generated enormous interest in random graphs in
the combinatorial and probabilistic communities, both as an ingenious tool for cre-

ating non-constructive proofs in extremal graph theory, and as fascinating objects of

study in their own right [Bol01].

As with random matrices, we will be principally concerned with behaviour in the
limit N — oo and again we assume the dependence of P (and other related quanti-
ties) on N to be understood. As the size of the graphs grow, talking about an entire
graph is no longer practical and one may instead wish to extract some statistical in-

formation to quantify some aspect of its structure. An important example of such an

By symmetry only the JPDF of entries above the diagonal need be specified.
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object is the degree distribution, giving the probability distribution of the degree of
a randomly selected vertex. For a specified random graph ensemble, we define the

degree distribution as

N
p(k) = A}EHOOE % Z; Ok ks (C) 5
P
where here E is used to denote the average over the JPDF of entries of the adjacency
matrix. In the case of Gilbert random graphs, it is easy to see that the degree dis-
tribution of a finite sized graph is binomial and does not have a limit as N — oo if
p is fixed. However, taking p = ¢/N, for fixed ¢, one obtains a random graph en-
semble whose degree distribution converges to the Poisson distribution with mean
¢ in the limit N — oco. Known to the physics community as the Poissonian random
graph ensemble, this is one of the simplest random graph ensembles with non-trivial

behaviour in the large N limit, and has been extensively studied (see [Bol01] and

references therein).

Looking for more detailed information about a large graph (or random graph ensem-
ble), one could consider further statistics such as the likelyhood of finding a connected
pair of vertices with degree k and £’. Precisely, we define the degree-degree correla-
tion

N
. 1
P(k,k') = am E ‘21 Ok k() Okt k() Cig -
1,j=
For the Poissonian random graph ensemble, this quantity has the simple factorised

form P(k, ) = (kp(k) /c) (&' p(k') /).

In the large N limit, Poissonian random graphs share with random matrices the prop-
erty that, despite depending upon an ever-increasing number of random variables,
rather a lot can be said with certainty. For example, if ¢ > 1 then as the graph grows
a giant connected component forms, containing an extensive number of vertices. A
particular feature of Poissonian random graphs which will be of central importance to
us is the emergence of a tree-like structure in the large /V limit. We say that a random

graph ensemble is tree-like if a ball of fixed radius about a randomly selected vertex is

22



a tree with probability approaching one as N — oco. This property also holds for ran-
dom regular graphs [Wor99] and random graphs with specified degree distribution
[MR95]. As we will see later, the tree-like nature of certain random graph ensembles
can provide important simplifications to the analysis of random processes on such

graphs.

1.2.3 Modelling complex networks with random graphs

Empirical studies have provided a wealth of information about the structural prop-
erties of the networks we might hope to model mathematically. Remarkably, certain
features appear in a multitude of different networks. An investigation of the internet
[FFF99] in the late 1990s found degree distributions with power-law tails, suggesting
a scale-free topology; similar degree distributions have been frequently observed in
other networks, including the world-wide-web (which is directed) [BKM*00] and se-
mantic networks [ST05]. Another common feature of real-world networks is known
as the small-world phenomenon, describing the property that the typical distance
between randomly selected vertices is very much less than in a Poissonian random
graph. The small-world phenomenon is practically ubiquitous, having been observed

in everything from social interaction [Mil67] to gene regulation [PVSWO05].

A well-known heuristic random graph model of real-world networks was proposed
by Barabasi and Albert [BA99]. In their model a random graph is grown from a small
initial seed via a mechanism of expansion and preferential attachment, in which new
vertices are added to the graph and edges drawn randomly with a bias towards
vertices of higher degree. Though based on very simple assumptions, the model
shows many of the key features of real-world networks and has been extensively
studied. Much is known about various properties of the model, including typical
path lengths, degree correlations and clustering coefficient [AB02]. The spectral den-

sity of Barabdsi-Albert random graphs has been studied numerically [FDBV01] and
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shown to be markedly different to that of other random graph ensemb]es.

Despite the success of heuristic models like that of Barabasi and Albert in capturing
some common aspects of complex networks, a given real-world complex network
may not be a perfect match for any existing heuristic model. It could be argued then
that a more phenomenological approach is needed, in which certain statistics of a real-
world network can be measured and incorporated into a random graph model. For
example, one could consider random graphs with the degree distribution specified,
or more involved statistics such as degree-degree correlations and further constraints

[BCV08, ACF(9].

Later in the thesis we will analyse the spectral density of such topologically con-

strained ensembles.

1.2.4 Generating random graphs

In order to perform numerical experiments and compare with the real-world complex
networks one is hoping to model, it is crucial to be able to generate random graphs
from a given ensemble. Similarly, for our purposes we would like to generate random
adjacency matrices corresponding to a random graph ensemble, so as to test our the-
oretical results for the spectral density. In the simple case of the Poissonian random
graph, this is easily achieved by independently choosing each edge to be present or
absent with probability ¢/N. For more complicated or ‘realistic’ random graph en-
sembles, the problem is much harder and has been studied by a number of authors,

examples include [MW90, BDML06, BD06, ACF(09], to name but a few.

To give a flavour for the techniques involved we describe an algorithm for generating
random regular graphs, which we will employ later in numerical experiments. To
generate a random graph of size NV with each degree equal to a fixed value %, Steger

and Wormwald proposed [SW99] the following algorithm:
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Algorithm 1

1. SetV ={1,...,N}, E=(and k= (k,...,k); an N-tuple with each entry k

2. Randomly select distinct non-neighbouring vertices i, j € V with probability

proportional to k; l%j

3. Add the edge (i, j) to E, reduce k; and k; by 1, and repeat step 2 until no more
edges can be added

4. Tf k # 0 report failure, otherwise output the graph G' = (V, E)

This algorithm selects approximately uniformly at random from the set of all k-regular
graphs of size N, in the sense that the deviation from the uniform distribution is van-
ishing in the limit N — oco. Moreover, the expected running time is significantly less

that other approaches, being of the order NV k2 [SW99].

To generate random graphs with a specified degree sequence k = (ki,...,kx) and
degree-degree correlation function P(k, k') is a rather more difficult task. We suggest

the following heuristic adaptation of the Steger-Wormald algorithm:

Algorithm 2

1. SetV={1,...,N},E=0and k = k

2. Randomly select distinct non-neighbouring vertices i,j € V with probability

proportional to P(k;, k;)kk;

3. Add the edge (i, j) to E, reduce k; and l%j by 1, and repeat step 2 until no more
edges can be added

4. If k # 0 report failure, otherwise output the graph G = (V, E)
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A mathematical analysis of the performance of this algorithm is yet to be undertaken,

though experimental results are very encouraging.

1.3 Disordered systems

There are several common themes occurring in the fields of random matrices and
random graphs, and nowhere is this more apparent than in the study of condensed

matter physics, particularly disordered systems and spin-glasses.

It has been argued that the field of disordered systems has its origins in the vastly
influential work of Anderson on electron conductance in lattices with random im-
purities [And58], in which the phenomenon now known as Anderson localisation
was first discovered. In the subsequent decades many different models of dynamical
systems with random impurities have be put to use as tools for understanding the
behaviour of anything from the functions of the brain [CKS05] to the stock market
[Coo07].

1.3.1 Spin-glasses and the replica trick

An important development in the theory of disordered systems came in 1975 with
Edwards and Anderson’s simple model of certain dilute magnetic alloys featuring

unusual critical magnetic behaviour, known as spin-glasses [EA75].

In their model, a system of N dynamical variables (spins) o = (o1,...,0n) are ar-
ranged in a lattice, with interactions between neighbouring spins o; and o; mediated
by a bond of strength J;;. The bond strengths are assumed to be independent Gaus-
sian random variables, which are taken to be a fixed realisation of a random sample,

so-called quenched disorder. Computation of the disorder averaged free energy F for
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this system reduces to the evaluation of the expression
1
—E}":ElogZ(J), (1.11)

where (3 is the inverse temperature, E is as usual the disorder average (i.e. over the

Jij), and Z is the partition function

N
Z(J) == / <H d0'2> eXp {ZCZJJZ]O'Z . O'j} s (112)
i=1

1<j

with C being the adjacency matrix of the lattice.

Though the partition function is different for every model, the desire to evaluate ex-
pressions of the form (1.11) is a common problem in the theory of disordered systems.
In tackling the average of the logarithm in this equation, Edwards and Anderson in-
troduced the replica trick, which was to become a staple tool of researchers in disor-
dered systems for the next thirty years. The essence of the trick is to exchange the

order of the average and logarithm through the use of the identity

E log Z(J) = lim E log E (Z(J))".

n—0n

To make progress with this expression, the dummy variable n is treated as integer (so
that the problem becomes one of n replicas of the original system, each with the same

disorder) and the disorder average is calculated in the limit N — oc.

There are many subtleties of the method, and it has only been made rigorous for a
small number of models, for example in the Hopfield model with certain parameter
values [Tal98], though the practical successes of the approach are numerous, see for
instance [MPV87]. The replica method has also been applied rigorously to the Ander-
son model [KMP86].

Just a year after its introduction to the problem of spin-glasses, Edwards and Jones
applied the replica trick to random matrix theory [E]76], re-deriving Wigner’s semi-

circular law. Replicas have since been applied frequently to problems in RMT, see

27



[Kan01] for a review. Unsuccessful attempts to compute the two-point correlation
function using replica prompted criticism of the method from Verbaarschot and Zirn-
bauer [VZ85, Zir99], who argue that it is superseded (at least in RMT) by the methods
of supersymmetry. The supersymmetric method has been used extensively in RMT
[MF91, FS95, FKS97, GMGW98, Mir(00, FS03], for a review of its application to disor-
dered systems see [Efe06]. Restricted to the purpose of computing the spectral density
however, the methods of supersymmetry and replica have been demonstrated to be

equivalent [FM91].

1.3.2 The cavity method

At its core, the replica method relies upon the hope that the disorder average of the
replicated partition function will be tractable, and that the limit n — 0 is then possi-
ble and makes physical sense. It has been found to be the case, however, that even
for some simple models the expressions resulting from the disorder average are suf-
ficiently complicated to necessitate a rather protracted analysis. For certain models
then, it is highly desirable to have a technique to compute thermodynamic quantities

without taking the disorder average so early in the analysis, if at all.

The cavity method [MPV86] offers an alternative approach to replicas, by seeking to
exploit the topological structure of the underlying network. Suppose one is interested
in a generic disordered system in which the dynamical variables reside on the vertices
of a graph G = (V, E) and interact in pairs according to the edges of the graph. Fol-
lowing [YFWO03], we can model this situation in a fairly general way by considering a
vector of spins o with JPDF P (o), which factorises into terms {;;} associated to the
edges of G and {¢; } associated to the vertices; we assume the form

Plo) =2 I wiono) [ oo, (1.13)

(i.j)EE i€V

Now consider the same system with the vertex i removed. We write G®) = (V) E())
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for the subgraph of G induced by the deletion of vertex i, the so-called cavity graph.
This superscript notation will also be used for generic objects associated with the
cavity graph. In particular, if o™ is the spin vector with the ith component removed,

the JPDF of spins on the cavity graph is given by

i) ( (i 1
PO (g) = =0 T viwloson) T ¢ilo)- (1.14)
(4,k)eEG) jev
Writing Pa(?(aai) for the joint marginal of spins on the cavity graph whose vertices
were neighbours of 7 in the original graph, it is a straightforward consequence of the

form of (1.13) that the single-spin marginals are given by

Pi(o / | I dos| P (00) (@(Ui) I1 wlj(al,aj)> , (1.15)

JEOI JjEOT

where Z;, = Z/ Z(@_ As mentioned earlier, a common feature of many of the most
frequently studied random graph ensembles is a tree-like structure in the large NV
limit. The central idea of the cavity approach is to exploit this structure in order to
approximately compute the distributions Pa(? (0si), and hence give an approximation

to the true marginal distribution at any given vertex.

Suppose that for some ¢ € V and j € 0i we wish to compute the cavity distribution
Pi(j ) (0;) of the spin at vertex i in the cavity graph GU). Let us assume that G is indeed

a tree. Removing the vertex j from (1.15) we reach the equation
; 1
PZ(])(UZ) Z(J /[ H dgl] Bz)\(j (082\] (gbz O'z H il O-Z)O-l)) > (1.16)
1€di\j ledi\j

with Zi(j ) = z®/z2®G) Now, since G is a tree, each vertex in 9i \ j resides in a
different connected component of the cavity graph G, both to each other and to j

itself - see Figure 1.1. We can therefore conclude that

PR ean) = T 7o) (1.17)
ledi\j
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Figure 1.1: Left - part of a tree-like graph G showing the neighbourhood of a vertex :.
Right - in the cavity graph G, the spins residing on vertices j, k and [ are approxi-

mately independent.

and thus (1.16) simplifies significantly to

) = —g o) T1 ([anrlO@vaon) . a9
Z; 1D\
Similarly, (1.15) becomes
P(os) = é@(ai) 11 ( / do, p](”(aj)wij(ai,aj)) . (1.19)
¢ jeoi

For a system on given graph G = (V, E), there are 2| E| equations of the type (1.18),
which together define a self-consistent scheme for the cavity distributions {Pi(j )}. If
these equations can be solved, then the true marginal distributions may be computed

using (1.19).

Obtaining a solution to the cavity equations for a given graph can potentially be very
difficult. The tractability of the problem is greatly improved in the event that the
cavity distributions can be parameterised (perhaps approximately) by a finite set of
parameters; the cavity equations should then reduce to a set of consistency equations
on those parameters, which can, for example, be solved numerically using a belief

propagation algorithm.

Cavity equations of the type (1.18) may of course be written down for any graph, tree
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or not. How well the solutions (if indeed any can be found) approximate the cor-
rect distributions then depends on the degree to which correlations between spins in
the cavity graph are present and influence the marginal at a given vertex. One situ-
ation in which the cavity approach is known to work well is in large random graphs
drawn from a tree-like ensemble, for example, recent work proving the asymptotic
correctness of the cavity approach for the Ising model on locally tree-like graphs was

presented in [DMO8].

The cavity method has been successfully applied to the Anderson model both explic-
itly in [CGMM™05] and [AF06], and in all but name in [ACTA73]. A large part of this
thesis will consider the application of the method to general sparse random matrix

ensembles.

1.4 Thesis outline

The main body of the thesis is subdivided thus:
Chapter 2: Spectral density of sparse Hermitian random matrices

A mathematical analogy is introduced in Chapter 2, rephrasing the problem of de-
termining the spectral density of Hermitian random matrices in the language of sta-
tistical mechanics. After a brief review of past work on the topic, the cavity method
is applied to derive a set of equations from which an approximation to the spectral
density of a given sparse matrix may be recovered. The equations are studied both
analytically, re-deriving known results, and by numerical methods both for single

instances and in the ensemble average for Poissonian graphs.

The main results of this chapter were published in the article [RPKTOS].
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Chapter 3: Beyond Poissonian graphs

The class of ensembles for which the average spectral density may be computed is
expanded in Chapter 3, firstly through the consideration of graphs with correlations
between vertex degrees and later through block matrix models for sparse covariance
matrices and graphs with a community structure. A number of examples, both an-
alytic and numerical are presented and the relationship between the statistics of the

graph and the resulting spectral density is discussed.

The articles [RPKT08] and in particular [RPVT10] contain many of the results of this
chapter.

Chapter 4: Spectral density of sparse non-Hermitian random matrices

In Chapter 4, techniques are introduced allowing the application of the cavity method
to the problem of determining the spectral density of sparse non-Hermitian random
matrices. Analytically, Girko’s Elliptic Law is re-derived, along with an apparently
new result for random directed regular graphs. Numerical simulations are presented

for sparse ensembles breaking the universality class of the Circular Law.
Most of the results in this chapter appear in the paper [RP09].
Chapter 5: Universal sum and product rules for random matrices

In a departure from earlier chapters, the work presented in Chapter 5 concerns uni-
versality in the spectral density of full random matrices, both Hermitian and non-
Hermitian. A theory is developed which marries the techniques of the simple ap-
proach, as discussed earlier in this introduction, to a quaternionic Green'’s function.
Universal results are obtained for the spectral density of random matrices with inde-

pendent entries when summed or multiplied with non-random matrices.

This chapter is closely based on the article [Rog09].
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Spectral density of sparse Hermitian

random matrices

2.1 Statistical mechanics analogy

The aim of the present chapter is to apply the cavity method as outlined in the in-
troduction to the problem of determining the spectral density of sparse Hermitian
random matrices. The first step towards this goal is to map the problem into one
phrased in the language of statistical mechanics, to which the cavity method can then

be applied.

The link between the spectral density of a matrix and its Green’s function was dis-
cussed in the introduction. Indeed, in light of the Stieltjes transformation (1.5) and
inverse (1.6), to compute the spectral density, it is sufficient to determine the Green’s
function. We follow the standard route of Edwards and Jones [E]J76] in expressing
the Green’s function in terms of a multidimensional Gaussian integral. Let A be an
arbitrary N x N Hermitian matrix. We start from the simple identity (proof is given
in Appendix B)

Gz A) = L2 1 2.1)

— g
Noz ® det(A — z2)
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For z € C*, the eigenvalues of the matrix i(A — z) all have positive real part and thus

the determinant can be expressed as a Fresnel-type Gaussian integral

m = (%)N/exp (—z’ xl (A - z)a:) dz, (2.2)

where z is an N-vector of complex variables and we introduce the shorthand

N
de = H dRez; dlmz; .
=1

The proof of this identity is simple. Since A is Hermitian, we may diagonalise by
a unitary transform, writing i(A — z) = UDU ™}, the identity then follows from the

change of variables x — U 'z and normal Gaussian integration.

Ignoring the imaginary factors, the expression (2.2) is reminiscent of the partition
function of a disordered system with continuous dynamical variables, in particular
the Gaussian ferromagnetic model of [BK52]. We make this analogy with statistical

mechanics concrete by introducing an object resembling a probability density func-

tion. Let
1 N
P(ZC) = Z(z, A) exp | —1 ijlfz(/l — Z)Z‘jﬁﬂj , (23)

where normalisation [ P(z) dz = 1 is enforced through

N
Z(zA) = /exp —1 Z ZTi(A — 2)jx; | dx
=1 (24)

() ww

Though the function P can take complex values, and hence is manifestly not a prob-
ability density, it is sufficiently similar in form to a typical JPDF arising in disordered
systems that it can be treated with the same mathematical tools. For convenience, we
will switch to the language of statistical mechanics; referring to the integration vari-
ables z; as spins with JPDF P(x) and partition function Z. For the sake of simplicity,

the dependence of P upon A and z is not made explicit in the notation.
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Plugging (2.4) into (2.1), we see that the Green’s function of A is related to the partition
function simply by

10
G(zA) = N 9. log Z(z; A), (2.5)
and thus the problem of determining the spectral density of A is mapped onto one of

computing the partition function Z(z; A).

Suppose now that the matrix A was drawn from a Hermitian random matrix ensem-
ble. To compute the ensemble average of the spectral density using the above formal-

ism one is required to evaluate the ensemble average of equation (2.5),

10
EG(z;A) = N&E log Z(z; A). (2.6)
Written in this way, the expressions (2.4) and (2.6) are clearly comparable to equations

(1.12) and (1.11), to which Edwards and Anderson applied the replica trick [EA75].

2.2 Past approaches

In 1976, just a year after the introduction of the replica trick, Edwards and Jones ap-
plied the same method to the statistical mechanics analogy for spectral density [E]J76].
In that work Wigner’s Law for real symmetric random matrices with independent
Gaussian entries of zero mean and variance J/N was re-derived, as well as a simi-
lar result for the non-zero mean case. This work lay the foundations for numerous

further applications of the replica trick to RMT.

