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Abstract: We consider a model of directed polymers on a regular tree with a disorder
given by independent, identically distributed weights attached to the vertices. For suitable
weight distributions this model undergoes a phase transition with respect to its localization
behaviour. We show that, for high temperatures, the free energy is supported by a random
tree of positive exponential growth rate, which is strictly smaller than that of the full tree.
The growth rate of the minimal supporting subtree is decreasing to zero as the temperature
decreases to the critical value. At the critical value and all lower temperatures, a single
polymer suffices to support the free energy. Our proofs rely on elegant martingale methods
adapted from the theory of branching random walks.

1 Introduction and main results

In this paper we give a detailed study of the phase transition arising from the presence of a
random disorder in the very basic model of polymers on disordered trees introduced by Derrida
and Spohn in [DS88]. This phase transition becomes manifest in the behaviour of the free energy,
see [BPP93], but also in the localization behaviour of the model, which is measured in terms of
the size of the smallest subtree supporting the free energy. The model can be seen as a mean-field
version of the popular model of a directed polymer in random environment, where most of the
questions settled here are still open. For a survey of directed polymers see [CSY04], and note
also the recent important results obtained by Comets and Yoshida in [CY06].

For a precise description of the polymers on disordered trees, let d > 2 and T be a d-ary tree
such that, starting from an initial ancestor in generation 0, the root p, each vertex has exactly
d children. A polymer is a finite or infinite self-avoiding path started in the root. We write |v]
for the generation of a vertex v and denote by T, = {v € T : |v| = n} the set of vertices in
the nth generation. Each v € T, can be identified with the unique path (vg,v1,...,v,) of its
ancestors from vy = p to v, = v, and thus represents a polymer of length n.

Consider a non-degenerate random variable V| which has all exponential moments, i.e.
E[¢®V] <00 forall f€R.

Then we introduce the random disorder V = (V(v) : v € T) as a collection of independent
distributed weights with the same distribution as V' attached to the vertices of the tree. For a
finite length polymer v € T,, we introduce the Hamiltonian

n

Hy(v) ==Y V().

Jj=1

The polymer measure or finite volume Gibbs measure p{® on T, is defined by
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where 8 > 0 is the inverse temperature and the normalising constant Z,,(3) is the partition

function defined as
Zn(B) = Z P iz VIvs)

veT),

Polymers of infinite length can be represented as a sequence (o, &1, &a, . . .) of vertices, such that
&, is a vertex in the nth generation, and moreover a child of &, _;. Such sequences are called rays
and the set of all rays constitute the boundary of the tree, denoted by 0T. We equip the boundary
OT with the metric d(&,n) = exp(—sup{n > 0 : &, = n,}), for {,n € 9T, which makes 9T a
compact metric space.

We first review some of the basic properties of the model. Roughly speaking, one should expect
that the behaviour of the polymer depends on the inverse temperature parameter (3 in the
following manner: If 3 is small, we are in an entropy-dominated regime, where the disorder has
no big influence and limiting features are largely the same as in the case of a uniformly distributed
polymer. For large values of § we may encounter an energy-dominated regime where, due to the
disorder, the phase space breaks up into pieces separated by free energy barriers. Polymers then
follow specific tracks with large probability, an effect often called localisation.

The mathematical analysis of polymers on disordered trees is based on the family of martingales
(M :n > 0) defined by

M — 0@ +osd) 7 () forn >0,

where

A(B) = logEe?V,
is the logarithmic moment generating function of V. It is easy to check that, for any 3 > 0,
(M : n > 0) is a martingale with respect to the filtration F,, = o(V(v): |v| < n), n > 0. Since
the martingale is non-negative, its limit M® = lim,,_,,, M? exists almost surely. An easy
application of Kolmogorov’s zero-one law shows that P{M® = 0} € {0,1}.

Define the function

f(B) = A(B) +1ogd — BN () for 3 > 0.