Years later, motivated by applications to the behaviour of dilute spin systems, Rodgers
and Bray [RB88] investigated the spectral density of a random matrix model with an
intensive number of non-zero entries. They studied matrices in which each entry is

drawn at random from the distribution

C C

1 1
p(AZ]) = N <§5Aij,1 + 55,4”-,—1) + <1 — N) 5Aij70 .
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Applying the now well-established replica method, a set of non-linear functional
equations were derived which specify the ensemble average spectral density for these
types of matrices in the large NV limit. A tractable solution to these equations would
not be found for many years, though several facts about the spectral density were es-
tablished, including adherence to Wigner’s Law in the limit ¢ — oo and the presence

of Lifschitz tails extending beyond the support of the semi-circle.

Since then, the spectral density of sparse matrices, and the model of Rodgers and Bray
in particular, has been studied in the statistical mechanics formalism by a number
of different authors, including [RD90, MF91, FM91, BM99, SC02, Dea02, Kith08]. A
typical calculation for the ensemble average replicated partition function might arrive
at an expression equivalent to the following functional integral over order parameters
¢ and :

B(2(:4)" = [{DoDy} e 00, )

where
©(6,0) =5 [ ol@oy)e Y - 1) dwdy

(2.8)
—i/¢(m)1/1(a:) dx + log/eizw'w“w(w) dr .

From here, one might hope to evaluate (2.7) in the limit N — oo by steepest descent.
This leads to an extremisation problem for the free energy (2.8) which was described

by Biroli and Monasson as "hopeless” [BM99].

Some progress was possible through the introduction of schemes such as the effective
medium (EMA) and single defect (SDA) approximations [BM99, SC02], which pro-
vide a reasonable fit in some parts of the spectrum for intermediate values of c but
do not describe the detail of the spectral density well for low ¢. The methods of su-
persymmetry were applied in [RD90, MF91], though equivalence with replica (in the
calculation of spectral density, though not in general) was quickly realised [FM91].

An important advance was made in [Dea02], and later independently in [Kiih08], in
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which it was realised that the order parameters ¢ and ¢ should be expressed as a
supersposition of Gaussians. In this way, the solution to the previously intractable
extremisation problem can be expressed exactly through a single distributional recur-

sion equation for the parameters of these Gaussians.

Work along lines other than the statistical mechanics analogy is of course also pos-
sible. Particularly worth mentioning are the approaches of Dorogovtsev et al using
walk generating functions [DGMS03, DGMS04] and Khorunzhy et al [KSV04] and

Bordenave and Lelarge [BL10] using moment and resolvent methods.

In what follows, we will revisit the problem of determining the spectral density of

sparse random matrices, this time applying the cavity method.

2.3 The cavity method

Consider a sparse Hermitian matrix A, specified by the adjacency matrix C of a graph

G = (V, E) and a bond strength matrix J. The entries of A are given by
Aij = Ci 'Jij .

We plan to use the cavity method to compute an approximation to the spectral density
of A. Performing the derivative in (2.5), we see that

N

1 1 0 . —
G(zA) = NZEA) / 5, &P (zijzl Ti(A— z)ijxj) dx
N
= Z/P(ar:) (% Z |xz|2> dx (2.9)
i=1
N

:@'%Z(mm,

i=1
where (---) denotes the average over the JPDF of spins in the statistical mechanics

analogy. To determine the Green’s function, it is therefore enough to compute the
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single-spin marginal distributions of the system.

Ignoring the fact that the function P is not a probability density, we note that it is
of the correct form to apply the method. The starting point of the discussion of the
cavity method in the introduction was the JPDF

P(x) = Z(zl;A) H ¢ij($i,xj)H¢i(wi)’

(i.5)EE i€V

which can be obtained in this case by putting
¢i(w;) = exp (iz\xi\Q) ;
and
Vij(zi, ;) = exp < —i(Jij2iT; + J_”xjfz)> .
We intend to apply the cavity method in this setting, approximating the marginal
distributions Pi(j )and P, in a general sparse graph G by those obtained under the

assumption that G is a tree. To this end, we introduce distributions lgi(j ) and ]DVZ which

we take to satisfy the cavity equations (1.18) and (1.19) exactly. In the present case,

this yields
D 1 Z'Z|1'i|2 N(l) *i(Ji'mif'+r:v fl)
Pl(xz) = E@ H Pj (;pj)@ J J gt dxj ,
’ jedi
and
31V 1 ; (3 (T T T s
Pl(j)(xz) _ W ezz|a:i|2 H </ Pl( )(xl)e (JuxiT+J21Tq) dw[) ) (210)
ZZ’ ledi\j

Further progress can be made by moving to a parameter dependent representation

for the cavity distributions 15i(j )

. This is always possible (see [SPHO5] for a general
derivation), however, for general systems it is quite possible that an infinite number
of parameters may be required. Fortunately, in the present case it is straightforward
to see that they a single complex parameter will suffice to characterise each single-
spin marginal. Integral P over N — 1 variables, one finds the marginal at i to be
parameterised by the i'? entry of the diagonal of the resolvent R(z; A), specifically,

i i

Pi(z;) = TRz Ay P <—m\xz\2> : (2.11)
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In light of this, and the Gaussian form of the cavity equations (2.10), we may sur-
mise that the same form of parameterisation will hold for the approximate single-spin

()

i

marginals ]Si(j ) and ]SZ We introduce parameters A; and A

~ ) )

S50y L b
]Di (wz) - WA(j) exXp ( A(j)‘xZ’ ) : (212)

i

, writing

)

For normalisation, we require that each, A; and Az(j )

be confined to the upper half
of the complex plane. These numbers of course depend upon both the matrix A and
the complex number z, though again we choose not make this dependence explicit
in the notation. Comparison with (2.11), suggests that A; should be interpreted as an

approximation to R(z; A);;, with equality in the case that G is a tree.

Returning this parameterisation to the cavity equations (2.10) and completing the in-

tegration yields

~ ; ) ; *i‘zl‘? —i(JyzsT+TyaiTs)
PO () = 2()ezz|mi|2 11 ( ! /e aft dx;

WAi] 1€0i\j WAJ(Z)

= Fexp {zxiQ (z — Z A; )JilZ) } .
ey 1€8i\j

The normalisation condition [ ]gi(j )(mi) dx; = 1 then gives

—1
AP = (z > A}”Juz) : (2.13)

1€di\j

Similarly for A;, one obtains
-1
A== AP . (2.14)
j€di

Setting z = A +ic for some ¢, if a solution set {Agj )} to the system (2.13) can be found,

then we obtain from (2.14) and the Stieltjes inversion formula (1.6), an approximation
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to the regularised spectral density of A4,

N
~ 1
0-(\; A) = Wlm;m. (2.15)
In this way, the problem of computing an approximation to the spectral density to is
reduced to that of solving the system (2.13). As we will see, a unique solution to (2.13)

can always be found, by hand in some cases and by computer in general.

Recursion equations of the form (2.13) are not themselves new to the random matrix
literature. The cavity method, or other essentially identical techniques, have been
applied by several authors to the spectral density of the Anderson model on various
graphs [ACTA73, CGMM ™05, BAT04, AF06]. For sparse matrices associated to tree-
like graphs, Dorogovtsev et al [DGMS03, DGMS04] have also derived an equivalent
set of recursion equations to those given above, this time through consideration of a

generating function for walks in the graph.

In fact, it is possible to derive the above cavity equations by elementary algebra (see,
for example, [FHS07] for the Anderson model and [BL10] for general sparse graphs),
without using a statistical mechanics analogy, walk generating function or any other
such device. We will use this method to derive a generalised version of the equations

in the next chapter.

2.4 Analytically solvable cases

For small trees, the system of cavity equations given by (2.13) can be solved by hand,
allowing the computation of an exact formula for the spectral density. For larger,
more complex graphs, solution by hand becomes too difficult and one might choose to
procede either with the aid of a computer (which will be covered in the next section) or
by seeking some way to reduce the number of equations to a more manageable level.

Such simplification is most easily achieved if the random graph ensemble from which
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the matrix A is drawn exhibits a type of translational invariance, either statistical or

exact. We explore a pair of simple examples.

2.4.1 The fully connected limit - Wigner’s Law

The cavity equations derived above are in principle valid only for trees or tree-like
graphs in the large NV limit. In the study of spin-glasses, a technique due to Thouless,
Anderson and Palmer (known as the TAP approach) predates the cavity method and
can be thought of as its natural analogue for fully connected systems. There is a
standard method by which the results of the TAP approach can be derived from the

cavity equations, which we describe now for the case of Wigner random matrices’.

Let Ay be a Hermitian matrix with independent entries of zero mean and variance
1/N. In this model, although the underlying graph is fully connected, the cavity equa-
tions are still valid in the large IV limit since contributions to the local field at a vertex
i from pairs of neighbours are vanishing. We also have approximately negligible dif-
ference between the true and cavity parameters, AZ(-j )= A+ O(1/N). Defining the

average
1 N
A=< Zl A,
1=

we have, as N — oo,

S AaPAl - A.
I
The system of equations defined in (2.13) and (2.14) then reduce to the single equation

A=(—z—-A)"1, (2.16)

which rearranges to give exactly the equation (1.9) for the Green’s function of Wigner

matrices, derived in Chapter 1 using the simple approach. In this way we see that

'In fact, the derivation here is somewhat simpler than in typical disordered systems, as the difference

between true and cavity fields turns out to be small enough that no Onsager reaction term occurs.
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Wigner’s law can be recovered from the cavity equations in the fully connected limit,

also revealing a connection between the cavity method and simple approach.

2.4.2 Random regular graphs - McKay’s Law

Let us consider the adjacency matrix of a k-regular graph on NV vertices. The cavity

equations for such a graph can be solved by hand if we assume translational invari-
(4)

ance of the cavity fields, that is, we put A;”” = Aforalli € V and j € Ji. We now

have a single equation reading

which is easily solved to give

—zEt4/22—4(k-1)

A= 2(k — 1) ’

where the branch of the square root is determined by the condition A € C™.

We will show later that the cavity equations for a finite graph always have a unique
solution. Here, this fact allows us to conclude that all k-regular graphs share the

above solution, regardless of whether or not they are transitive.

Taking the limit ¢ — 0 we have o.(\; A) — pi()), where

fen/A(k — 1) — A2

N == on

This distribution was found by McKay in [McK81], in which he proved that for ad-
jacency matrices A of graphs chosen uniformly at random from the set of k-regular

graphs on N vertices one has the convergence of o(\; A) to pi(\) as N — oo.
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2.5 Numerical solution

2.5.1 Belief propagation

To solve a large system of cavity equations such as (2.13) numerically, it is common

to employ a simple iterative approach, known in this context as belief propagation.
()

In such a scheme the number A;"’ is interpreted as a message sent from vertex 7 to

vertex j about the contribution made by i to the local field at j.

One implementation of a belief propagation algorithm is as follows: starting with an

arbitrary list of initial guesses {Agj )[1]} one repeatedly applies the update

iV, jedi
equation?
-1
AV = | == Y AP — 1|/ (2.17)
1€\
until a fixed point {AY }icv, jes; is reached such that

AP = AP ) = AP0 - 1.

For a finite tree, it is easy to see that this happens in a number of steps equal to the
diameter of the tree. The spectral density can then be recovered by the equations

(2.14) and (2.15).

The same process can be applied to graphs which are not trees, though now it is
not guaranteed to find a solution in finite time, making it necessary to halt the pro-
gram at some point, for example after a pre-determined level of convergence has been
reached. This approach has been used frequently in the statistical mechanics literature

to perform numerical simulations based on the cavity method.

?Alternatively, one could choose to update the messages one at a time rather than in parallel, which

even easier to program.
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Figure 2.1: Grey - the regularised empirical spectral o(\; A) density of a single Pois-
sonian random graph of size N = 10*, with average degree c = 2 at ¢ = 0.005. Black
- the result p.(\; A) of the cavity equations solved by belief propagation on the same
graph.

Figure 2.1 shows the results of a belief propagation algorithm using the update rule
(2.17) applied to a single Poissonian random graph of size N = 10*, with average de-
gree ¢ = 2, and regularising parameter ¢ = 0.005. The empirical regularised spectral
density was obtained for the same graph by numerically determining the eigenvalues

)\EA), e )\S\f,‘) and applying formula (1.7), that is,

N
1 €
0:(N A) = — 2 ST AR

A close up of some detail from Figure 2.1 is shown in Figure 2.2. The results of the
algorithm are very strong on the scale of the whole spectrum, though there are signif-

icant deviations on smaller scales.

44



0.1 T T T T

0.08

0.06

0.04

0.02 ' ' ' '
25 2.6 2.7 2.8 2.9 3

Figure 2.2: Close up detail of Figure 2.1. Discrepancies between the empirical g(\; A)
regularised spectral density (grey) and result o-(\; A) of the cavity equations (black)

is clear on this scale.
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Figure 2.3: The result g.(\; A) of the cavity equations solved by belief propagation
on a graph Poissonian random graph of size N = 107, with average degree ¢ = 2 at

e = 0.005.

The matrix size of N = 10* used in the production of figures 2.1 and 2.2 is close to the
current practical size limit for numerical diagonalisation. By comparison, an efficient
implementation of belief propagation can handle matrices many orders of magnitude
larger using the same hardware. Figure 2.3 shows the results of the belief propagation

algorithm on a graph of size N = 107.

2.5.2 Convergence to a unique solution

For belief propagation algorithms applied to general inference problems, there is no
guarantee of the existence or uniqueness of solutions to the message passing equa-

tions, or of the hoped convergence of the algorithm. Some systems, such as certain
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spin-glasses near a critical temperature, exhibit many solutions. In the present case

however, convergence to a unique solution is a proveable fact.

For a given graph G with edge weights J and fixed z = X + i¢, the update rule (2.17)
may be written in terms of a closed map F' defined on (C*)" (where n = 2|E|). Using

boldface fonts for vectors in (C*)", we have
Aln] = F(An—1]),
where the function F is defined for I" € (C*)" by

—1
FI)Y = ()\ie 3 rl(")Jiﬁ) . (2.18)

1€0i\j
To guarantee the convergence of the belief propagation algorithm to a unique solu-

tion, it is necessary and sufficient to prove the following:

Theorem 1. The function F defined in (2.18) has a unique and globally asymptotically stable
fixed point.

Proof. First we note that by Brouwer’s fixed point theorem, F' certainly has at least

one fixed point in (C* U {oo})".

Next we observe that the image of F? = F o F is bounded away from oo and R; for

each i and j

. [FOY] =1,
TeCct+” €
and thus
F2I‘(.])‘:— d  inf (Im[F2(D)? 2.19
ri%gn (); A Fgcl“l(m[ (D ]>>R’ @19)

for some x > 0. So any fixed point of F' must be contained in the region ", where
Q ={TeCt:Iml >k, || <e'}. Take the fixed point implied by Brouwer and
name it A. To complete the proof, we will show that for all ' we have F?"(T') — A

as m — oQ.
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This is most easily achieved by mapping to the polydisc D", where D is the unit disc
in the complex plane. Introduce the following conformal maps:

zZ—1

241’
z—c(AZ(.j))
1—C(A§j))z

c:Ct =D, c(z)=

tgj) :D— D, tz(j)(z) =

)

The composition tgj o ¢ maps the upper half-plane to the unit disc in such a way that

the point AZ(-j) is mapped to 0. Define maps C : C*" — D" and T : D" — D" by
C)Y =c(z7), and T(2){ =t(=!).

We can now consider the composition G = T'o C o F? o C~! o T~!, which maps D" to
itself and fixes 0. Moreover, thanks to the bounds (2.19) established on F?, there must
exist a number p € (0, 1), such that
()

sup | max |G(z); <.

zeDn \ 6J
The function G also satisfies a generalisation of the Cauchy-Riemann equations, in
that each component is a holomorphic function of each other component, allowing us
to apply a result from the theory of complex functions of several variables. Specifi-
cally, a generalisation of the Schwarz lemma [GKO03] gives that for any z € D"

max (G(z)ﬁj) < pmax ‘Z@m‘ :

irj irj

Since 1 < 1, we obtain G™(z) — 0 as m — oo for all z € D", and hence F?>™(T') — A

forallT' € C*". O

The above result has implications beyond confirming the algorithmic performance of
belief propagation in this case. In particular, we may now conclude the correctness of
the cavity equations for tree-like graphs in the limit N — oo. Suppose that the ball
By, (i) of radius n around a vertex i is a tree and consider the following set of initial

conditions for the belief propagation algorithm: forall / € V and all j € 0,
AP1) = (A9 - 2y

48



1

After n steps, inspection of (2.17) shows that (since B,, (i) is a tree) A;[n] = (A — z),;".
But the convergence of the belief propagation algorithm implies that |A;[n] — A;] — 0
as n — oo. For tree-like graph ensembles, balls of arbitrary radius 1 < n < N
converge to trees with probability 1 in the limit N — oo, and we can thus conclude

that the results of the cavity method are exact in this limit.

2.5.3 An exact solution to a different problem

It is a well-known fact in numerical analysis that the computation of the eigenvalue
spectrum of a non-normal matrix can be highly sensitive to rounding errors, with the
outputted numbers sometimes very far from the true eigenvalues. What is more, it
can be shown that these ‘approximate” eigenvalues are in fact the true eigenvalues of

a small perturbation of the original matrix.

In light of this, it becomes natural to ask if, for graphs with cycles, the “approximate’
values for the diagonal entries of the resolvent determined by the cavity method are
the correct values for some closely related system. To help answer this question, we
introduce the notion of a walk in a graph. For simplicity, we assume below that G is
a finite connected graph which is not a tree, and we are interested only in the spectral
density of the adjacency matrix A. The arguments are easily generalised to other

cases.

Awalk w = (wo, ..., wy,) oflengthn > 0inagraph G = (V, E) is an ordered collection

of vertices {w; }]", C V such that for each i = 1, ..., n, there is an edge in G between
vertices w;_ and w;. For walks w = (wy, ..., wy,) of length n > 0, we define w) =
(wo, ..., wp—1). A non-backtracking walk is a walk in which foreachi=1,...,n -1

we have w;_; # w;41. Write W for the collection of all non-backtracking walks in G.
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Consider the graph G = (W, ), with edge set defined by the constraint
(w,v)ef < v=w or v =w.

The structure of G may be summarised by the following facts:

1. G has N connected components, one for each vertex in i € V; we refer to the

zero-length walk (7) as the root of the corresponding component
2. The components of G are infinite trees, isomorphic to each other
3. For each w = (wy, ..., wy), there is an automorphism of G which maps w — w,,

4. (i,7) is aneighbour of (i) in G if and only if j is a neighbour of i in G

A simple example of the relationship between graph G and tree G of non-backtracking

walks is shown in Figure 2.4.

Write A for the (infinite) adjacency matrix of G, whose action on € [*(W) is defined
by

(Ax),, = Z Ty .

vEW

Let u(X;.A) be the resolution of identity for A and R(z;.A) the resolvent operator.
The entries of ;1 are known as the spectral measures of the operator .4, and can be
calculated from the resolvent. The two are related by
Rz ) = [ oo A)dn,
A—z

and the inverse operation

pAA) = lim e (X A)

where

[,ug()\; A)] = % Im [R()\ +ig; A)

rw rw
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Figure 2.4: Top - A small graph G containing a cycle. Bottom - part of the (a)-rooted
component of the infinite tree G of non-backtracking walks on G. Each vertex in G
gives rise to the equivalence class of all vertices in G with that vertex as the endpoint

of the walk, shown here by the four columns.
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Following arguments similar to those in [GM88, DGMS03, MJW06], it is easy to es-

tablish recursion relations for the entries of the resolvent of G:

[R(A;A)} - <—z— 3 [R(A;A)} (“’))1, (2.20)

and
-1
(v) (w)
[R(xA)] = (z - Y[R w ) . 2.21)
ww uu
ucdw\v

Thanks to property 3 above, we have for all walks v, w, with end vertices 7 and j,
respectively,

((4)

(@)(@)

R A)] )

o [R()\; .A)} , and [R()\; A)}

- [R(A; A)} o

From this and property 4, we can deduce that the recursion relations (2.20) and (2.21)
defined on G are precisely the same as the cavity equations (2.13) and (2.14) for G.
Thus, if i € V is the end vertex of w € W, then

R4 =a,

ww

and we establish the identity

0:(MA) = [,Ue)\-A}

@)G)

||Mz

This result tells us that by solving the cavity equations in graphs containing cycles, we
are in fact computing the spectral measures at the roots of the components of G. The
approximation to the spectral density obtained from the cavity method is nothing but
the arithmetic mean of the spectral measures. This fact accounts for the discrepancy
seen in Figure 2.2: the true spectral density of the finite matrix A is composed entirely
of delta peaks, whereas the spectral measures of the infinite operator A may have

continuous parts.
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2.6 Ensemble average for Poissonian graphs

2.6.1 A distributional recursion equation

Although the cavity equations are derived for a fixed finite graph, it is possible to
perform the ensemble average in the limit N — oo. The calculation requires a certain
assumption on the solutions of the cavity equations, as well as the computation of
some statistical properties of the graphs. For now, we consider only Poissonian ran-
dom graphs with all J;; = 1 (in the next chapter we will introduce more complicated

ensembles). Fix z € C* and introduce the following distribution
() =E (s5(a-aP) |cy =1)

where {AZ(-j )} is the unique solution of the cavity equations for the graph C, and the

average is over the random graph ensemble. The cavity equations can now be used to

)

relate average value of Agj the average on neighbouring vertices. To achieve this, we

sum over all possible values of the degree of i and all possible choices of that many

neighbours:
| N
(&) =E{ 5= ) Cid(A - N
ij=1
. 1
=E Z_Zékk(c) Z CijCill---Cuk 15 <A+—>
sRg - k— 1
e NS j<li<e-<lp_1 2+ 01 AL’
k-1
k / 1
= - dAL | E(A, ..., Ap )0 [ A+ —————
; ¢ [};[1 } Z+ 22:1 Aq
(2.22)
where
k-1 ‘
B(A1 A= ), E {Cijcz‘h - Ci Oy [T 0(8a — A}i’)} :
G<li<<lp_1 a=1

To enable us to evaluate =, we make an assumption of independence for the {Agi)}

The Poissonian random graph ensemble is known to be tree-like in the large N limit,
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meaning that for sufficiently large IV, in the absence of a vertex i the distance between
any two of it’s neighbours [y, lo € 0i is typically either infinite or of order very much
larger than the number of steps required for the convergence of the belief propagation
algorithm. The result of this is that we may take the {Agi)} to depend only upon their
local environment and not on each other. Moreover, the Poissonian random graph
ensemble lacks any correlation between the degrees of neighbouring vertices, making
the {Al(i)} independent of k;(C'), and thus each other, allowing us to write as N — oo
k—1
E {Cijcill < City_ O ey () H 6(Aq — Az(i)) }

a=1

(2.23)
~ B{CyiCi, -+ Cit, 00 | H E(5(A0 - A7) ‘CHQ —1).

To complete the computation of the ensemble average, we introduce a generating

function with fields h = {h;;}, associated to the edges of the graph, let

Z(h) =E (616,]61(0) H Bhijclj> s

i<
so that
0 0
E{Cz'jl : ”Cijk(sk‘,ki(c)} = Ohy, 8hiij(h) . (2.24)

For Poissonian random graphs, we have

P(C) = H [ 6ci;1 + (1 - %) 5()”,0] :

1<j

and thus, taking a Fourier representation for the degree constraint,

Z(h) = ZP(C)%/_ exp {zw (k: ZC”> +Zh]lCﬂ} dw

C =1 I<j

™

g [ T ] T B o

j<lz#i

Applying (2.24), we obtain

| 3 E{Cz‘jl T Cz‘jk(sk,ki(C)}
k —c

() @) 5 [ g e — S
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which is simply the limiting Poissonian degree distribution p(k). Returning this and

(2.23) to the calculation started in (2.22) we reach

kp(k) [ ( 1 )
r(A) =5 2R dAar(A) |6 ([ A+ ————— ] . 2.25
. Ek: ¢ /“;[1 (&) TS TS (229

In this way, we have obtained from the cavity equations a self-consistency relation
(4)

for the distribution of solutions A"/, which is valid in the large /N limit for Poisso-
nian random graphs. To compute the ensemble average spectral density, one may
introduce another density

#(A) =E5(A - A,),

which specifies the ensemble average spectral density by

1
A) = lim —Im [ 7F(A)AdA.
p(A) = lim —Im [ 7(A)

A very similar calculation to the one given above determines 7 in terms of 7 by

b 1
7(A) =" p(k) / [H dAaw(Aa)]é <A + —) . (2.26)
k a=1

24 Yao1 Aa
To reconnect with other methods, we note that equations equivalent to (2.25) were
derived using replicas in [Dea02] and [Kiih08]. The same result was also obtained
by techniques more closely related to the cavity method in [BL10], in which the exis-
tence of a unique density 7 satisfying (2.25) was also proved. The effective medium
approximation as presented by Dorogovtsev et al [DGMS03, DGMS04] is recovered
from (2.25) by making the simplifying assumption 7(A) = §(A — Agma).

2.6.2 Numerical solution by population dynamics

For the Poissonian random graph ensemble at least, and probably many others in
general, the solution to (2.25) is unlikely to have a simple form. For example, it was
proved by Golinelli [Gol03] that it must contain contributions from a collection of

delta peaks dense in R. We seek to make further progress via numerical methods.

55



Just as the cavity equations for a single instance can be solved numerically by iter-
ation, so too can the distributional recursion equation (2.25). The idea behind the
method is to approximate the distribution 7 by a large empirical sample, which is

repeatedly updated at random.

Suppose k is a random variable drawn from the distribution with law kp(k)/c and
Aq,...,Ar_; are independent random variables drawn from 7, then equation (2.25)

implies that the dependent random variable
k-1 -1
A= (—z = Aa> (2.27)
a=1
also has probability density 7. Starting with a large sample {A1,..., Ay}, the popu-
lation dynamics algorithm works by iteratively replacing each member of the sample
with a new value drawn at random according to (2.27). Once an approximate sample

from 7 is obtained, an approximate sample from 7 may be generated by the same

method. A simple implementation may run as follows:

Algorithm 3

1. Generate an approximate sample from 7

(a) Initialise a population of M numbers Ay, ..., Ay € CT

(b) Repeat for a predetermined number of steps:

Foreachm e {1,...,M}

i. Select a degree k at random according to kp(k)/c

ii. Select uniformly at random k — 1 members of the population and label
them Al, e aAk‘—l

iii. Replace

k—1 -1
A,, = <—)\—z‘5—ZAa>
a=1
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2. Generate an approximate sample from 7:

(a) Initialise a population of M numbers 31, e A M ECT
(b) Foreachm € {1,..., M}
i. Select a degree k at random according to p(k)
ii. Select uniformly at random k members of the sample generated in step
1 and label them A, ..., A
iii. Put

& —1
ﬁm = <—)\—i5—ZAa>
a=1

3. Output an approximation to the spectral density at A:
1

It is also possible to extract an estimate of the unregularised spectral density (pro-
vided the point A does not coincide with the location of a delta peak) by, for example,

sending ¢ — 0 during the course of the algorithm.

Figure 2.5 shows both the regularised and unregularised results of population dy-
namics for the Poissonian random graph ensemble of average degree c = 2. A popu-
lation of size M = 5 x 10* was used and the output was averaged over 2000 iterations.
At ¢ = 0 only the non-singular part of the density is visible, whilst the inclusion of a

finite regulariser makes visible some of the dense collection of delta peaks.
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Figure 2.5: Results of population dynamics at ¢ = 0 (black) and ¢ = 0.0016 (grey) for

the Poissonian random graph ensemble of average degree ¢ = 2.
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Beyond Poissonian graphs

3.1 Graphs with generalised degree correlations

3.1.1 Ensemble average spectral density

In the investigation of spectral density, the most commonly studied random graph en-
sembles are those in which the degrees of neighbouring vertices become independent
in the limit N' — oo. This class includes the Poissonian random graphs considered in
the previous chapter and references [RB88, BG01, BM99, NT07, NR08, SC02, Dea02],
and graphs with a specified degree distribution [Kiih08, BL10]. Unfortunately, these
simple ensembles may not provide at all realistic models for real-world complex
networks, which can feature detailed correlations between neighbouring and non-
neighbouring vertices. A few results have been obtained for the spectral density of
random graph ensembles with more complex topologies, such as an approximation
scheme for graphs with degree correlations [DGMS03] and numerical investigations
of some other ensembles [FDBV01]. However, beyond these examples there is little

further research.

In the previous chapter, we saw how the cavity equations derived for single instances
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of tree-like graphs may be used as a starting point for the calculation of a closed ex-
pression characterising the ensemble averaged spectral density of Poissonian random
graphs. In the present subsection, we will show that the same cavity equations may
be combined with a more detailed analysis of local graph statistics to determine the
mean spectral density of random graph ensembles featuring much more complex de-
gree statistics. A concrete example of such an ensemble is introduced and analysed
subsequently, and the theoretical results are compared with numerical simulations

later in the section.

To capture the effect of increasingly complex graph topologies, we base our analysis
on a generalised notion of degree, constructed by enumeration of walks. Define the
[-th generalised degree of a vertex i in a graph with adjacency matrix C, denoted as
k:gl) (C), to be the total number of walks of length [ starting at vertex i. In terms of the

connectivity matrix, this is given by the recursive definition
! > !
0 ~1
K20y =1, k(€)=Y Cykl™P(C) forl>1. 3.1)
j=1

We consider generalised degrees up to some fixed radius L, introducing the L-vector

ki(C) = (ki(l) @),---, kZ(L)(C)). The first component of k;(C) is simply the degree of
(1)

vertex i, and so we will usually refer to it as k;(C), rather than k; ’(C). Importantly,
it follows from the definition (3.1) that the generalised degree of a particular vertex
contains information about the generalised degrees of its neighbours, thus providing

a device with which to study the effect of correlations between vertex degrees.

The calculation of the ensemble average spectral density of Poissonian random graphs

presented in the previous chapter was based on an analysis of the distribution
n(8) =E (s5(a-aP) |cy =1) , (3.2)

where the {Agj )} are the solutions to the cavity equations (2.13). That the final ex-
pression for the spectral density is written entirely in terms of this quantity implies

that it carries enough information to characterise any effects of structure of the graph,
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although the self-consistency equation derived (2.25) depends only upon the degree
distribution p(k).

To study graphs featuring correlations between generalised degrees, a quantity ex-
pressed in terms of the degree distribution alone will no longer be sufficient since
additional structure is present. The relevant statistical properties may instead be cap-

tured in the joint distribution

P ({d}i k)
P N (3.3)
= Jm B\ = Gkonk D Ok, @0 Oy (0., Ciin e Cu |
=1 J1<e <Jk
describing the probability of finding a vertex whose neighbour has generalised degree

k and is connected to k vertices with generalised degrees {d;}}_,. Various marginals

of (3.3) will play important roles in the forthcoming analysis, namely

1. Summing over all {d;}¥_;, one obtains the marginal

N
. k kp(k
=1

N—oo C

where p(k) = limy_ E (1/N) Zf\; 10k, (0),kCij is the generalised degree distri-

bution

2. Summing over all but one of {d;}¥_,, we find the probability of an edge joining

vertices of generalised degrees k and d,

N
. 1
P(k,d) = lim E (cW ;5ki(0),k5kj(0),d0ij> :
and the conditional distribution P(d|k) = P(d,k)/P(k)

3. Important roles are also played by the conditional distributions

P({dt}lelk) =P <{dt}f:17k) /P(k),
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and

P({d}=! |k, d) = P ({di}y k) /P(d ).

Suppose we wish to compute the ensemble average spectral density of tree-like ran-
dom graphs for which we know the distribution P ({dt}le, k). In a general case, we
can no longer expect to find a closed expression for the distribution of all cavity vari-
ables (3.2) which will capture the full detail of the spectral density for such ensemb]es.
Instead we work with a collection of distributions, describing the statistics of cavity
variables associated to pairs of vertices with specified generalised degrees. For each

k and d introduce

r(Alk,d) = (5(a - aY) ‘ Cij = 1, ki(C) = k, I (C) = )

1 .
" Phd) (cN > Gty c)9(A - A,@)) |

i,7=1
By summing over all possible configurations of vertices neighbouring a vertex of

given generalised degree, we may use the cavity equations (2.13) to write

k—1
71-(A|k’d) = Z / [H dAa] E(Al"">Ak—1ad1"">dk—1)

dl---adk)—l a=1

(3.4)

oofar L),
Z+ Y 010

where

E(Al,...,Akfl,dl,...,dkfl)
1 -
- P(k:,d)E<cW ;5’“7’“(0)
Cisarnon T ) (A, — AN .
Z ij9d,k;(C) H |: ila%da, ki, (C) ( «a la)

j<hi<..<lp_
As in the calculation of the ensemble average spectral density for Poissonian graphs,
to evaluate the quantity = we make an assumption on the behaviour of the cavity
variables {A{"};cs;. In that calculation, it was assumed that all A" would be in-

dependent. For more general ensembles, such a strong assumption is not generally
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correct: A{” depends on the degree of vertex [, which can be strongly constrained by
the generalised degree of 7 and its other neighbours. Provided, however, that we are
dealing with a tree-like ensemble, we are able make the weaker assumption that the
{A"}1cp; are independent when conditioned upon the generalised degree k;(C) of

vertex i. We write, for large N,

E(Ar, . Agg,dy, e dg )

N k=1
~E (c];v Y Okkie) Y. Cibaror ] [C“a 5da7kla<0)})
i=1

j<hi<..<lp_q a=1
k—1
< [[E (6(Aa NS ‘ Ca. = 1, k:i(C) = k, ki (C) = d)
a=1

k-1

~ P({do}iZi |k, d) [] m(Aalda k).

a=1

And thus from (3.4), we obtain for each k and d the relation

m(Alk,d) =

S PUda Yok K, d) / rHl AAu7(Ad|da k)] B (A + ;> &)
di..djy_1 e a=1 ’ + SR A
Equation (3.5) describes a self-consistency relation for the collection of distributions
{m(A|k,d)},q - In possession of distributions satisfying this relation, one may recover
the spectral density by performing a very similar calculation to that above, this time

decomposing into a sum over the possible constrained generalised degrees

p(A\) = lim Im Zp / (Alk)d (3.6)

eN\o0 T

where 7(A|k) is given by

7(Alk) =
k i 1
dZd P({da}E_ k) / [11 dAaT(Aqlda, k)| 0 <A TS A . Aﬂ) :

In this way, the mean spectral density of tree-like graph ensembles with specified
correlations between generalised degrees can be computed by finding distributions

satisfying equation (3.5).
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At first sight, the above equations are far more complicated than the corresponding
result for Poissonian random graphs, indeed we must now work with a potentially
infinite collection of distributions. To connect with the earlier result, simplifying as-
sumptions about the generalised degree statistics can be made in order to reduce the
above equations to a more manageable form. For example, consider the case in which
we take L = 1 (that is, we consider only ordinary degrees) and furthermore assume
that degrees of next-nearest neighbours are correlated only through the central vertex,

ie.
k k—1
P({dt}f:1]k> ~[[P@lr), and P<{dt}f;11]d, k:) = [T Plk). (3.7)
=1 t=1
In this case, writing 7(Alk) = Y, P(d|k)n(Ald, k), we obtain from (3.5)

1
T(Alk) = zd:P(d\k:)/ b (A + m) . (3.8

and the spectral density of such an ensemble is then given by

d—1
[[ d2an(Aald)
a=1

1
A) = lim —1 T(A)dA 3.9
p(Y) = lim —Im [ #(A)dA, (39)

where

k
[ daam(Aalk)

a=1

IISESTN

k

1
5 <A T m) . (3.10)

Further simplification occurs if we remove all degree correlations entirely, putting
P(dlk) = P(d). In this case we find 7(Alk) = w(A), and we recover the equations
(2.25) and (2.26), derived in the previous chapter for Poisson graphs, which we now
see hold for graphs with arbitrary degree distributions in the absence of degree cor-

relations.

3.1.2 The constrained generalised degree ensemble

The calculation above provides a general procedure by which an approximation to the

spectral density of any random graph ensemble may be computed from knowledge
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of the statistics of generalised degrees. In the absence of additional correlations not
captured in the joint distribution (3.3), this scheme is exact in the N — oo limit. For
definiteness, it is desirable to have a concrete example of a random graph ensemble

for which this holds.

In [BCV08], an ensemble was introduced in which the generalised degrees of each
vertex are predetermined, and edges are drawn with a bias designed to induce cer-
tain correlations between generalised degrees. This so-called constrained generalised
degree ensemble will provide the example we seek. Following that work, we define
the weight function
N
W(C) =T [ Qkik)oc, 1 + (1= QK k) oy 0| [[mcrp . GID

- LN .
1<J i=1

where {k;} | are taken to be arbitrary, cis the average ¢ = (1/N) .~ | k;, and Q(k, d)
is a symmetric, non-negative function. After normalisation, this weight specifies a

probability density for adjacency matrices via

_ W)
Yo W)

Notice that for each vertex i, the generalised degree k;(C') is constrained by (3.11) to

P(C)

be precisely k;. For this reason we also refer to the {k;}Y, as generalised degrees and
will often drop from the notation the dependence of k;(C) upon C. By appropriately
specifying the function @), it is possible to manipulate the frequency of edges between
vertices with specified generalised degrees, thereby introducing correlations between

the degrees of nearby vertices.

This ensemble is specifically designed to be amenable to analysis in the large NV limit,
whilst allowing the degree statistics of the graphs to be tuned by choosing the gen-
eralised degrees {k;} and the function Q(k,d). This was demonstrated in [BCV08]
with the computation of the entropy of the ensemble, and in [VCO08] the Ising model

is analysed on such graphs in the simpler case of L = 1.
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To apply the previous calculation of the spectral density of graphs with correlated
generalised degrees to ensembles defined by (3.11), it is necessary to first determine
that such ensembles are indeed tree-like in the large N limit, and then to compute the

distribution P ({d;}}_,, k) and its relevant marginals.

Since the generalised degrees are constrained to certain values, we take the gener-

alised degree distribution p(k) to be given deterministically by

1 N
k)= — Ot 1.
p(k) N; K.k

which we assume is suitably well-behaved in the limit N — oo that the dependence

upon N may be suppressed in the notation.