From the strict convexity of A, we infer that f(5) < logd for all 3 > 0. We shall check in
Lemma 2.1 below that f has a positive root unless the law of V' is bounded from above with an
atom of mass > % at its essential supremum. Let (. be the positive root, if it exists, and f. = oo
otherwise. Kahane and Peyriere [KP76] and Biggins [Big77] show that

M® > 0 almost surely, if 8 < (.,
M® =0 almost surely, if 3> f..

In particular, they show that E[M ] =1 if and only if 5 < (.. In this paper, we are especially
interested in the free energy, defined as

P(B) = lim ~log Z,(5).

n—oo N

It turns out that f., if finite, is the critical parameter for a change in the qualitative behaviour
of the free energy. Indeed,

A(B) +logd it B<fe,
o )={ 8 (1)
BC

(A(ﬁc) + log d) if 8> pf..
This result was stated in [DS88] and proved for a continuous time analogue. An elementary

proof, based on the study of the martingales (M{” : n > 0), can be found in [BPP93]. We
observe that at the critical temperature 1/, the model undergoes a phase transition and, for low



R 2

Figure 1: The free energy for the model when P{V =1} =1/4=1—-P{V = -1} and d = 2.

temperatures, it is frozen in the ground state. The two phases are often called the weak disorder
phase (8 < (), and the strong disorder phase (8 > (.). See Figure 1 for an illustration.

In the weak disorder phase the form of (1) seems to suggest that, asymptotically, each of the
d"™ polymers v € T, contributes a summand

E[eﬁ 271 V(Uj)] = exp [n/\(ﬁ)]

to the partition function Z,(3), and therefore the finite volume Gibbs measure does not localize
on a significantly smaller subset of T},. However, our first main result shows that this picture is
wrong and already a vanishing proportion of paths make a significant contribution to the free
energy. These paths can be chosen to be the vertices of a tree, which we call a minimal supporting
subtree.

Theorem 1.1. Let 0 < 8 < . so that we are in the weak disorder phase.

(a) Almost surely, there exists a tree T C T of growth rate

1 .
lim —log|T),| = f(B) < logd,
n—oo N

such that .
Jim Llog B e zim VI = (8).
'UET’L

(b) Almost surely for every sequence (Ap)n>1 of non-empty subsets A, C T, of the vertices in
the nth generation satisfying

1
lim sup -~ log [A,| < f(8)

n—oo

we have that 1
li | B Vv )
im sup - og E e w(B)
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Remark 1.2.

e Loosely speaking, if 0 < § < [, vertices in generation n of the minimal supporting
subtree typically contribute a summand exp(nS8A'(5)) to the partition function Z, ().
As the number of such vertices is of order exp(nf(3)), this is in line with the equation

f(B) + BX(B) = @ (B).

e The function f can be interpreted as the entropy of the system. Its role as a multifractal
spectrum is highlighted in [M6r08].

At the critical temperature, the growth rate of the minimal supporting subtree hits zero. This
suggests that in the strong disorder phase a subexponential set of polymers may support the free
energy. This is true, and our second main result even shows that a single polymer suffices.

Theorem 1.3. If . < oo, then almost surely there exists a ray & = (&o,&1,...) € OT such that
for any B > B. and sets A,, C T, containing the vertex &,,

1 n 1 &
lim =1 BEi=1 V(i) — 3 1im = V() = )
Jm, log 3 PRI =p lim 75 V(e =w(h)

n—oo N,
vEA, j

Directed polymer models are intimately related to the model of p-percolation introduced by
Menshikov and Zuev [MZ93], which is considered for example in [KS00] and [CPV08]. Here we
discuss an interesting implication of our results for this model.

To define p-percolation, given an infinite, connected graph and a survival parameter p € (0,1), we
declare each edge independently to be open with probability p, or closed with probability 1 — p.
For g € [p, 1] we say that o-percolation occurs, if there exists an infinite self-avoiding path, along
which the asymptotic proportion of open edges is at least p. Our result gives a sharp criterion
for the occurrence of g-percolation on regular trees.