Statistics of cycles

We begin by computing the asymptotic mean number of cycles. For n > 3 define

ey = Jim B | o 3 CunCunsy - Co 0n G | - (3.12)
distinct

We will evaluate the N — oo limit here in two stages, first performing a saddle-point

calculation to determine E (Cy,q, - - - Cy,,0, ) up to leading order in N, before returning

the result to (3.12) and completing the calculation of the limit. The introduction of

a generating function, as employed in the previous chapter for the simple case of

Poissonian graphs, will again prove useful. Introduce fields h = {h;;}, which are

taken to be symmetric (i.e. h;; = hj;), and let

Z(h) =Y W(C) [ "%, (3.13)
C 1<J
so that
1 d d
E (CU1U2 o Cvnvl) Z(O) |:ah'l)11)2 ahvnm Z(h):| h_O (3.14)



It is helpful to write the Kronecker delta degree constraints appearing in (3.11) in
a Fourier representation. Introducing IV vectors w; of L Fourier variables each, the
definition of generalised degree, given in equation (3.1), is enforced by

L N
T dw; . . l -1
Ok (C) ki = /ﬂ (2rm)L exp (zwi ki — g wi() g Cl-jk‘]( )) .

- =1 j=1

In this way, the weighted sum over all C' in (3.13) is easily performed to gives for large

N dw; N - ‘
[T 55] (T ) T - ot

c . 1),.(1— 1),(1—
+ NQ(k“ kj)exp <—z g <w2( )k§ Vg w]( )ki( 1)> + hij> }
(3.15)

N L M) (=1, () (-1) y
exp{% > Q(ki,kj)<e_’21—l<wi 6o ) ) L

1,j=1
We first examine the normalisation constant Z(0). The double sum over vertex indices

above is decoupled through the introduction of the order parameter

N L
1 : 0 5(1-1)
ok, d) = — 2_;5“ exp <—z ;wi d , (3.16)
giving

N oL (W=D (D (-1
3" Qkiky)e G ):N22Q<k,d>w<k,d>w<d, k).
i,j=1 k.d

The definition (3.16) is enforced by a functional Dirac delta, which we express in terms

of a conjugate order parameter 1. All together, we may write

200) = [(DoDv) exp (NF(o0))

Figa) = 5 3 Q) [olh, )l ) — plE)p(a)] — 20(k. dyplh.d)
(3.17)

d
1 ™ dwl . i L u)(,l)d(lfl)
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The integration over Fourier variables in the last line can be performed explicitly by

expanding the exponential in Taylor series,

™ d ; . - )
/ (27L:)L o (Zwi kite) wkid)e iDL w0 1)>
r ]

¢ (M dw; n g )

- ? i - ke . iy wy A

o /W @)L exp (iw; - k;) < E Y(ki,d)e 1 >

s (3.18)

G 2 Ulkidy) ki, de H / o0 (K -oms V)

ki! Z ¢(ki’d1) ¢(kzadk H(;k(l) 1 d(l 1) -

Here, the Kronecker delta corresponding to I = 1 forces s = k;, which results in the
cancellation of the sum over s. To simplify the equations a little, it will be convenient

to introduce a shorthand notation for the constraint. Let

L
Hk’ ({dr}le) = Hék(l)7zlﬁ_1 d$l71) .
=1 -

Returning this and (3.18) to equation (3.17), we may write

Fip.) =5 3 (k. a) [go(k,dw(d,k) - ()] - 200k Dp(r.) )

k,d

+Zp )log Z Gk, di) - Pk, dy) T ({dr 1) -

dy,...,dy

We move on now to the calculation of E (C’vw2 e Cvnvl). For simplicity we enforce

the periodic boundary conditions v, +; = v1 and vy = v, then applying the deriva-
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tives in (3.14) to equation (3.15), give, for large N,

E <Cv1v2 T Cvnv1>
C T N
[ areonea] [ M (1)
N L 1), (-1 D (-1
QL Z Q(ki, kj) (e_izll< f)k( )b Ok )) B 1)}

3 (i) |
[1DeD0) exp (N7 (0. 0)
[0eD0) exp (N A, 0)

(3.19)

)

Folpt) =5 (@(k d)| o (k, d)p(d, k) —p<k>p<d>] —2w<k,d>@<k,d>>

N i

t=1 1=1

N
exp { Z <iwi ki + 621#(1%, d) i1 wgz)d(z_1)> } ‘
d

i=1

For the integration over Fourier variables here, we distinguish two cases: if ¢ #
v1, ...,V We recover expression (3.18), whereas if i = v; for some ¢, the same tech-

nique gives

oL (0 -1
/7r dw,, ez‘zlewff)(k‘” kb = ) e g kg d) e =1 v alt=1)
—r (2m)F

c(kvt_Q)

(. _ o\ Z w(k7d1)"'w(kadk‘vt*Q)Hk(kUH-l? v — 17{d7"}kvt )

ky,, — 2)!
( vt ) diy..dp,, —2

Together, we reach

Folont)) = —logH (b = 1)

Zdl""’dkvt_Q ¢(k’ dl) o ¢(k’ dkvt_Q) Hk (kUtJrl, ve—1> {dr}kvt_Q)
Yy....a, Wk dr) -k, di) T ({d })) :
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and returning this to (3.19) yields
E (Cvlvz Tt Cvnm)

5k (ky, — 1
= < H % Q(kvw kvt+1)

t=1

ko, —2
Zdlv---adkvt—Q ¢(ka dl) T ¢(k, dkvt—Z) sz (kthrl, kvtfl, {dr}r:t1 ) >
X b
F(ph)

Zdl,...,dk Y(k,di) -k, dy) I ({dr}le)
where the measure is defined by
/{wa} exp <Nf(<p,w)> ()
/ {DyDy} exp <Nf (%W)

() Fp) = (3.20)
In the limit N — oo, this measure approaches a functional Dirac delta centred at the
saddle point (¢, 1,) of F(p, ). Extremising F(p, ) with respect to ¢ and 1, we

obtain the saddle-point equations

w*(k7 d) - Q(kv d)@*(dv k) >

kp(k) Zdlv---adk—l Vu(k,dy) - - (R, di—1) I (d, {d, f;ll)
Sy xRy dy) - (R, di) T ({dr )

The asymptotic mean number of cycles of length n is then given in terms of 1, by

SO*(kv d) =

n

e = tm = 3 T [Pl =D o, k)

v, ,on t=1

distinct _ (322)
zdl""7dkvt*2 w*(kv dl) e w*(k7 dkvt72) I[k: (kvt+17 kvt—lv {dr}rzl )
X

D r oy, Ox(kydy) - (K, dy) T ({d 17—,

Note that there are N!/(N —n)! terms in the sum over ordered collections of n distinct

vertices, and each term is of order N™", so we can conclude that the asymptotic mean
number of cycles of length n is an order 1 quantity, regardless of the detail of ) and

p(k) (provided its first two moments are finite).

For general L and @, solution of the saddle point equations (3.21) is likely to be a

cumbersome task, making exact evaluation of C(n) impractical. We are, however, able
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to obtain exact results for some special cases which offer significant simplification. For
instance, if we are interested in constraining only degrees, setting L = 1 yields I, = 1
in all of the above. Hence, introducing ¥ (k) = >, ¥, (k, d), the saddle point equations
(3.21) reduce to

w(k) = 32 Qe ) D (w(@) (3.23)
d
and (3.22) becomes
T 1 - kUt(k’Ut - 1)Q(kvtvkvt+1)
Cln) = Jim o IZ El N (ke )W(kny,,) (3.24)
distinct

Further simplification occurs in the event that the function @ is separable, in which
case it is easily determined from (3.23) that Q(k,d) = U(k)¥(d). Assuming the de-
grees of any collection of n vertices to be approximately independent for large NV, we

obtain from (3.24) the explicit formula

C(n) = % (Z kpc(k) (k- 1)) .
k

This result was derived for the special case n = 3 in [BJK04] using techniques which

are easily applied to recover the same result as above for general n.

Statistics of stars

The same techniques may be employed in the calculation of the joint distribution

P ({dt}le’ k)

N
, k
= lim E (CN Y ke Y 5kj1,d1"'5kjk,dkcij1-“0zjk)
=1

N—oo . .
J1< <Jk
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for the constrained generalised degree ensemble. Proceeding as above, one arrives at

— ki!< Hki ({kjt }flzl) ﬁ [kth(ki7 kjt)
Yy, Plkisdr) (ki di e, ({dey) 1) cN

ki, —1

Zdl,...,dkjt,l w(kjw di)- - w(kjw dkjtfl) ijt (kiv {dr}r]:tl )] >

X k; 9
Zdl,...,dkjt T’Z)(kjt’ dy)- - Tzz)(kjt? dkjt ) Hk’jt ({dr}rjztl) F(e,9)

where the measure is the same as found previously in (3.20). At the saddle point

(¢4, 1), we may use the above to evaluate (3.3), obtaining

k . w*(k7d1)w*(kvdk)ﬂk({dt}le)
P k) = PO ) i e e (V)

For the various marginals appearing in the computation of the ensemble average

spectral density, we obtain
P(d’ k) = Q(k? d)gD*(kj, d)@*(da k)a

also

k _ ¢*(k’d1) "'w*(k’dk)ﬂk ({dt}zltgzl)
PUdilk) = s e~ (s do (]

and similarly
Gulkeydr) - (R, di )T (d (e}
sy Vel dr) i )T (d, {3 )

We now have access to all the ingredients necessary to compute the spectral den-

P({d:}=) k. d) =

sity for the constrained generalised degree ensemble. Having determined that the
graphs produced are indeed tree-like, and derived expressions for the generalised
degree statistics, equations (3.5) and (3.6) may be applied to determine the spectral
density. It is worth mentioning that this task may also be accomplished using the

replica method, as in [RPVT10], with identical results.

We also point out that considerable simplification is again possible in the case L = 1.

In this circumstance we find

P(d, k) = (

C

kp(’f)) (dp(d)> Q(k, d)



and

Pd|k) = ( (3.25)

where ¥ satisfies the simplified saddle point equation (3.23). Moreover, the star dis-

dp(d)> Q(k, d)
U(k)¥(d)’

tributions now factorise as in (3.7), and the spectral density is determined by the sim-

plified equations (3.8) and (3.9).

3.1.3 Numerical simulations

For general ensembles, solving the set of distributional recursion relations specified
in (3.5) by hand may well be out of the question, however we can still extract mean-
ingful results through the use of numerical simulations. The population dynamics
algorithm (Algorithm 3) described in the previous chapter can easily be generalised
to approximately generate large samples from the distributions described by equa-
tions (3.5) and (3.8), which can then be used to predict the ensemble average spectral

density via equation (3.6) or (3.9).

To assess the results obtained it will be desirable to compare with data gathered from
numerical diagonalisation of randomly generated graphs from ensembles with the
same degree statistics. In the case L = 1, this can be achieved through the use of
Algorithm 2, given in the introduction. That algorithm takes as its input a degree
sequence k and a degree correlation function P(k, d), however, our results are given in
terms of the degree distribution p(k). We therefore need to generate degree sequences

which are compatible with p(k). We discuss two possibilities:

Random degrees:

For each instance, the degrees are chosen independently randomly from p(k).
There is a chance that no graph can be generated that exactly fits the resulting

degree sequence k, in this case, the degree sequence is said to be non-graphical.
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To deal with this, one may choose to check the graphicality of k before gen-
erating graphs. There are various ways to check graphicality, for instance, a
theorem of Erd6s and Gallai states that a degree sequence kwithky > -+ > ky

and S°N | k; even is graphical if and only if, foralln = 1,..., N

n N
Z ki <n(n-1)+ Z min{k;,n}.
i=1 i=n+1

See [BD06] for a discussion on graphicality and the generation of random graphs.

Static degrees:

Select a set of positive integers { N, N1, Na, ...} such that N = ), N and for
each k, N /N is approximately p(k). We then generate random degree sequences

with N1 nodes of degree one, N, vertices of degree 2, and so on.

Although no mathematical analysis of Algorithm 2 has been conducted, experimental
evidence suggests it yields graphs with the desired properties and produces almost no

failures, provided one selects the appropriate method of generating degree sequences.

Example: power-law degree distribution

Let us consider a simple random graph model with correlated degrees and a power-
law degree distribution, as is often observed in empirical studies of real-world com-
plex networks. We choose P(k,d) ke where 7 < 1, with a maximum value for
k being kmax. In the limits kpax — oo and 7 — 1, this choice results in a power-law
degree distribution with exponent 2, though for the purpose of simulations, we will

take 7 = 0.999, and keep kpax finite.

Using Algorithm 2, 500 random graphs of size N = 2000 were generated with the
desired degree statistics. For this value of N, is it necessary to take a rather low max-

imum degree knmax = 45 (< VN ); any larger and additional correlations occur be-
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Figure 3.1: Comparison of the results of population dynamics (black line) and direct
diagonalisation (grey histogram) for the choice P(k,d) 7k, where 7 = 0.999 and
Emax = 45. Algorithm 2 was used to generate 500 graphs of size N = 2000, whose

eigenvalues were used to construct the histogram.

tween high degree vertices [CBPS05], and the failure rate becomes unacceptable. Al-
ternatively, one could have larger values of kp,.x by increasing the graph size, but that
would make the numerical diagonalisation computationally expensive. The degree
sequences were generated randomly and checked for graphicality before generating

the graphs.

Figure 3.1 shows a comparison between the results of population dynamics and a

histogram of eigenvalues from 500 random graphs of size N = 2000.

Some salient features of the spectral density can be explained in terms of the underly-
ing graph structure. First we note that the spectral density for kp,ax = 45 and 7 = 0.999
has a bounded support, in fact, a simple application of the Perron-Frobenius theorem
shows that the support of the spectral density is bounded by k.« (although here

this bound is clearly not at all sharp). The picture changes dramatically in the limits
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kmax — 00 and 7 — 1. The mean degree can be calculated for kp,.x = 00,

1
o zz?d:l de o Zzozl 1—7k

Ty 1okd
Zk,d:1 k;T Zzozl ln (ﬁ)

and simple integral bounds show that ¢ — oo as 7 — 1. We can thus conclude that

)

(since the variance of the spectral density is given by the mean of the degree distribu-

tion) the spectral density will be heavy-tailed in these limits.

Reasoning further, one may suppose that, for vertices of very high degree, it may be
sufficient to consider only the mean behaviour of the neighbouring vertices. Taking
the approximation ¢(A|k) ~ 6(A — Aj), we obtain from (3.8) the correlated form of
the effective medium approximation (EMA) derived in [DGMS03],

P(d|k)
Z ’__ tlAd

As shown in [DGMSO03], this equation can be used to compute the approximate be-
haviour of the tails of the spectral density, specifically, for very large |A\| we have
p(\) ~ 2k\p(ky)/|A|, where ky = A? + O(1). The contribution to the spectral density
made by vertices with high degree was analysed more rigorously in [MP02]; stated
roughly, the largest eigenvalues of graphs with heavy-tailed degree distributions oc-

cur close to the square roots of the largest degrees.

Figure 3.2 shows the results of population dynamics simulations in the tail of the
density for a much larger maximum degree of k,.x = 400. The approximate curve
given by the EMA gives a reasonable fit with the result of the simulation, and, as
expected, the density drops dramatically shortly after \/kmax = 20. The contributions
to the density coming from high degree vertices can be isolated in the output of the
population dynamics algorithm; several such contributions have been included in

Figure 3.2, each of which exhibits sharp peak close to V%.

The other main feature of the density shown in Figure 3.1 is the presence of Dirac

delta peaks at -1, 0 and 1. The distributions p(k) and P(k|d) can be used to give
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Figure 3.2: Detail of the tail of the spectral density for the choice P(k,d) oc 7%, where
7 = 0.999 and kpax = 400. The black line is the full result from population dynamics,
with the labelled thin grey lines being isolated contributions from vertices of high
degree. The thick grey line shows an estimate for the tail derived from the effective

medium approximation.
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lower bounds for the weight of these peaks by computing the probability of specific
configurations of vertices in the graph. For example, every connected pair of vertices
of degree 1 contributes a pair of £1 eigenvalues to the spectrum. For the choice kpax =
45 and 7 = 0.999, a lower bound for the weight of the peaks at £1 can be found by
p(1)P(1]1)/2 = 0.0031. This compares well with the data from direct diagonalisation,
giving a weight to the peaks of 0.0037 each. In the limits ky.x — coand 7 — 1, we

find

p(l)P(1|1):T<Zln (1_—17.k>> —0 as 7—1,
k=1

so this contribution to the density is vanishing in these limits. A lower bound for the
weight of the peak at zero can be found in terms of the size, K, of largest collection of
mutually disconnected vertices, specifically, the weight is at least 2K/N — 1. A crude
estimate for K can be constructed by counting the frequency of vertices connected

only to vertices of higher degree. For the choice kpax = 45 and 7 = 0.999 we obtain

k;max k;max k
2> p(k) ( > P(d\k)) —1=10.1041.
k=1

d=k+1
This time the data from direct diagonalisation gives a weight to the peak of 0.1828, so

whilst the bound is certainly not sharp, it is at least the right order of magnitude.

Example: levels of approximation

Suppose that ones knowledge of a graph ensemble is limited solely to a set of sta-
tistical properties captured by, for instance, the degree distribution p(k) and the con-
ditional distribution P(k|d). Whilst in a few cases such quantities suffice to fully
characterise the graph ensemble, this is not generally true. In the following, a simple
example is used to illustrate the effects on the spectral density caused by reducing the

amount of information known about the underlying graph ensemble.
Put L = 2 and consider a graph ensemble with generalised degrees taken from the set
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{Ka2, K3, K4}, where

2 3 4
R = , K3 = , Rg = . (326)
7 6 8

This ensemble is composed of graphs with vertices of degrees 2, 3 and 4. Moreover,
those vertices of degree 2 must be connected to one vertex of degree 3 and one of
degree 4, and those of degrees 3 and 4 must be connected to vertices of degree 2 only.

A portion of such a graph is shown in the leftmost part of Figure 3.1.3.

Simple counting arguments give the following expressions for the degree statistics:

12 4 3
k) = —0ko+ —0k3+ 20
p(k) = 1502 + 7503 + 750k

1 1
P(k|d) = 6k,204,4 + Ok,2043 + <§5k,3 + §5k,4> 0d,2

knowledge of which does not fully characterise the graph ensemble. The conditional
distribution P <{dt}f;11 |k, d> is more restrictive however;
P(ks|ko,k4) =1, P(kalko,k3) =1,
(3.28)
P(ko, kolks, k3) =1, P(kg, Ko, Ko|ka, ko) =1,
or zero otherwise. The deterministic form of the distributions (3.28) mean that the

equations (3.5) may in this case be solved by hand, in particular, we have 7(A|kq, kp) =

(A — Agp), where the {A,  } satisfy

1 1
A273:77 A2,4:77
—Z — A472 —Z — A372 (3 29)
Ago = ! Ayo = ! ‘
327 —Z — 2A273 ’ 427 —Z — 3A2,4 '

To find an expression for the spectral density we are required to compute the joint

distribution P({d;}*_,|k), which in this case reads

P(K/3?K/4|K/2) = %, P(K/4,K/3|I{/2) = %,

P(K25K25K2|K3) - 15 P(’{2ali2ali2,/€2|li4) - 15
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Figure 3.3: Left - a typical neighbourhood of a vertex of degree 3 in a large random
graph specified by (3.26). Middle - a neighbourhood of a vertex of degree 3 in a
random graph with degree distribution (3.27) and P(k|d) given by (3.27). Right - a
neighbourhood of a vertex of degree 3 in an uncorrelated random graph with degree

distribution (3.27).

or zero otherwise. This yields

1 12 4 3
A)=—lim —1I .
P( ) 61\1_% 197 m A+ e+ A372 + A472 + A+ e + 3A273 + A+ + 4A2,4

After solving (3.29), plugging the solutions into the above equation for p(\) and care-

fully analysing the poles, we may write

() = 1—596()\) 4 1395@ +V3) + 1395@ —V3)

12)202 — 7|3/ =25 — X2(=7 + A2)(14 — 7A2 + \%)
19| A (A2 — 4)(A2 — 7)(\2 — 3)]

Ip(|A]) (3.30)

with the domain D = [A7,A\Z] U [A\*,A\]] and for o, 8 € {—, +},

A = %\/14+ﬂ2\/21+o¢8\/5. (3.31)

This example was chosen specifically to keep the local structure of the graphs deter-

ministic and thus make equations (3.5) exactly solvable in the case L = 2. If we reduce
the statistical information we have about the ensemble, either by taking L = 1, or fur-

ther by assuming the degrees to be uncorrelated, the local graph structure becomes
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random, and the resulting expressions are no longer exactly solvable. Figure 3.1.3

illustrates the randomising effect of these simplifications.

Population dynamics algorithms were used to compute the spectral density of ran-
dom graphs with degree distribution (3.27) and degree correlations (3.27), as well
as uncorrelated random graphs with degree distribution (3.27). The results of these
simulations are shown in Figures 3.4(b) and 3.4(c), alongside histograms of the eigen-
values of 1000 graphs of size N = 1900, generated using Algorithm 2. Figure 3.4(a)
shows the exact spectral density given by (3.30), plotted alongside a histogram of

eigenvalues obtained from randomly generated graphs of that type.

Algorithm 2 is not sufficient to generate random graphs specified by (3.26). Instead

the following simple procedure may be used, with satisfactory results

Algorithm 4
1. Begin with three groups of vertices A, B and C of sizes 1200, 400 and 300
2. Foreachac A

i) Randomly chooseb € Band c € C

ii) If the degree of b is less than 3, and the degree of c is less than 4, connect a

to b and a to ¢, otherwise return to i)

In Figure 3.4, the effects of reducing knowledge of an ensemble (and hence increasing
randomness) are clearly visible. In addition to a general smoothing effect, which
one might expect, the most striking feature is the appearance of gaps in the spectral
density. When the ensemble is fully specified by (3.26), the continuous part of the
spectral density is divided into four disjoint components. When one specifies only
the degree distribution and degree correlations, the number of components reduces
to two, and when only the degree distribution is know, there is no gap in the density

at all.
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(b) The spectral density for graphs with degree distribution (3.27) and P(k|d)
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(c) The spectral density for graphs with degree distribution (3.27).

Figure 3.4: Comparison theoretical results (black lines) and direct diagonalisation (grey his-
tograms) for the different levels of approximation to the ensemble specified by (3.26). In plot
(a), the black line shows the exact result for the spectral density, given by (3.30), in plots (b)
and (c) the result of population dynamics is shown. Algorithm 4 was used to generate graphs
for plot (a), and Algorithm 2 for (b) and (c). In each case, 1000 graphs of size N = 1900 were

generated and diagonalised.
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This phenomenon can be heuristically explained in terms of periodicity in the random
graph ensembles. A walker moving away from a central vertex in the original ensem-
ble will repeatedly visit vertices of degree sequence {...,2,4,2,3,2,4, ...}, which has
period four. In the calculation of the spectral density, this fact in manifested in the
equations (3.29), moreover, it is known that periodicity in recursive models is directly
related to gaps in the spectral density [VM94]. In the case that the degree correlations
are specified, whilst the degree sequence of a walk is now random and therefore not
strictly periodic, it is still true that every other vertex visited will have degree 2 (see
Figure 3.1.3). This repetition with period two appears to be enough to split the spec-
tral density into two components. In the last case, where only the degree distribution
is known, the sequence is fully random without any kind of deterministic repetition

(see Figure 3.1.3), and the resulting spectral density has no gap.

3.2 Block matrix models

3.2.1 General calculation

All of the random graph ensembles considered thus far share the common feature that
cycles of all lengths are asymptotically rare, indeed the analysis has been based upon
this very assumption. An extremely simple generalisation (with some trade off in the
difficulty of computation) to certain random graph ensembles featuring an extensive

number cycles is possible through the use of block matrix models.

Let G = (V, E) be a tree on N vertices. To each vertex i € V we associate an n X n
Hermitian matrix A;, and to each edge (i,j) € F an n x n matrix B;;. A Hermitian

nN x nN block matrix A, composed of N 2 blocks of size n x n, can be constructed by
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defining the i*®, j*" block to be

A if =

Bi; it (i,j)eE and i<}

A;=4 " (3.32)
Bl. if (i,j)€E and i>j

0 otherwise.

To compute the spectral density of these block matrix models via the cavity method,
we will demonstrate an alternative algebraic derivation of the cavity equations that
does not make any analogy with statistical mechanics. Writing A for the n(N — 1) x
n(N — 1) matrix formed from A by the deletion of all blocks with at least one index ¢,

and using = for matrices similar by permutation of blocks, we may write

AN
Il

(3.33)
ik A®)

where ji,. .., ji, are the neighbours of i in G. Crucially, since G is a tree, A® has a

particular structure which can be exploited in the evaluation of the resolvent. We may
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write

Ay 0 Cj, 0

A 0 Ajkijki 0 Cjki
N t

Cl 0 Dj, 0

0 cl. |0 D;,.
(3.34)
Aj Cj 0
cl D

12

Ajkijki Cjki
c! D,
Jk;

Jk;

where the n x n blocks C; and D; are given by the appropriate parts of A®). Using
the above and Schur’s formula for the block inverse (given in Appendix B), we arrive

at a formula for the i*® diagonal block of the resolvent,

[(A - Z)flh _ (A” 2= Ay [(A@) - Z)—l] ; Ajj) _ . (33

j€di J

Repeating this calculation for the matrix AY) yields

{(A(j) _ Z)il]n' = (An‘ —z— Z Ay [(A(i)(j) — 2)71]” A;'rl) 7 ;

1€0i\j

however, given the diagonal block structure of A) shown in (3.34), we may conclude

(A0 — )7 = [(A0 —2)7"]|  and hence

—1
(A =271 = (A“ —a= Y Aa[(av -7 Ajl) . (3.36)

1€di\j
In the special case n = 1, it is immediate to see that the equation (3.36) reduces to

the familiar cavity equations (2.13) derived in the previous chapter. For general n, the
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spectral density of A can be determined from (3.36) and (3.35) by

N
0:(NA) = MLNImZTr {(A —A— is)_l}
i=1

i

As in the earlier analysis, if G is a not a tree exactly but simply tree-like, the above
expression yields an approximation to the spectral density, whose relation to the true

density is the same as in the n = 1 case.

3.2.2 Graphs with communities

We can use this block matrix construction to study a simple model of random graphs
with community structure. For this model, we take G to be Poissonian random graph
with average degree c, whilst the blocks A; and B;; are taken to be iid random vari-
ables with densities ;(A) and v(B), respectively. For ease of calculation, we take v to
satisfy v(B) = v(BT). More complicated models, incorporating features such as con-
strained generalised degrees or communities of varying size are of course possible,
however the present simple model is sufficient to study some of the strongest effects

of community structure.

The ensemble average for this model is performed easily by applying the calculation
discussed in Chapter 1 to the equation (3.36) above, yielding a self-consistency equa-

tion for a distribution 7 defined on n x n matrices A,

k—1
w(a) = 3 28 [T adadaadBar(82)u(A)w(3)
k a=1

k—1 -1
5<A<AzZBaAaB§> ) .
a=1

The spectral density is then given by

(3.37)

1
\) = lim — Im [ 7(A)TrA dA
p(N) lim T T(A)Tr ,
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where

k
7(8) = Y o) [ [ T] dAadAadBar(Aa)u(ap(5)]
g ot . . (3.38)
5l A-— (A—z— ZBQAaBg>
a=1

For relatively small block size n, the equation (3.37) may once again be solved nu-
merically using a population dynamics algorithm, the only change being to deal with

populations of n x n matrices, rather than single variables.

For a simple example, consider a graph with communities given by the complete
graph on n vertices, connected in a Poissonian random graph of average degree
¢, in which connected communities are joined by a single randomly drawn edge.
These choices correspond to v(B) = n™2 > a6 0Bas1 Il (c.d)£(a,p) 0Bea0r and p(A) =
(ITa0400:0) (TTaszp 044,1). Taking n = 5 and ¢ = 5, population dynamics was used
to solve (3.37) for this ensemble, the spectral density was then computed using (3.38).
To compare with the results of direct diagonalisation, 1000 graphs of size N = 5000
were generated. A histogram of their eigenvalues, alongside the result of population

dynamics, is shown in Figure 3.5.

As discussed in the previous chapter, in the limit ¢ — oo the spectral density of a
Poissonian random graph with average degree ¢, and edges of weight 1/\/c, con-
verges to a semi-circular distribution. We can compute a generalisation of this result
for the community ensemble considered here through a similar treatment of the self-
consistency equation (3.37) to that used earlier to derive Wigner’s Law. It is necessary
to re-weight the edges between communities, in order to keep the spectral density
bounded as ¢ — oco: we put v(B) = n" 2, O papor /T 1.0 £(ap) 9Bea0 - Expanding
(3.37) in 1/c for this case, and keeping only the terms relevant in the ¢ — oo limit, we

obtain an expression for the mean E (A),

E(A) = (Kn—A—i— cﬂ«:(BABT))*1 :
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Figure 3.5: Comparison of the results of population dynamics (black line) and direct
diagonalisation (grey histogram) for the community structure ensemble described in

the text. The grey curve shows the high connectivity limit for this ensemble.

where K, is the connectivity matrix of the complete graph on n vertices. For the above
choice of v(B), we have E(BABT) = A, /cn, where A = Tr E (A)/n. Diagonalising

K, we obtain a cubic equation for A,

n—1 1 1 1

Taking A™ to be the solution with positive real part, the ¢ — oo limit of the spectral

density is given by p(\) = lim.\ o Im AT /7. In the case n = 5, we solve (3.39) to give

the following expression:

V3 A2 —3X+18
o) = L2 fu(a) - W' (Y,
where
3= =
‘ A 18 3d(N) |,
and d(\) = —25X* + 15673 + 7202 — 1296\ + 864. The domain is given by D =

{\]d(X) > 0}. A plot of this curve is included in Figure 3.5.
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3.2.3 Sparse covariance matrices

In the previous subsections a simple model with an extensive number of ‘small” blocks
was considered. The reverse arrangement, consisting of a small number of blocks of
extensive size, has also been studied in the context of the spectral density of graphs

with communities [EK09].

Block matrix models have further applications, including the study of the spectral
density of non-Hermitian random matrices (to be explored in later chapters) and the

spectral density of sample covariance matrices, which we consider now.

Let Abe an N x M matrix, whose columns are N-dimensional zero-mean sample vec-
tors; the sample covariance matrix is proportional to the IV x [NV matrix AAT. Eigende-
composition of the sample covariance matrix provides useful information about the
distribution of samples, and it is natural to study bulk properties such as the spectral
density. For matrices A with independent entries and fixed ratio M /N, the spectral
density of AAT in the limit N — oc is given by the Margenko-Pastur Law [MP67].
Moreover, just as Wigner’s Law breaks down with the introduction of sparsity, so to

does the Marcenko-Pastur Law for sample covariance matrices.

The case of sparse sample covariance matrices with independent entries has been con-
sidered before using the replica method [NT07], with similar approximation schemes
to the EMA for symmetric matrices proposed. In the present subsection, we will ap-
ply the cavity method to a simple block matrix model, allowing us to compute a close
approximation to the spectral density of a sample covariance matrix A described by

tree-like graph.

Suppose the locations of the non-zero entries of an NV x M sparse matrix A are encoded

in a Boolean matrix C. Whilst in general C' will not be the adjacency matrix of a graph,
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the (N + M) x (N + M) block matrix

0 ¢ (3.40)
cT 0 ‘

describes a sparse bipartite graph on groups of vertices of size NV and M. Taking this

—z A
B(z; A) = ( At I) :

then the Green’s function of AAT is given by the trace of the top left hand block of
B(z; A),

idea further, if we define

N
Gz AAT) = % S Bz A);"
=1

The cavity method can be applied to B(z; A), using the bipartite graph described by
(3.40), to yield equations

A\ —1
(_Z — 2icoij ’Ail\QAl( )> if ie{l,...,N}
Ay = (3.41)

A\ 1
(_1 - Zleaz‘\j \Alilel(l)) if ie{N+1,....N+M}.

Since there are no edges either between vertices i,j € {1,...,N} ori,j € {N +
()

1,...,N + M}, the above can be rewritten in terms of only those A’ with ¢ €
{1,...,N}and j e {N+1,...,N+ M},

-1

-1
AP = (z+ > 1Al <1+ > AmﬁAﬁz) ) . (3.42)

1€di\j medl\i
An approximation to the spectral density can be recovered from a solution to (3.42)

by

-1

-1
N
1 )
&(A;A*A):;Ile (AZHE:AM (1+ S AmﬂAs,?) ) . (3.43)

1€0i medl\i
For single instances, the system given by either (3.41) or (3.42) can easily be solved

numerically using a belief propagation algorithm like that described in the previous
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Figure 3.6: Grey: the regularised empirical spectral density of a single sparse sample
matrix of Bernoulli random variable of size 3000 x 10000, with an average row sum
of ¢ = 12, at ¢ = 0.05. Black: the result of the cavity equations solved by belief

propagation on the same graph.

chapter for general sparse matrices. Figure 3.6 shows the results of a belief propaga-
tion algorithm using equations (3.41) applied to a single sparse sample matrix of size
3000 x 10000. The matrix entries were taken to be Bernoulli random variables with
the average number of ones per row given by ¢ = 12. A regularising parameter of
e = 0.05 was used. The empirical regularised spectral density for the same graph is

provided for comparison.

In the ensemble average, the equation (3.42) can easily be reinterpreted as a distribu-
tion recursion relation using the same techniques as discussed in previous sections.
The resulting expressions may, as usual, be tackled numerically using population dy-
namics. Figure 3.7 shows the results of population dynamics, both regularised and

unregularised, for Bernoulli sample with an average row sum of ¢ = 6.

In 1967 Marcenko and Pastur [MP67] proved a result for covariance matrices analo-

gous to Wigner’s Law for matrices with independent entries:
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Figure 3.7: Results of population dynamics at ¢ = 0 (black) and € = 0.05 (grey) for

sparse sample matrices of of Bernoulli random variable with average row sum ¢ = 6.

Theorem (The Marcenko-Pastur Law). Let { Ax } be a sequence of N x M random matri-
ces, where M /N = «, a constant. Suppose that for each N the entries of Ay are independent
random variables of unit variance, drawn from symmetric distributions with bounded mo-

ments. Then

. T V20 +a) = (A —a)2 -1 N
lim Eo ()\;ANAN/N> - — Is(\) + (1—a)to()), (3.44)

where S = ((1 - v/a)?, (1 + a)?), and 2+ = max{z,0}.

Applying the same techniques to the present situation as were used earlier in deriving
Wigner’s Law and the high degree limit for the community model, we consider fully
connected graphs in which the A;; are independent random variables with variance

1/N, recovering from (3.42) and (3.43)

1 1 o
=—ImA A € C" satisfi — = —
p(A) —ImA, where A € CT satisfies T z

Solving the above immediately yields the Maréenko-Pastur law (3.44).
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Spectral density of sparse non-Hermitian

random matrices

4.1 Electrostatic analogy

In this chapter, we extend the work of the previous chapters in determining the
spectral density of sparse Hermitian random matrices to the study of sparse non-

Hermitian ensembles.

The central object in our work on the spectral density of Hermitian matrices was the
Green’s function

G(zA) = %Tr (A—2)"1.

Analytic in z away from the real line (to which the eigenvalues of Hermitian ma-
trices are confined), the Green’s function provides an N-independent regularisation
of the spectral density of the Hermitian matrix A4, given by equation (1.7). At points
z = A+ig, for e fixed and strictly positive, the Green’s function can be written in terms
of a (convergent) Gaussian integral, which formed the basis for our application of the
cavity method. Moreover, the limits N — oo and € — 0 are freely exchanged, allow-

ing the limiting spectral density to be inferred from the limit of the Green’s function
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evaluated away from the real line.

For non-Hermitian matrices, this is not the case. Though the Green’s function of a
non-Hermitian matrix is still analytic away from the spectrum, the likely presence of
complex eigenvalues makes invalidates equation (1.7) and forces us to abandon the
notion of an imaginary regulariser. To apply the cavity method (or related techniques)
with the same success as in the Hermitian case, it will therefore first be necessary to

find an alternative formalism with which to tackle the problem.

A number of approaches to the study of non-Hermitian spectral density have been
proposed over recent decades, including Girko’s various integral transformations
[Gir90], Feinberg and Zee’s simple ‘Hermitization” technique [FZ97a, FZ97b, FSZ01]
and the quaternionic Green’s function of Janik, Nowak and collaborators [JNPZ97,

JNP+97, TN04, JN06, GJ07].

For the purposes of the present chapter, we will concentrate on an analogy with elec-
trostatic potential introduced in 1988 by Sommers et al [SCSS88], and used frequently
thereafter (for example in [Kho96, SCT96, Ste96, PZ07, GT07a]). The starting point for
the approach is the identity

o%i4) =~ 26O 4), @

which holds for any matrix A and is easily proved by integration (see Appendix B).

Outside of the spectrum of A, we also have

(%\ log det | (A — \)T(A — )\)] = —Tr(A-)\)"1.

The addition of a small real regulariser ¢ > 0, to keep argument of the logarithm
strictly positive, allows the combination these identities, resulting in a regularised
form of the spectral density of the non-Hermitian matrix A: we define the function

1 0 0
. T 2
0:(N\;A) NN logdet [(A—MNT(A—-X)+¢ ] , (4.2)

and then p(\; A) = lim\ g 0-(A; A).
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The same notation is used here as was employed earlier for the regularised spectral
density of Hermitian matrices, though the expressions are not the same. From this

point forward, definition (4.2) is taken to supersede the earlier usage.

In the electrostatic analogy, o-(\; A) is thought of as the charge density corresponding
to the potential ®(\) = N~ !logdet [(4 — A)T(4 — X) 4 &2].

To simplify the later analysis, we choose to separate the (4 — \) and (A — \)' terms
using the same block matrix trick as was employed for sparse sample covariance ma-

trices in the previous chapter. Introduce the 2N x 2N matrix
—ie (A=)
H.(\A) = . (4.3)
(A=NF —ie

This is precisely the ‘Hermitized’ form of (A — 1)), as introduced by Feinberg and Zee
[FZ97a, FZ97b, FSZ01]. Using the formula for the determinant of a block matrix, it is

easy to compute

det [iH-(\; A)] = det [(A — N)T(A—\) +£7], (4.4)
and thus
0e(NA) = %%% log det [iH-(\; A)] . (4.5)

Following the same steps as used already for Hermitian matrices, we arrange to
rewrite (4.5) in terms of an object resembling the partition function of a disordered
system. As always, the use of statistical mechanics terminology in this setting is for
illustrative purposes only as this construction does not describe a true physical sys-
tem. Noting that the eigenvalues of iH.(\; A) all have strictly positive real part, we

introduce 2N integration variables, organised into N-vectors ¢ and 1, so that

1 1 2N ' ¢
m:<;> /exp{l<¢T ¢T)He()\§A)(¢)}d¢d¢.

With a modest amount of foresight, we group the integration variables into pairs. For
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1=1,...,N, write

b
Xi = .

For the rest of the analysis, we treat these pairs of integration variables as vector

valued spins, interacting via the Hamiltonian
N .
g —1iA 0 A
HoXA) = > x| xi+iy x|l Y e @46
i=1 —1A g i,j Az‘j 0

The JPDF of spins for this system is given by

PO = g o0 { —Hebe )} @7

with Z(\; A) being the partition function

Z(NA) = /eXp{ —Hg(x,)\;A)}dx.