Theorem 1.4. For g € (0,1],
o-percolation occurs almost surely <= p > pc,

where p. = é if o = 1, and otherwise p. is the unique solution in the interval (0, ¢) of the equation

pe(1—pe)t 2= 0%(1— o).
Remark 1.5.

e The most interesting fact here is that o-percolation occurs at criticality, a phenomenon
which we conjecture to hold for g-percolation on arbitrary trees.

e If p = 1, then the critical p value is é which is the same as for classical percolation on a
d-ary tree. However, unlike in the classical case, 1-percolation occurs at criticality. Our
proofs also show that in the case p > p. the Hausdorff dimension of the set of rays surviving
o-percolation agrees with that of the boundary of the surviving tree in classical percolation,

provided the latter is non-empty.

The remainder of this paper is structured as follows. In Section 2 we review some of the basic
properties of the function f. In Section 3 we focus on the weak disorder phase and develop some
basic ergodic theory of weighted trees, which enables us to construct and explore some properties
of the infinite volume Gibbs measures. We also give an estimate on the number of polymers of
length n for which the Hamiltonian is unusually small in terms of a coarse multifractal spectrum.
Using this, we prove Theorem 1.1 in Section 4. More subtle techniques are required to discuss
the critical case and tackle Theorem 1.3. These are developed in Section 5. Finally, in Section 6
we translate our results to the model of g-percolation and complete the proof of Theorem 1.4.



2 Preliminaries

In this section, we review some of the properties of the function f. In particular, we establish a
necessary and sufficient condition for f to have a positive root, see Lemma 2.1. We also prove a
result about the minimum of the Hamiltonian taken over the vertices in the nth generation, see
Lemma 2.2.

We require the Legendre-Fenchel transform A* of A defined as

A () = sup{af — A(B)},

BER

see Figure 2 for an illustration.

A

Figure 2: The Legendre-Fenchel transform of A\. Let o € R. If [ is the unique line of support of
A at B with slope «, then —A\*(«) is equal to the y-coordinate of the intersection point of I with
the vertical axis.

The next result, which can be found in [Com05], gives us a necessary and sufficient condition for
f to have a positive root.

Lemma 2.1. f has a positive oot if and only if

e cither V is unbounded,

o or w:=esssupV is finite and P{V = w} < %,
Proof. Using the Legendre-Fenchel transform, we find that

f(B) =logd+ A(B) — BN (8) =logd — A" (N(8)) - (2)

Since f(0) =logd and f is strictly decreasing and continuous, f has a positive root if and only
if limg_,oo f(B) < 0. It is well-known that

E[VelY]

)\/(ﬂ) = E[eBV]

— esssup V. (3)

Therefore, if esssup V' = oo, then ) (8) — oo, which implies that f(8) — —oo, so that f has a
positive root.



Now suppose that w := esssup V' < oo. Using V' (8) — w and the lower semi-continuity of A\*,
ﬁlim N (N (B)) = \*(w) = sup (Bw — log E[e"V])
— 00 ﬂ
=~ inf (log(P{V = w} + E[L{V < w} e’V =)])) = —log P{V = w}.
So in particular, by (2), limg_. f(8) = logd+log P{V = w}. Therefore, if P{V = w} < 1, then

limg_. f(B) <0, i.e. f has a positive root. Conversely, if P{V = w} > %, then limg_o f(8) >
0 implying that f(8) > 0 for all 5 > 0. O

log d logd+

logd — A\* ()

log(dP{V = w})+

} ]
EV esssup V'

t @
esssup V'

log(dP{V = w})+

(a) V with P{V =1} =1 —P{V =0} < 1/d. (b) V with P{V =1} =1 —P{V =0} > 1/d.

logd
logd+ *
logd — X\*(a)
log(dP{V = w})
0 f f v ) o
EV esssup V' ‘1 EV
(¢) V uniformly distributed on [0, 1]. (d) V standard normally distributed.

Figure 3: The function o — logd — A*(«) for four typical cases. Writing w = esssup V, Figure
(a) shows the case that V is bounded, but 0 < P{V = w} < 1, whereas in (b) V is bounded, but
P{V =w} > % in (c) V is still bounded, but P{V = w} = 0. Finally, in (d), V is unbounded.

By (3), it makes sense in the case . = oo to define X' (8;) = esssup V. With this convention, we
can prove the following lemma about the minimum of the Hamiltonian taken over the vertices
in the nth generation.

Lemma 2.2. We have

1 1 =
— lim — min H,(v) = lim — max V(vj) = lim M =XN(3).
n—oo N veT, n—oo N veT, = B—00 ﬂ



Proof. The first equality follows from the definition of the Hamiltonian. Clearly, for 5 > 0,

. < <d" ; .
exp {ﬁvné%“): ' 1V(vj)} < Z,(B) < d"exp {ﬁvrréz;% 4 1V(vj)}
j= j=

Hence, it follows that

1 1 i1 V(v 1
Lt0n2,(8) ~ Stogd < max 2T < Loy 7, 9) (4)
If 8. < oo, then we know from (1) that
lim £8) _ A(Be) +logd N5

p—oo B Be

by definition of .. Moreover, if 5. = oo, then again by (1), we know that ¢(8) = A(8) + logd
for all B > 0. Also, the Legendre-Fenchel transform of A satisfies \*(\'(8)) = N(8)8 — A(8) and
the proof of Lemma 2.1 shows that limg_..o A*(N(8)) = —logP{V = w}. Therefore, we can
conclude that

lim e _ lim AMB) = lim (X(ﬂ) - M) =esssupV = N (8.),

Booo B pooe 3 oo 3
by (3) and the convention X' (3.) = esssup V. Hence, in either case, letting first n — oo and then
B — oo in (4) yields the statement of Lemma 2.2. O

3 Ergodic theory and the multifractal spectrum

In the next two sections we concentrate on the weak disorder phase, in other words we assume
that 8 < (., so that the martingale limit M is positive.

3.1 Ergodic theory on weighted trees

We develop the ergodic theory for a tree with attached weights in analogy to the ergodic theory
on Galton-Watson trees developed by Lyons, Pemantle and Peres in [LPP95]. We take advantage
of the fact that, in the weak disorder regime, the martingale convergence can be used to construct
the infinite-volume Gibbs measure on the boundary of the tree. For this purpose, we extend a
finite length polymer v = (v, . ..,v,) to an infinite length polymer v+ € AT by defining v;;1 to be
the left-most child of v; for all ¢ > n. This enables us to interpret the finite volume Gibbs measures
19 as probability measures on the boundary 9T using the convention p{® (vt) = p{® (v) for any
v € T,,. We will frequently use this identification in the sequel.

For a vertex v € Ty, let B(v) = {£ € 9T : &, = v} and let T'(v) be the subtree consisting of
all vertices that have v as an ancestor, with v as a root. Then we can define the infinite-volume
Gibbs measure u® by

v MO (v)
e — B2y V(v;)—n(A(B)+logd)
p?(B(v)) ==e ! M®

where M (v) is defined as the almost sure limit of

M (v) = Z exp (ﬁz V(w;) —n(A(B) + log d)) ,

weT, (v) Jj=1



which exists since (M!?(v),n > 0) and (M, n > 0) have the same law. Then, we see that
almost surely for v such that |v| =k, as n — oo,

1 k v =k (w;
1P (B(v)) = B 2i=1 V(vs) Z B 251 Vi (wy)

Zn(B)

wETy _(v)
Mr(ﬁk(v)
My

in other words, almost surely, u® converges weakly to pu®.

— BEE V() —k(A(B)+log d) — u?(Bv)),

The central result of this section is the following proposition.

Proposition 3.1. If § < (., for P-almost every disorder and p'® -almost every path £ € 9T,

Jim 3 V() = X(5). Q
and
nlin;o—flogu(ﬁ)(B(fn)) = 18- (6)

Let SpinedTrees = {(V,&): V = (V(v): v € T), £ € T} be the space of weights attached to
the vertices of the d-ary tree with marked spine, endowed with the product topology. For any
vertex w € T we denote by V(w) = (V(v) : v € T'(w)) the family of weights on the tree T'(w).
There is a canonical shift

0: SpinedTrees — SpinedTrees, 0(V.&) = (V(&), (&1,6,...)).
Our aim is to show that 6 is a measure-preserving transformation with respect to the measure
v(d(V,€)) = wy”(d€) My, P(dV),
where the subscript V indicates the dependence of ,ugf ) and M{f ) on the underlying disorder.