Applying the first of the partial derivatives appearing in (4.5), we find that the regu-

larised spectral density may be written in terms of a sum of local quantities,

N
7 0 .
0:(NA) = =55 > o= ((ow + i) (4.8)
=1

where (- - - ) denotes the thermal average over the system defined by (4.7), and o, and

o, are standard Pauli matrices (see equation C.2 in Appendix C for a definition).

In this way the problem of determining the spectral density of the non-Hermitian
matrix A may be phrased in the language of statistical mechanics, in a form which the

cavity method may be applied.

Before moving on to the main calculation, it is worth discussing some of the subtleties
surrounding the relationship between the regularised and unregularised spectral den-

sities, which is far from clear at this point.
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4.2 The perturbation formula

The regularised spectral density of a non-Hermitian matrix, as defined in equation
(4.2), is not so easily exploited to obtain rigorous results for the unregularised density
as we might expect from the Hermitian case. Although it is certainly true that for any

fixed, flmte size matrix A, we have
o A A) = lim o, A
( I ) 81\(0 5( ) ) )

there is in general no simple convolution identity such as (1.7)'. As a result, even
when the regularised spectral density of a random matrix ensemble is accessible to
study in the large N limit, obtaining an expression for the unregularised density is
not straightforward, with a naive interchange of the limits NV — oo and € — 0 hard to

justify.

For a concrete example, consider N x N Jacobi matrices X with entries [Xy];; =
i j+1. For each N, the spectral density of X is simply given by a point mass at the
origin, however taking first N — oo and subsequently ¢ — 0, one finds the conver-

gence of o.(\; Xn) to the uniform density on the unit circle.

This problem is not unique to the formalism used here and is shared by many different
approaches to non-Hermitian RMT. A considerable amount of effort has gone into at-
tempts to circumvent this difficultly, mostly in connection with the famous problem of
proving the Circular Law (for example in [Bai97, GT07a, TV(09]). The usual approach
taken in justifying the exchange of limits needed is to prove bounds on the least sin-
gular values of the matrices involved, though this has the obvious drawback that it
must be completed on an ad-hoc basis for each ensemble. Moreover, this method is
a stronger tool than is necessary, in the sense that examples exist for which no such

bounds are possible and yet the exchange of limits can be observed to be correct.

! Although for normal matrices (which include Hermitian matrices) such an expression does exist.
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In the present chapter no attempt will be made to explicitly tackle this problem, how-
ever, we are able to offer a remarkable relation between the regularised spectral den-
sity of a non-Hermitian matrix and the mean spectral density of the same matrix un-

der a particular type of random perturbation?.

Theorem 2. Let X be an arbitrary N x N matrix and € a strictly positive real number.
Suppose A and B are random N x N matrices, with independent standard complex Gaussian
entries, then

Eo(\ X +eAB™) = o.(\; X).

Proof. For the case N = 1, the ratio of two standard complex Gaussian random vari-
ables takes the uniform density on the Riemann sphere. One proof of this fact comes
from the observation that the density generated is invariant under a class of Mobius
transformations. We generalise this idea to matrices. Begin by noting that, for an

arbitrary N x N matrix X,

0-(\ X) = —%Tr% ((X ~ X =) + 52)_1()( M,

and
o\ X +eAB™!) = T A (AB 4 X — ).
’ N oA
Theorem 2 will then follow from the stronger claim that for any matrix ¥’

1

E(AB ' +Y) ' = (vy +£2) 1yt

A little rearrangement leads to the equivalent statement E f(AB~!) = 0, where we

have introduced the matrix Mobius transformation f, given by

f2)=(YTZ-e)(eZz+Y) .

’In fact, this result was found independently by Haagerup nearly a decade ago; it appears in hand-

written notes distributed at MSRI in 2001, though the proof is substantially different.
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A A
Notice that if ( ) — AB~!, then F ( ) — f(AB~!), where F is the 2N x 2N
B B

Y —¢
F = .
e Y

It will be useful to ‘normalise” f, introducing

block matrix

f(Z2)= (VY +2)VP(vTZ—e)(eZ2+Y) " (vYT +£2)2.

Then the normalised form of F is given by ' € SU(2N),

—1/2
. YTY + &2 0 Yt —¢
F= )
0 YY1+ 2 e Y

Now, let A and B be independent complex Gaussian matrices, with JPDF

A [ A
and let ( ) =F ( ) . We perform a change of variables to find that the JPDF
B

}(detﬁl( p<;‘) |

of A" and B’ is given by
Thus the density p is invariant under multiplication with F and we can conclude that

1 (A
Wexp{Tr (AT BT)(FTF) (B)

the distribution of the random variable AB~! is invariant under f.

So to prove that Ef(AB~!) = 0, it will suffice to show that EAB~! = 0. But A and B
are independent, EA = 0, and it can be shown (see [Ede88]) that E||B~!|| = VN7 <

00, SO we are done. O

Theorem 2 is the non-Hermitian analogue of the identity (1.7). In that expression, the
regularised spectral density is related to the mean spectral density under perturba-

tion of A\, whilst in the non-Hermitian case we must perturb the whole matrix. This
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result also offers a strong heuristic argument in favour of the interchange of limits
N — oo and ¢ — 0 for random matrices: if we are dealing with very large and
fully random matrices, the addition of an infinitesimal random perturbation should
not change the spectral density in a discontinuous fashion. It is reasonable to hope
that this argument could be made rigorous, perhaps allowing for simpler and more
widely applicable techniques than the traditional analysis of least singular values,

though this possibility is yet to be fully explored.

4.3 The cavity method

Having introduced the electrostatic analogy and discussed some of the subtleties and
limitations inherent in the study of non-Hermitian random matrices, we move on now
to the calculation of the spectral density of sparse non-Hermitian random matrices via

the cavity method.

Let C be the connectivity matrix of a tree-like graph G = (V, E), and let J be an

arbitrary non-Hermitian matrix. Define the matrix A by setting

Aij = Cij Jij .
Although C' is real and symmetric, the construction above also includes directed
graphs by simply setting, for example, J;; = 1 for a directed edge from i to j and
Jij = 0 otherwise. For simplicity, we study matrices with no diagonal terms, though

these are very easily added to the theory if necessary. It will be useful to decompose

J into Hermitian and anti-Hermitian parts; we write
1 1
J*=-(J+J), and JYV=_—(J-J),
2 21
so that J = J* +iJY.

We will apply the cavity method to the formalism derived earlier, expressing the reg-

ularised spectral density of A in terms of the thermal average over the system defined
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by (4.7). The first step in our analysis is to observe that the Hamiltonian defined in

(4.6) may be split into contributions coming from single spins and pairs of linked

spins,
N
HeOo N A) =D Hilxi) + > CiHij (i X5) »
i=1 i<j
where
Hi(xi) = ><ZT (el — izoy + iyoy) i,
and

Hij(xis Xj) = z'x;f (00 — JZ-ij'y)Xj + ix} (5o — J;/iay)xi )
Following the same steps as in earlier applications of the cavity method, we find for
tree-like graphs that the marginal at vertex i is recovered from the cavity marginals of
the neighbours by
1 4, _ s ;
Pi(xi) = Z° Hi(xi) / e~ 2teai Hir(xisxi) lle—al pl(l) (x) dxi ,
(2

and the cavity marginals are themselves related by the self-consistency equation

Pz'(j)(Xi) _ %G*Hi(xi) /e Yo Halxixi) H Pl(i) (x1) dxa (4.9)
Z; 10\

where Z; and Zi(j ) are normalising constants.

Once again, further progress is possible by taking a parameter dependent represen-

tation for the marginals. For each i € V and [ € 0i, the cavity marginal at [ in the

absence of i may be parameterised in terms of a 2 x 2 matrix Al(i), describing the

covariance the components of the spin x;:

1

P a) = ————
: 72 det (1A

, i)y —1
exp ( —ix] (A Xl) , (4.10)
The true marginal at i may be written is the same way in terms of a matrix A; as

Pi(xi) = : ) exp < - Z'XZTA;1XZ) : (4.11)

w2 det (iA;
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Examination of the matrix H.(\; A) shows that the cavity variables {AZ(-j )} may be
conveniently expressed in terms of Pauli matrices o,, 0,0, and four real variables

i ool U

s D) 0 ) ¢ R
A — s, 4 it + i, + 00,

()

with the additional constraint that s;”’ > tz(j ) > 0. Similarly, the true covariance

matrices {A;} are written in the same way in terms of variables s;,t;,u;,v; € R. If
the marginal distribution of the spin x; given by (4.11), and A, is parameterised as
mentioned, we find that the covariance of the components ¢; and 1; has the simple

form
(Gi) = ui + iv; .
Equation (4.8) for the spectral density thus becomes
0 .

0e(MA) = ——= ) —=(ui +ivy). (4.12)

Using the parameterisation (4.10), we have for eachi € V and [ € 01,
/e—Hu(xmxz)pl(i)(Xl) dx; = exp <ZX;r (Jfos — J%ay)Agi)(Jﬁaw — Jﬂay)xi) ,

and thus the cavity equations (4.9) reduce to the following relation between matrices:

AZ(.j) = {— tely —xo, +yoy

_ -1 (4.13)
= 3 (o~ ) A Ufen = )|
1€di\j
Similarly, the true marginals are given by
Ai = |:— iely — Toyz + Yoy
(4.14)

_ -1
=Y Ui = T A Ve = S|
leoi

Equations (4.13) and (4.14) comprise the main result of this chapter. For a given matrix
associated to a tree-like graph, solution of (4.13) yields, though (4.14) and (4.12), a

close approximation to the regularised spectral density.
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These equations are noticeably similar to those derived in both the original case of
sparse Hermitian matrices, and, even more closely, to those of the block matrix models
discussed in the previous chapter. In fact, it is possible to simply rearrange H.(\; A)

into a convenient block form, from which equation (3.36) will yield (4.13) directly.

4.4 Analytically solvable cases

4.4.1 The fully connected limit - Girko’s Elliptic Law

The Circular Law given in the first chapter states that the spectral density of ran-
dom matrices with independent entries converges, after suitable normalisation, to
the uniform density on the unit disc. A generalisation of this result to ensembles with
independent Hermitian and anti-Hermitian parts appears in [SCSS88, Gir90], and is
sometimes referred to as Girko’s Elliptic Law. Just as Wigner’s Law was found in
the fully connected limit of the cavity equations for Hermitian matrices, the Circular
Law and Girko’s Elliptic Law may be recovered from equations (4.13) using the same

techniques.

Let G be a complete graph and suppose that the entries of J* and JY are random

variables satisfying, for each 7 and j

E(J5P) =1/N, E(Ji?)=1/N, and E(J3J})=r.

The parameter 7 € [0, 1] controls the degree to which the resulting matrix is Her-
mitian; at 7 = 1 it is completely Hermitian and obeys Wigner’s Law, at 7 = 0 all

correlations vanish and the Circular Law holds.

Following the same steps as in previous calculations of the full connected limit, the

above correlations transform (4.13) to give an equation for the mean single-spin co-
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variance matrix A:
1 1 1
AT = —x0, +yoy — 5(1 + 7)o Aoy — 5(1 —T)oyAoy. (4.15)

Note that we have removed the regularising parameter, setting ¢ = 0. As mentioned
in the discussion earlier in this chapter, it is not straightforward to provide a rigorous

justification for this step. Solving (4.15), we find two regimes:

2 2
x y x y
A= ]1- - I —
\/ <1+T> <1—7’> 2 1+7’J$+1—70y’

2 2
inside the ellipse defined by (ﬁ) + (%) <1,and

A = —f(xox —yoy),

outside, where 3 satisfies 7(z? + y?)3? — (22 + y?)3 + 1 = 0. From this and equa-
tion (4.12), the spectral density in this case is found to be the uniform density on the

aforementioned ellipse,

1 h _z_ 2 v ? 1
m(1—72) when T+1 + T7—1 <

0 otherwise.

p(A) =

This is precisely the Girko’s Elliptic Law. The Circular Law occurs as a special case

found by setting 7 = 0.

4.4.2 Directed random regular graphs

One of the first applications of the cavity equations for Hermitian matrices given in
Chapter 2 was to derive McKay’s Law for the spectral density of random regular
graphs. There is a nice generalisation of this result to directed graphs, which seem-

ingly has not yet appeared in print®.

*Though it was found independently and by the same method by Bordenave.
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Suppose we choose uniformly randomly from the collection of all directed graphs on
N vertices in which each vertex has both in (+) and out (—) degree k. Assuming as
we did in the case of McKay’s Law that the resulting graphs are tree-like and transla-

tionally invariant in the large NV limit, we write A; = A for all s and AZ(.j )= AM if

there is an edge from i to j, AZ(.j) = A7) in the case of an edge from j to i. From (4.14)

we deduce

where the cavity equations (4.13) provide

1 1 1 1
A — [— Togp +yoy — k <§Ux - %0y> AP <§Ux + %0y>

-1
1 1 1 1
— (k- - — &) —
(k—1) <2am+2lay>A (2 O 2i0y>]

and

1 1 1 1
| _ _(k — T CON il
A [ xog +yo, — (k—1) <20x 5 O'y> A (2035 + 5 O'y>

1 1 1 1
— =0z + = AP (2o, — =
g (2% 2z'gy> (2% 22‘03’)]

Solving, we find

2k —1 |)\|2 |)\|2
AR = [ 4= .
ok k k — 1 Ty
in the region |\|? < k? and A®) = —(z0, + yo,) /(2% + y?) outside. In turn this gives
NEE=DE PR, (k=) o
A = /<7 )\2 I - 202 ($0m+yay) if |[A°<k
1
242 (20w +yoy) otherwise.
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And thus we find that the asymptotic mean spectral density of k-in k-out random
directed graphs is given by the simple formula
k-1 o’
< 5 2> if |\? < k2
p) =4 ™ A\

0 otherwise.

4.5 Numerical simulations

To obtain an estimate for the spectral density of a given matrix from the solution of
the cavity equations (4.13), it is necessary to perform the anti-holomorphic deriva-
tive appearing in equation (4.12). This is simple if, as in the examples above, one
has succeeded in solving the cavity equations algebraically, however for numerical
applications further work will be necessary to avoid having to take a numerical ap-

proximation to the derivative.

) for the value of the

For each i € V and j € 9i, introduce new variables I'; and I‘Z(-j
derivatives OA;/OX and 8A§j ) /OX at the point A = z + iy. Applying the derivative at
the level of equations (4.13) and (4.14), we find a set of consistency equations:

) ) 1 . . D/ e )
r0) = AP~ Jou i)~ 3 (o~ o) (Vs — )| A . a6
1€8i\j
from which the derivative of the true {A;} is given by
1 , z D (g
L, =A; [ — 5(01 —ioy) — Z ( Or — Jgay)I‘g )(Jliax — Jﬁay)] AL (4.17)
leoi
For a given matrix, equations (4.16) may be solved simultaneously with the cavity
equations (4.13) numerically by belief propagation. Finally, rewriting (4.12), we find
that the spectral density may then be recovered from the result of the equations (4.17)
by summing over the lower-left entries of the I';:
1N
T, (4.18)

TN 4 )
i=1

0:(\A) = —
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The results from belief propagation and comparison with those of numerical diago-
nalisation are presented for two cases: in Figure 4.1 symmetrically connected Poisso-
nian random graphs with average connectivity ¢ and with asymmetric Gaussian edge
weights with zero mean and variance 1/c and in Figure 4.2 asymmetrically connected
Poissonian graphs with edge weights drawn uniformly from the circle of radius 1/+/c.
For both cases the ensemble average has been estimated by averaging over a sample
of results from 1000 random matrices for belief propagation and 10 for numerical

diagonalisation4.

Notice that the ensembles in both cases satisfy the conditions for the Circular Law
in the limit ¢ — co. However, it is evident from the figures that, for finite ¢, they
have spectral densities dramatically different both from each other and from the lim-
iting case of the Circular Law. Apart from small discrepancies near the boundaries
due to the discretisation the histogram introduces, the comparison shows excellent

agreement.

It is of course possible to perform the ensemble average at an analytic level as seen
earlier for Hermitian matrices. The end product will be a set of equations similar to,
for example, (2.25) and (2.26), allowing for numerical solution by population dynam-
ics. The major difference in moving from Hermitian to non-Hermitian is simply that
distributions of both cavity variables A, and their derivatives ' = 9A /OX must be

considered simultaneously.

*A larger sample size is needed for the diagonalisation results than for the data coming from belief

propagation in order to construct a smooth 3D histogram.
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Figure 4.1: Spectral density of symmetric Poissonian graphs with asymmetric Gaussian edge
weights and average connectivity ¢ = 10. The grey grid is a histogram of the eigenvalues of

10° samples, the black lines are the result of the cavity equations, averaged over 1000 samples.
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Figure 4.2: Spectral density of asymmetric Poissonian graphs with unitary edge weights and
average connectivity ¢ = 2. The grey grid is a histogram of the eigenvalues of 10° samples,

the black lines are the result of the cavity equations, averaged over 1000 samples.
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Universal sum and product rules for

random matrices

5.1 Universality of spectral density

The concept of universality is of central importance to research in RMT. It is an in-
teresting feature of the theory that many key emergent properties of random matrix
ensembles are universal in the sense that they are determined entirely by the broader
characteristics of the ensemble and do not depend on the exact details of the JPDF of
entries. For example, in the study of level spacing (an important topic in RMT not
considered in this thesis) it has been found that random matrices of the same symme-
try class will exhibit the same level spacing distribution, regardless of the exact details

of the ensemble.

In the study of spectral density, there are three main universality results; Wigner’s
Law, the Marcenko-Pastur Law and the Circular Law, each describing the limiting
spectral density for certain random matrix ensembles with independent entries, un-
der rather broad conditions. The focus of the thesis thus far has been to obtain results

on the spectral density of sparse random matrix ensembles, which usually break away
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from the universality classes of each of these results. The figures presented at the end
of the last chapter are a perfect example, showing results from a pair of ensembles
which will conform to the Circular Law in the fully connected limit, yet have radi-

cally different spectral densities in the sparse regime.

Though the cavity equations found in the previous chapters were derived for sparse
random matrices associated to tree-like graphs, we have seen that all three of the uni-
versality theorems mentioned above may be easily deduced from the cavity equations
when analysed in the fully connected limit. Interestingly, in the case of both Wigner’s
Law and the Marcenko-Pastur Law, the cavity equations transform in the fully con-
nected limit into a single quadratic equation for the Green’s function; precisely the
same equation as is derived when applying Pastur’s so-called simple approach to
RMT discussed in the introduction (for example, compare equation (1.9) from the sim-
ple approach to Wigner’s Law with equation (2.16) coming from the cavity method).
For the derivation of Girko’s Elliptic Law in the last chapter, a very similar equation
was found (4.15), though in the random matrix literature there does not appear to be
a corresponding version of the simple approach with which to study non-Hermitian

matrices.

For this final part of the thesis, we will take a different direction to the work of previ-
ous chapters, seeking to develop a non-Hermitian analogue of the simple approach,
with which universal results about the spectral density of non-Hermitian random
matrices may be obtained. In Hermitian RMT, the techniques of the simple approach
have utility beyond providing straightforward proofs of the Wigner and Marcenko-
Pastur Laws, in particular they have been used to determine the limiting spectral den-
sity of Hermitian random matrices under deterministic additive perturbation, cap-
tured by the Pastur equation [Pas72]. In what follows, techniques will be developed
enabling the establishment universal results for the spectral density of random matri-
ces with independent entries, whether Hermitian or not, when summed or multiplied

with deterministic matrices.
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5.2 The Spherical Law

Before beginning the development of a simple approach to non-Hermitian RMT, we
pause a moment to conjecture a new universal law for the spectral density of a certain

class of random matrix.

As a corollary of Theorem 2 we see that if A and B are random matrices of indepen-
dent complex Gaussian entries, the mean spectral density of the matrices AB~! is,
regardless of their size, the uniform distribution on the Riemann Sphere!. In light of
the known universality results for the spectral density of random matrices, we are
immediately prompted to ask if this spherical density occurs in the limit N — oo for

any distribution of the entries of Ay and By, in an analogue of the Circular Law:

Conjecture (The Spherical Law). Let {An} and {Bn} be sequences of matrices of inde-
pendent complex random variables of zero mean and unit variance. Then the spectral densities

of the matrices AxBy' converge to the uniform density on the Riemann sphere.

Figure 5.2 shows the eigenvalues of a single random matrix AB~! of size N = 10,
where A and B were randomly filled with ones and zeros. The eigenvalues have been
projected onto the Riemann sphere, where they exhibit a highly uniform distribution,

supporting the claim of the Spherical Law conjecture.

This phenomenon was also noticed by Forrester and Mays [FM09] and can be easily
derived in a non-rigorous fashion using the techniques developed in this chapter,

however a full proof is likely to require a more in-depth analysis.

n fact, the full JPDF of eigenvalues for matrices of this type was found recently in [Kri09].
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Figure 5.1: Eigenvalues of a single 10* x 10* matrix of the form AB~!, where A and
B were randomly filled with ones and zeros. The eigenvalues are mapped onto the

Riemann sphere by inverse stereographic projection.
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5.3 The quaternionic Green’s function

One possible reason for the lack of techniques in non-Hermitian RMT analogous to
the simple approach for Hermitian RMT is that this method is based on analysis of
the Green’s function; an object which we observe to have a radically different role
in non-Hermitian RMT, as discussed at the start of the previous chapter. In tack-
ling this problem, we will look to the work of Janik, Nowak and collaborators on a
quaternionic generalisation of the Green’s function (formally equivalent to Feinberg
and Zee’s ‘Hermitization’ trick), which will turn out to replicate in the non-Hermitian

setting many of the useful properties of Green’s functions of Hermitian matrices.

Introduced in [JNPZ97, JNP*97], the quaternionic Green’s function offers a conve-
nient formalism with which to study the limiting spectral density of non-Hermitian
random matrices. In these and subsequent works [JN04, JN06], the application of free
probability theory to this quaternionic formalism has yielded many interesting re-
sults, including for sums of unitary random matrices [G]J07] and infinite products of
large random matrices [GN]JJNO3], though the question of universality has not been

considered in any detail.

The idea underlying the notion of a quaternionic Green'’s function is straightforward:
since the (real) spectral density of Hermitian matrices may be studied through anal-
ysis of the Green’s function in the complex plane, one might hope that the (complex)
spectral densities of non-Hermitian matrices could be studied through a Green’s func-
tion acting on a higher dimensional space such as the quaternions. In practice, this
elegant concept is realised through block matrix techniques with a very similar feel to

those of Feinberg and Zee.
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5.3.1 Notation

We will be doubling the size of our matrices. To simplify the formulas, we introduce

the following notation:

Let X be an N x N matrix. Denote by X the 2N x 2N matrix composed of N2 blocks
of size 2 x 2 whose ', j*% block is given by
Xy 0
Xij = S
0 X
We will always use subscript Roman indices to refer to the 2 x 2 blocks of boldface

matrices, rather than the individual entries.

Let a and b be complex numbers and define the quaternion ¢ = a + bj, where j is
a quaternionic basis element. Some basic properties of quaternions are discussed in
Appendix C. To work with quaternions and our size-doubled matrices together, we
introduce the 2 x 2 matrix
J= :
1 0
and identify the symbol g with the matrix representation of ¢:

) a b
g—q=a+bj= . (5.1)

1 a

>

When q is a 2 x 2 matrix, and X a 2N x 2NN matrix, we use the shorthands
gX =(qeIN)X, and (X+q)=X+qx1Iy.
In addition to the usual operations, we define an elementwise product for quaternions
(a+0bj) - (c+dj) =ac+bdj.
Note that the matrix representation of an elementwise product of quaternions is not
the same as the usual elementwise product of the matrices, in fact we use
a b c id ac 1bd

ib @ id © ibd ac



5.3.2 Definition and basic properties

Let X be an NV x N matrix, A a complex variable and ¢ a strictly positive real number.

Putting ¢ = A\ + €j, we define the 2N x 2N ‘resolvent’
R(g; X) = (X —q)".

To connect with other approaches, note that there exists a permutation matrix P such

that
0 Iy .
(X—-q)=P He(A\ X) P,
In 0
where H.(\; X) is the ‘Hermitized” block matrix given in (4.3). The quaternionic
Green’s function of X at ¢ is then defined to be the quaternion G(g; X) with matrix

representation
1N
9(a:X) =+ Z;R(Q;X)n'-
1=

It is straightforward to see that for all X and ¢, the 2 x 2 matrix G(q; X) satisfies
the symmetries of (5.1) and thus is indeed the matrix representation of a quaternion.
Without the hypercomplex part, the quaternionic Green’s function agrees with the

usual Green’s function, that is,
GA+05;X) =G\ X) +05.

Adding a positive regulariser € > 0, we find that the regularised spectral density for
non-Hermitian matrices introduced in the previous chapter (4.2) may be recovered

from the quaternionic Green’s function simply by
0 X) = —1Re L G\ + 25: X)
QS I - - 3X ] 5 .

This formula is in close analogy with the relationship between the ordinary Green’s
function and regularised spectral density for Hermitian matrices, given by (1.7). More-
over, in light of Theorem 2, computation of the quaternionic Green’s function for some
e offers access to the spectral density of the underlying matrix after a size-¢ random

spherical perturbation.
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5.4 Main results

Application of the techniques of the simple approach to the quaternionic Green’s
function will allow for the derivation of equations describing the spectral density of
both Hermitian and non-Hermitian random matrices with independent entries when
summed or multiplied with deterministic matrices. These results will be universal in
the sense that they hold under only relatively mild conditions on the moments of the

distributions of the entries.

Suppose we are in possession of an infinite array of complex random variables {¢;;},

with joint probability space (2, F,P). We assume the ;; to have the properties:

A1) E&; = 0foralli,j
A2) E[¢;|? = 1foralli,;
A3) There exists a finite constant C¢ such that E|¢;;|* < C; for all 4, j

A4) All &;; are independent, except for the covariance E¢;;¢;; = 7, where 7 € [0, 1].

A normalised N x N random matrix Ay can then be constructed by taking

L
VN

The parameter 7 here is the same as introduced earlier in the derivation of Girko’s

(An),; = &ij - (5.2)

Elliptic Law, controlling the degree of Hermiticity of Ay. In our calculations, 7 will

only appear as the real part of the quaternion ¢ = 7 + j.

The assumptions A1-A4 above are by no means the weakest conditions for which the
results we derive will hold, however they sufficiently broad to give a flavour of the

strength of the results, without complicating the proofs unnecessarily.
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In the forthcoming results, we will characterise the quaternionic Green’s functions
of the sum or product of such matrices with deterministic matrices { Dy} satisfying

some or all of the assumptions

D1) The quaternionic Green'’s functions of { D } converge to the limit Gp
D2) The quaternionic Green’s functions of { D'} converge to the limit G,

D3) There exists a constant d € [0, 00) such that sup | Dy || < d and sup | D3| < d.

The last point is a technical assumption made for the sake of simplicity and, as we

note in a later example, may not be strictly necessary.

Theorem 3 (Sum Rule). Let {Ax} be a sequence of random matrices given by (5.2) and let
{Dn} be a sequence of deterministic matrices satisfying D1. Fix a quaternion ¢ = X + €j,

where e > 1. Then G(q; Dy + AN) =, G(q), where G(q) satisfies

G(a) =G (a+t-G(a)) . (53)

Theorem 3 is a straightforward generalisation of the Pastur equation for the sum of
deterministic and random Hermitian matrices, indeed at 7 = 1 and ¢ = 0, equa-
tion (5.3) precisely is the Pastur equation. For the case 7 = 0, an equivalent result
has already been found by Khoruzhenko using techniques based on the electrostatic

analogy [Kho96].

Theorem 4 (Product Rule). Let {Ax} be a sequence of random matrices given by (5.2)
and let {Dy} be a sequence of deterministic matrices satisfying D1-D3. Fix a quaternion

q = \+¢cj, where ¢ > 2d. Then

G(q; DnAN) — G(q) = —(t-9) 1gD< —q(t-9) 1) ; (54)

where G satisfies

G=—-q"'Gp ( —(t-G) q’l) : (5.5)
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Unlike Theorem 3, this result is not related to any in Hermitian RMT for the simple
reason that the space of Hermitian matrices is not closed under multiplication. The
spectral density of certain Hermitian random matrix products have been considered
on occasion however, for example in [BM]J07] and references therein. Before the proof
of these results is presented, we give a number of simple examples of their applica-

tion.

5.5 Examples

The statement of the sum and product rules given above concerns the behaviour of
the quaternionic Green’s function in the limit N — oo, for a fixed regulariser ¢, which
is taken to be large. In light of Theorem 2 we are in effect computing the limiting
spectral density of matrices under a large perturbation. However, as the following
examples will demonstrate, accurate predictions about the spectral densities of sums
and products of matrices satisfying conditions A1-A4 and D1-D3 can be found by

naively taking ¢ = 0 in the final equations.

Girko’s Elliptic Law

This well-known result occurs naturally. Taking either Dy = 0 in the sum rule, or

Dy = Iy in the product rule, gives G(¢; An) 2, G(q), where

Q(Q):—(qﬂ-g(q))_l-

Writing G(¢) = o + (), we send ¢ — 0 and assume that [ stays strictly positive,
obtaining

(a+Bj))AN+1a+5j)+1=0. (5.6)

This equation is simply a more compact expression of (4.15), found in the fully con-

nected limit of the cavity approach. The support of the spectral density is restricted
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to the region allowing a solution with 3 > 0. The hypercomplex part (that is, the

coefficient of j) in (5.6) gives

z i y
o= — i
T4+1 T—1/"

where A = z + iy, and the complex part gives

s () ()

The condition $ > 0 determines the elliptic support, and taking an anti-holomorphic

derivative yields the spectral density inside that region:

e when () () <

0 otherwise.

p(A) =

A matrix model in QCD

Let us consider the following random matrix model for the Dirac operator in QCD

with finite chemical potential, considered in [Ste96],

0 iAN +
NTEE (.7)
z’AjV%—,u 0

where Ay is drawn from the Ginibre Unitary Ensemble and ;o > 0 is the chemical
potential. Following similar lines to [JN04], we consider a simpler model of the form

Apn + iMpy, where Ay now is taken to be a Hermitian GUE matrix and

U
My = ® Inys -
w0

We will show that, after multiplication by ¢, the N — oo limit of the spectral density
of (5.7) is the same as that of this simpler model. For this construction, the sum rule

states that G(q; Ay + iMy) LN a + (3j, where equation (5.3) now reads

a+ﬁj:%Qu—q—a—ﬁﬁ_y—%Qu+q+a+ﬁ0_3 (5.8)
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Assuming the limit ¢ — 0, we write ¢ = A. The support of spectral density is then
given by the region allowing a solution of (5.8) with 3 > 0, in this case determined by

the condition

2
1— ixQ - iy2<1 +2(y* — u2)) (y? —u2)72 + (y* —p?) > 0.

Inside this region, one may solve for o and take the anti-holomorphic derivative to
determine the spectral density

o) = (ijj :22)2 - 1) . (5.9)
As one would hope, this is precisely the density first recovered by Stephanov in
[Ste96], rotated by 7/2. In that work, only the mean of the spectral density was com-
puted, however the sum rule tells us that the quaternionic Green’s function converges
in probability as N — oo, suggesting weak convergence in spectral density. More-
over, only Gaussian distributed random matrices were considered in [Ste96], whereas
the sum rule predicts the limiting density to be universal in the sense that it is inde-
pendent of distribution of the entries of Ay. An analogue of the construction (5.7)
for orthogonal and symplectic ensembles has been studied in [HOV97], where, in-
terestingly, the limiting densities were found to be different to those for the unitary

ensemble.

Perturbations of Jordan matrices

Consider N x N Jordan matrices X y with entries [Xy];; = 0; j+1. Let Ay, By and Cy
be N x N matrices of complex Gaussian random variables. For parameters ¢ € (0, o)

and ¢ € [0, c0) we consider random perturbations of Jy of the form
Xy =Jny+0AN + 5BNC]?[1-

Perturbations of Jordan matrices have been studied extensively in the past as they

provide a simple model with which to study the behaviour of degenerate eigenvalues
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under perturbation. In [DH09], perturbations of the type given above with ¢ = 0 were
considered, and it was shown that with high probability the majority of eigenvalues
of Jxy+9 A lie close to the circle around the origin of radius § I/N In the limit N — oo,
the eigenvalues are pushed towards the unit circle, where one would expect to find a

uniform distribution in the limit § — 0.

To access the spectral density of perturbations of Jy, the inclusion of additional per-
turbations of the type e ByCy' allows the use of Theorem 2 and thus the sum rule.
Averaging over By and Cy, and taking the limit N — oo, we have the weak conver-
gence
Egy.cn {g ()\;XN)} — p(A;d,e) = —lRe i G(A+¢€j5;9),
’ T 0A
where G(\ + £5;0) is determined by the sum rule. The full expression is somewhat

complicated and not especially enlightening, though taking one or other perturbation

to zero, we obtain the results:

VAN + 64

. 1 1
lim p(A;d,e) = ) (1 - 7) T—s2 1452 (A1) (5.10)

and
(1+[A? +€?) e

3/2°
w (AR +e2)? - app)”

%in% p(A;d,e) = (5.11)
These expressions agree as ¢ — 0 and 6 — 0, converging to the uniform distribution

on the unit circle. Figure 5.2 shows cross-sections of these densities along the real line.

As mentioned earlier, a result equivalent to that of the sum rule found in this chapter
was derived in [Kho96]. The example of the Jordan matrix was also considered in that
paper and the support of the density was computed for the € = 0 case, given here by

the indicator function in (5.10).
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0.5

Figure 5.2: Solid line: a cross-section through the density lim._.o p();d,¢) at 6 = 0.8.

Dashed line: a cross-section through the density lims_,g p(A;d,¢) ate = 0.2.

A product of random matrices

We compute the limiting spectral density for the product matrix Dy Ay, where the
Ap are given by (5.2) with 7 = 0, and Dy is a diagonal matrix with entries D;; drawn
independently from the standard Cauchy distribution?. With this choice of Dy, we

have the limits

G(q: D) — Golq) = - /OO L o ar,

T ) oo 1472

and G(g; D;,l) — Gp(q), as N — oo. As before, we assume the ¢ — 0 limit, taking

g = A. Then g(q) =a+ Bj, where the product rule (5.5) gives

00 N1
&+Bj:_l/ L <%+ﬁj> dr .

T ) o 1+72

Performing the integral and solving for 3, we obtain § = (VIA2 +4—1A]) /2. Return-
ing to (5.4), we reach

1
G(q; DyAy) — -

[l ) o e
r r= ,
o 1472 J A2+ AV T 4

*Notice that although this choice fails the technical assumption D3, the result still appears to hold.
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0.2-

0.1-

Figure 5.3: Grey histogram: the log-moduli of eigenvalues of a single random matrix
Dy Ay of size N = 10%, where the entries of Ay are independent complex Gaussians
with variance 1/N, and Dy is a diagonal matrix of Cauchy random variables. Black
line: the density v(y) predicted by the product rule (Theorem 4), given in this case by
equation (5.12) in the text.

and finally an expression for the limiting spectral density,

1 1 1
p(N) = — — .
) ™ (\/\\2+y>\y\/1>\12+4 \/\\2+\/\\\/\/\\2+4+4>

To provide an effective comparison with numerical data, we change variables to v =

log |A|, whose distribution is given by the pdf

() =2 Ve +4 — ¥
v(y) = .
7 Ve +4 427 +4

Figure 5.5 shows a histogram of the log-moduli of the eigenvalues of a single such

(5.12)

random matrix of size N = 10* alongside the predicted density v/(¥).
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5.6 Proof of the main results

5.6.1 Preliminaries for the use of the quaternionic Green’s function

For the proofs of Theorems 3 and 2, a number of standard tools will be of repeated

use.
The resolvent identity. For V x N matrices A and B, and quaternion g, we have
R(q; A) — R(q; B) = R(q; A)(B — AYR(¢: B). (5.13)

This is a consequence of the more general expression for any X and Y/,

X1y l=Xx1'v-x)Y'

The resolvent bound. For any matrix A and quaternion ¢ = X\ + ¢j, we have the

following bound on the norm of the resolvent and its blocks

R (g; A)ij|| < || R(g; A)|| < =, (5.14)

M| =

where || - || is the spectral norm. Again, this is a special case of a more general

result: for any matrices X and Y, with Y invertible, we have

N—1 N—1
O+ ¥a)g < o+ Ya) ) <

where z and y are the smallest singular values of X and Y.

The Cauchy-Schwarz inequality. Let {z;}}, and {y;})¥, be collections of 2 x 2 ma-

trices. We have the following analogue of the Cauchy-Schwarz inequality:

2 N N
< Z mzmj Z yiyj . (5.15)
i=1 i=1

N
>_wiy,
i=1
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Integration by parts. Let f : C* — C be a continuous and differentiable (but not

generally analytic) function, with bounded second order partial derivatives,

0 . 0 ., 0 o
Thenif F = f(&11,...,{nN), we have
oF oF oF — _OF
E¢ . F =E— + 7E + B4 E—— + EB&ji€i B— + K, 5.16
S &5 og;; o R ag, TS ;i (5.16)

where |k| is bounded by some constant depending on C¢ and Cy. Proof is by

Taylor’s Theorem.

In addition to these general facts, the main part of the work in proving Theorems 3

and 4 comes down to the application of two central results.

Lemma 1. Let Ay be arandom N x N matrix given by (5.2) and let X, Y and Z be arbitrary

deterministic matrices of the same size, with Z invertible. Define
| XN
— -\ —1 o ..
R=(XAN+Y +2Zj)', and G= N;RM.
Then
2
EHG — EGH <CN™',

where C'is a constant depending on X,Y and Z.

This is simply a slightly more general version of the statement that the quaternionic
Green’s functions of the matrices we are interested in are self-averaging in the limit
N — oo. This property is crucial if we are to extract useful information about the
behaviour in that limit. The proof is based on an elegant martingale technique from a

paper on spin-glasses [CHO6].

Proof. Let P = {(i,j) : 1 < i < j < N}. We label these pairs by introducing the
bijective numbering (i,j) < p where p € {1,...,|P|}. The names (7, ;) and p will be
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used interchangeably; the meaning should be clear from the context. Let 7y = F and

recursively define the sub-c-algebras F, = 0{F,_1,&j,§;i}. Introduce the martingale
AP:E(G“FP) _E(G‘}—p—l) )

so that
|P|

> A,=G-EG.

We plan to bound each A, to do so, we consider the fictitious situation in which the
blocks (A N) and (A N) are removed. Write A( 7) for the matrix obtained from Ay

by setting &;; = £;; = 0. Introduce
g . -1
R _ <XA§\Z,J) LY + Zj) . and GUW) = ZR(” .
The resolvent identity (5.13) provides
R=RY _RX <AN ~ A%”) R
and thus
i) _ 1
G =G - K
where the error term Kj; is given by

K = i (RX (Ay - AY) RW)
k=1

kk

=

(), (40) R+ (), (4), )

The Cauchy-Schwarz inequality (5.15) provides a bound for K;;, since, for example

2

N
Z w(AN) B
= N
< |20 () (1) | (an) (), |ZR£ Ry
k=1
e, o (o),
CM}
< — Y
— N )
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where M;; = max{|¢;;,|£;i|}, and C is the constant coming from the resolvent bound

(5.14). We can conclude || K;;|| < CKMijN_l/Q, for some constant C'i, and thus
|8 = |[E (6| 7) ~E(G|F-1) |
~ |E (B | 7)) —E (B | Fmr) |
< Oxg N732(M;; — EM;) .

Burkholder’s inequality then gives, for some constant Cx,
; I LA
Ele-EG| =E|> a,| <caE (Y|4
p=1 p=1

3/2
< OACENTIE (Z (M;; — IEMi-)Q)

i<j
< ACAC3-CyyN73/2

where Cyy < 2C¢ + 2 is a bound for EM}

7, and we have repeatedly used Jensen’s

inequality. The desired bound is then given by
2
E|¢-EG| <on !,

where C' = (4CAC3Cpp)?/5. O

With self-averaging established, we next require a mechanism by which we can con-
vert the general statement of the resolvent identity (5.13) into an equation for the

mean of the quaternionic Green’s function.
Lemma 2. Fix a quaternion ¢ = X\ + ¢j, with e > 1. Let Ay be a random N x N matrix

given by (5.2) and let X be an arbitrary deterministic matrix of the same size. Define

N
R=(XAy-q) ' and G=N"') (RX),.
1=1

Then
E(AvR) = —(E(t-G))(ER) + Ky .

wheret =7+ j,and | Kn|| — 0as N — oc.
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Proof. We compute a generic block

E(ANR),, EZ("C” 0 ) k- (5.17)

7=1 0 gjl

Notice that the entries of R depend continuously upon the £, and the resolvent bound
gives a bound on the first and higher order derivatives. We are thus able to apply the

integration by parts formula (5.16). The derivatives are given by

1 00
OR _ 1 px 150 R
sy VN 0 1

and
OR

1 RX b 1.5R
agaﬁ \/N 00 apfLt,
where 1,3 is the 2N x 2N block matrix containing a copy of I, in block («, 3) and

zeros elsewhere. Applying this to (5.17), we thus find, after some tedious algebra,

E(AXR), :—%EK X),,) B (55 (RX),,) R
B OR) 1D (0 (RX),) R

where s;; = ngj +(E&;;€:)7. Notice that assumptions A1-A4 imply a universal bound
for |s;;|, and the Cauchy-Schwarz inequality together with the resolvent bound give
a constant C' such that

1
— CNL.
N <

> (s (X)) i

Finally, we split the expectation

|E(t-G)R) - (E(t-G)(ER)| =0 as N - o,

since IEHCNJ - IECNJHQ — 0 by Lemma 1, |t| < co and || R]| is bounded. O
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5.6.2 Proof of sum and product rules

Proof of Theorem 3. Fix ¢ = X + ¢j with ¢ > 1. We write the shorthands Ry =
R(q; Dn + An), Gy = G(q;: Dy + Ay) and Gn(q) = G(¢; Dy + An). Now, apply-
ing the resolvent identity and Lemma 2, we obtain

ERy — (Dy —q)' = —(Dy - q) 'EAvRy

= (Dy—q) ' (E(t-Gn))(ERN) + Ky,

where | Ky| — 0as N — oco. Rearranging, we have

1
ERy — (DN—q—t-IEGN> K,

where the resolvent bound gives ||K|| — 0 as N — oo also. Summing over the

diagonal blocks, we deduce
EGw(g) = G+t BGn(a); D) + ki (5.18)
with |kny| — 0as N — oo. Define the functions
In() =Gy (a+t-g) +ky.  flg)=Gp(a+t-g).

Since € > 1, the resolvent bound gives that each fx is a contraction with parameter

¢! and thus the pointwise limit f is also; it is therefore continuous, with a unique

fixed point which we call G(g). Finally, Lemma 1 gives E|Gn(q) — Gn(q)|*> — 0 as
N — o0, and we conclude from (5.18) and Tchebychev’s inequality that
Gr(a) = Gla).
O

Proof of Theorem 4. The proof is very similar to that of Theorem 3, so we give only the

main steps of the derivation.
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Fix ¢ = X\ + ¢j with ¢ > 2d. Again we write the shorthands Ry = R(q; DNAn)
and Gn(q) = G(q; DN An). Let CN;’N = N1 Zﬁil(RNDN)ii. Applying the resolvent
identity and Lemma 2, we obtain
ERN + ¢ ' =q 'DyEANRN
= —q 'Dy(E(t-Gy))(ERN) + K,

Rearranging, we have

~ 1 ~ -1 1
ERy =—(E(t-Gv)) ' (Dy +a(B(t-G) ') + Kk,

where the resolvent bound gives || K || — 0as N — oo also (it is here that assumption
D3 and the requirement ¢ > 2d are used). Summing over the diagonal blocks, we

deduce

EGn(q) = —(E(t-Gn)) ' G( — a(B(t-Gn)) i D) + kv, (5.19)

where 5 ~ is the quaternion with matrix representation G ~n,and |ky| — 0as N — oc.

The equation for G is found similarly; let EN = RxDy, then
ERy +¢q 'Dy = q 'DvEAyRNDy
= —q_lDN (E(t . éN)) (Eﬁ]\[) + E{JN .

and thus
EGy = —q~'G (~(t-EGy))a i DR') + v, (5.20)

where as usual |EN| — 0 as N — oo. The proof is completed in the same fashion as

Theorem 3, with equations (5.19) and (5.20) providing (5.4) and (5.5), respectively. [

130



Conclusions and outlook

Several new results have been presented in this thesis on the spectral density of ran-
dom matrices, the majority of which have appeared in print in the articles [RPKTO8,
RP09, Rog09, RPVT10]. In this brief final chapter we recap the main developments of

the thesis and discuss some limitations of the work and potential for further research.

Sparse Hermitian random matrices associated to tree-like random graphs were con-
sidered in Chapter 2. The statistical mechanics analogy for the spectral density was
revisited using the cavity method, resulting in a collection of equations whose solu-
tion provides a close approximation to the Green’s function of a given matrix. The
success of the approach is evidenced by the recovery of known results of Wigner and
McKay, as well as the results of numerical simulations. Efficient numerical solution of
the cavity equations by a belief propagation algorithm was demonstrated for sparse
matrices several orders of magnitude larger than is possible by numerical diagonal-
isation on the same hardware. The ensemble average for Poissonian random graphs
was computed, in which the cavity equations are transformed into a self consistency
equation on a probability density of cavity variables. Again, efficient numerical solu-

tion is possible, this time through a population dynamics algorithm.

In the next chapter, the ensemble average spectral density was computed for some
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more complex random graph ensembles. Ensembles featuring correlations in the de-
grees of neighbouring and non-neighbouring vertices were studied using the device
of generalised degrees, with the ensemble average applied to cavity equations in this
case yielding consistency equations for a collection of probability densities. The con-
strained generalised degree ensemble of [BCV08] was introduced as a concrete ex-
ample of a tree-like random graph ensemble for which the average spectral density
could be calculated in this way, and the appropriate generalised degree statistics were
computed. The combination of the cavity method with block matrix models was also
presented in Chapter 3, with applications demonstrated to random graphs with a
community structure and sparse sample covariance matrices. Numerical and analyt-
ical examples were presented in all the above mentioned cases, along with discussion

on relationship between graph structure and the features of the spectral density.

The results of Chapters 2 and 3 comprise a significant theoretical and practical ad-
vance, providing the opportunity to obtain qualitative information about the spectral
density of sparse random matrix ensembles which could not realistically be obtained

through direct calculation or simulation.

There are, of course, limitations in the method and its results. From the standpoint
of interest in complex real-world networks, the chief drawback to an analysis based
on the cavity method is the reliance upon the assumption that cycles in the underly-
ing graph are long enough and rare enough to be discounted from the calculations.
There is no evidence suggesting this simplifying assumption should hold for real-
world graphs. Although the simple model of graphs with a community structure
considered in Chapter 3 is capable of producing graphs with cycles of any length, it
should be recognised that this is something of a trick, as the analysis remains depen-
dent upon the graph describing inter-community connections being tree-like. Several
possible methods of correcting the cavity method for the presence of cycles have been
proposed recently in the statistical mechanics literature [MR05, PS06, CC06], and it is

reasonable to hope that one or more of these might be usefully applied to the question
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of spectral density.

The second major limitation of the techniques applied in these chapters is that they
appear to be useful only in the consideration of the bulk of the spectral density, lack-
ing the power necessary to probe details on smaller length scales. This is somewhat
disheartening, as much important and interesting research in RMT is concerned with
phenomena observable on smaller scales, such as repulsion between eigenvalues ob-
served in level spacing and correlations. One possible analysis of the problem is that
the approximation of the true graph by an infinite tree discussed in Section 2.4 induces
a smoothing of the spectral density clearly visible on scales of order 1/N, for example
as seen in Fig 2.2. In another interpretation, we note that the cavity and replica meth-
ods are long known to produce identical results in the ensemble average, in which
case the difficultly experienced here with smaller length scales may be thought of as
a natural companion to the failings of the replica approach to spectral density in the
same context [VZ85]. Whether or not modifications to the cavity method are possible

to overcome this drawback remains an open question.

In the forth chapter, the cavity method was applied to sparse non-Hermitian ran-
dom matrices. The electrostatic analogy and Hermitization techniques formed the
starting point for the analysis, allowing the problem of determining the spectral den-
sity of non-Hermitian random matrices to be rephrased in a form to which the cavity
method could be applied. Again, a simple collection of equations were derived whose
solution provides a regularised approximation to the spectral density of a given ma-
trix. These equations are exactly solvable in some cases, for example yielding Girko’s
Elliptic Law in the fully connected limit, as well as an apparently new result on the
spectral density of random regular directed graphs. A little more work was necessary
to implement numerical simulations, with a further set of consistency equations for
the partial derivatives derived. The results of an efficient belief propagation algorithm

were presented for two simple ensembles.
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The results of Chapter 5 continued the theme of non-Hermitian RMT, though this time
departing from the previous focus on sparseness to consider full random matrices
with independent entries. Techniques analogous to the simple approach to Hermi-
tian RMT were developed, based around a quaternionic generalisation of the Green’s
function. These methods were used to establish rigorous universal results for random
matrices with independent entries (whether Hermitian or not) when summed or mul-
tiplied with deterministic matrices. Several examples were presented in which a mix
of new and previously known results were derived. The Spherical Law was also pre-
sented in this chapter, conjecturing a new universal law for the spectral density of a

certain class of random matrices.

Whilst the numerical and analytical examples given in Chapters 4 and 5 are just as
successful as those of the earlier chapters in matching numerical experiments and
previously known results, there is an important subtlety which, at present, prevents
the establishment of rigorous results about the unregularised spectral density using
these techniques. As discussed extensively at the start of Chapter 4, the regularisation
of the spectral density exploited in both chapters is not as simple as that used in the
Hermitian case, and the proposed exchange of the limits N — oo and ¢ — 0 is by no
means easy to justify. In past work, this problem has been carefully circumvented by
establishing results to bound the singular values of matrices of the type (A—\), where
A is the matrix whose spectral density is under examination. Often, the techniques
used follow the recent work of Rudelson (e.g. [Rud08]), and there exists similar work
on products of matrices [Ver08] which gives hope for a proof that the sum and prod-
uct rules for the quaternionic Green’s given in Chapter 5 translate to results for the

limiting spectral density.

As well as being interesting in its own right, the expression of the regularised spectral
density in terms of a random perturbation given in Theorem 2 provides a believable
(if not yet rigorous) argument justifying this problematic exchange of limits, since

it is reasonable to expect that the spectral density of full random matrices ought to
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be somehow continuous with respect to small random perturbations. In fact, this
approach is not new, with similar ideas appearing the in work of Haagerup and others
in free probability (see [Sni02] and references therein). It would be highly desirable to
clarify the connections between this research and the techniques used in Chapters 4
and 5 of this thesis, perhaps providing a more straightforward and widely applicable
approach to the problem of determining the limiting spectral density of ensembles of
non-Hermitian random matrices. In another direction, the Spherical Law conjecture
also provides an interesting direction of future research, a proof of which, by any

method, would be a worthy goal.
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A

Graph theory glossary

Let G = (V, E) be a graph with adjacency matrix C. We define (in alphabetical order):

Automorphism A bijective function f : V — V is an automorphism if it satisfies

(f(i), f(4)) € E < (i,) € E.

Ball The ball of radius r around vertex i is the subgraph induced by those vertices of

distance no greater than r from i.
Connected A graph is connected if there exists a path between any pair of vertices.
Cycle A cycleis a path of length at least 3, starting and ending on the same vertex.

Degree The number of vertices in the neighbourhood of a vertex i € V' is known as

the degree of 4, denoted &;(C).

Degree sequence The N-vector of all degrees k(C) = (k1(C),...,kn(C)) is known

as the degree sequence.

Distance The distance between vertices i and j is the length of the shortest path start-

ing at 7 and ending at j.

Diameter The diameter of G is the maximum distance between vertices in V.
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Induced Subgraph Given a subset V' C V, the induced subgraph of G on V' is the
graph G’ = (V', E') where (i,j) € E' < (i,j) € E.

Neighbours The verticesi,j € V, where i # j, are neighbours if and only if (i, j) € E.

Neighbourhood The neighbourhood of the vertex i € V is the set of all its neigh-

bours, we denote this set 0s.
Path A pathis a walk (wo,...,w,) such that wy, ..., w,—_; are distinct.
Regular A graph is said to be k-regular if each vertex has degree k

Transitive A graph is transitive if, for any pair of vertices i and j, there is an automor-
phism of G mapping i to j (in lay terms, all vertices are equivalent). Alterna-
tively, the connectivity matrix C'is preserved by any simultaneous permutation

of rows and columns.
Tree If G is connected and no path in G is a cycle, then we say G is a tree.

Walk A walk w = (wy,...,wy,) of length n > 0in a graph G = (V, E) is an ordered
collection of vertices {w;}}" , C V such that for each i = 1,...,n, there is an

edge in G between vertices w;_; and w;.
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B

Matrix identities

B.1 Green’s function relations

Claim. Let A be an N x N matrix with Green’s function G(z; A) and spectral density
o(p; A), then for all z

G(z;A) = / %Q(#? A)dp.

Proof. Applying Schur’s decomposition to the arbitrary matrix A, we obtain A =
UTU~!, where U is unitary and 7" upper triangular, with diagonal entries equal to

the eigenvalues of A. From the definition of the Green’s function we have

G(zA) = %Tr{(A - z)_l}

— %Tr [(U(T — z)U_l)_l]
- %Tr [U(T - z)*lU*}
- LT - )

N

where the last line follows from the invariance of trace under similarity transforma-

tions. Next we note that, since (7' — z) is upper triangular, (T — 2);;' = (T — 2)7%,

139



and the claim follows straightforwardly:

G(z;A) =

Claim. Let Abean N x N matrix with Green’s function G(z; A), then

10 1

Glz4) = N oz log det(A —2)

Proof. From the general fact that the determinant of a matrix is given by the product

of its eigenvalues, we see that det(A —z) = [, ()\Z(A) —z), and the result is immediate

1 0 1 1 0 (A)
A P A A
Nz ® det(A — 2) N 0z ogH( ’ )

Claim. Let Abean N x N matrix, and X a complex variable, then

10
o(XA) = ———=G(X 4).
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Proof. Introduce the generalised function

DUV =~ (=07

To prove the claim, we must identify D,,()) as the Dirac delta 6(x — A). It will suffice

to show the following:

1. D,(\) =0forall A # p

2. Forany a € R™, over the pu-centred square S(a) = {z+iy : z,y € [u—a, p+al},
we have
D,(N)dx=1
S(a)
For point 1, let A = = + iy and ¢ = u + iv, assuming A # p the derivate may be

explicitly calculated:

o _ 1/0 .0 1
ﬁ(ﬂ—)\) 1:§<a_x+za_y> (u—z)+i(v—y)
1 )
+1 =0.
2((u—2) +i(v - )’ (%W—xﬂ4w—wf>

For point 2, the change of variables Z = = — u, § = y — v allows us to compute

1 u+a v+a 8 8 1
D,(\)d\ = —— Y dz d
/S(a) 2 2m /u—a /U_a <0x+20y> w—z)+io—y) Y
1 [* /9 B 1
- — 24 d dij
2w/_a/_a<af“0z7>f+ig v
B 1 a 1 T=a d~+-1 a 1 y=a
B ] MR R ™ B e

J=—a
1 @ 2a 5
T r) a2+ 32 *

=1

Q
=
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B.2 Block matrix formulae

Let X be a block matrix consisting of four N x N blocks A, B, C, D arranged as follows:

A B
X = .
C D
The determinant and inverse of X may be written in terms of its blocks with the aid
of the Schur complements
Y=A-BD!C, and Z=D-CA'B.

Specifically, we have

det(X) = det(D)det(Y) = det(A) det(Z),

o y-! _A-\Bz-1
_p-loy-! 7-1 '

These, and a great many other matrix identities may be found in the Matrix Cookbook

[PPOS].

and
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C

Quaternion algebra

C.1 Definitions

The real? quaternion algebra is a non-commutative extension of the complex num-

bers. Introduce basis elements 4, j and & satisfying the relation
=2 =k =ijk=—1. (C.1)

A quaternion q is specified by a linear combination ¢ = o + fi + vj + dk, where
a,f3,7,0 € R. Note that from (C.1) we have k£ = ij, and thus a generic quaternion
may just as well be specified by a pair of complex numbers a,b € Cby ¢ = a + bj. It

is this more compact representation that is used in the main body of the thesis.

The norm (or absolute value) of a quaternion ¢ = o + i + vj + 6k is defined to be

gl = Va2 + 52 + 2 + 82

Note (by setting v = 0 and J = 0 in the above) that this norm agrees with the usual

one for complex numbers and hence there is no confusion in using the same notation.

!Occasionally, quaternion algebras are defined over fields other than R and the name ‘real quater-

nion” may be used to avoid confusion.
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C.2 Matrix representation

Operations on quaternions have a close relation to those of matrices, in fact, there
is an isomorphism between the algebra of quaternions and a certain group of 2 x 2
matrices. For the generic quaternion ¢ = a + ib, where a,b € C we introduce the

matrix representation

It is straightforward to see that the map M is an isomorphism. Moreover,

g 0

M(q)M(q)" =
0 lgf?

and thus |¢| = || M (q)||, where || - || denotes the spectral norm (that is, the largest singu-
lar value). The matrix representation defined here is introduced and used extensively

in Chapter 5. There, for ease of notation, M (¢) is identified by q.

C.3 Relation to Pauli matrices

The Pauli matrices are

01 0 —i 1 0
Or = , Oy = , and o, = . (C.2)

1 0 1 0 0 -1
Consider a generic quaternion ¢ = a + 3i + vj + 0k, where o, 3,7, 6 € R. The matrix
representation of ¢ may be written in terms of certain products of Pauli matrices:

a+1if iy +19)
M(q) = = al + Boy0y + yo,0, + 60,0, .
i(y—10) «a—if

Thus the algebra of quaternions is isomorphic to that generated by real linear combi-

nations of the matrices I, (6,0y), (0y0.) and (0,0).
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