Lemma 3.2. The shift 0 is v-preserving.

Proof. Let A be a Borel set in SpinedTrees . Then,
W(6714) = [ 10-0a(V.€) ) () MY P(Y)

/Z Lie, =0} (£) 1AV (v), (v, &2, 3, .. ) sy (d€) My P(dV) .

[v]=1

For any vertex v = (vg,...,v,) € T we interpret 0T (v) as a subset of T by identifying
(v,¢1,&2,...) € 0T (v) with (vg,...,vn,&1,82,&3,...) € OT. Hence, for v € T and U C 9T (v),

5 @
o) = B0

M@
Hence, recalling that x\;’ (B(v)) = eﬁv(”)*)‘(ﬁ)*logd#%), and using independence of the weights,
v

07 = [ Y [ 1400 (6o ) 0 BO) i (0. o, ..)) M PlaY)

lv]=1

! Z/ BV (v)—A(8) /1A(V( )s (v,€2, . ) 15 (d(v, &2, .. ) My, P(AV)

lv[=1

= E[e/V )] / 14V, &)l (d€) MY P(dV) = v(A).



Lemma 3.3. The shift 0 is ergodic.

Proof. By Proposition 15.5 in [LP05], the shift is ergodic with respect to the measure v if and
only if every set A of weights satisfying

Z 1y (B(v)) = 14(V) P-almost surely (8)
V(v)EA
|v|=1
has P(A) € {0,1}. Therefore, let A be a set satisfying (8), then in particular,
VeA << V(v)€ A forall vsuchthat [v] =1. (9)

By iteration, (9) implies that A is a tail event with respect to the i.i.d. family of weights. Invoking
Kolmogorov’s zero-one law, we can deduce that P(A) = 0 or 1, as required. O

Since by the previous two lemmas 6 is v-preserving and ergodic, the pointwise ergodic theorem
gives us that for P-almost every V and p(ﬁ )_almost every & € OT,

lim > V() = vV, (10)

n—oo 1 4

where v[-] denotes the expectation with respect to the measure v. We find

V(&) = / V(&) w0 (d€) M B(dV) / S™ V() p {6 = v} MY (V)

Jv|=1
— Z/ BV (v)—=A(B)—logd M(/3() ]P(dV)
lv]=1
E[VePY]
- BV —X(B) A7 _ o
7E[Ve ]]E[MV ]7 E[egv] —)\(ﬂ),
where we have used independence and the fact that E[M{f '] = 1. Hence, we have proved the

first part of Proposition 3.1. Similarly, for the second part, note that

I log & —logd + A lim 5L tim L 10g M (6n)
nggo—f og i (B(€n)) =logd +A(#) — lim G~ V(&) — lim ~ T (11)
j=1

Hence by the first part of Proposition 3.1, it suffices to show that the second limit converges
to 0. The following lemma from ergodic theory, which can be found for instance in [LPP95,
Lemma 6.2], allows us to evaluate the last term.

Lemma 3.4. If S is a measure-preserving transformation on a probability space, g is finite and
measurable, and g — Sg is bounded below by an integrable function, then g — Sg is integrable with
integral 0.

Looking at g(V, &) = log M,,” and using that M{f()é. )= = My (&), we obtain

g —0g =log My —log My (&) = —log p$’ (B(é1)) + BV (&) — A(B) — logd
> BV (&) — M(B) — logd,

where the latter is integrable. Hence by the ergodic theorem and Lemma 3.4, for P-almost every
disorder V and 4, -almost every &,

(B) (B) .
hm 710g MV (é"n) MV (5‘7*1)

Yo = lim — Y log — Y2 = = yllog MY —log MY (&1)] = 0
n—o0 7 M{;ﬁ) nggo n JZ:; % M{;ﬁ)(gj) vlog v %y €l

Therefore (11) together with the first part implies the second part of Proposition 3.1.



3.2 A coarse multifractal spectrum

We use the ergodic theory developed in the previous section to prove the following coarse mul-
tifractal spectrum.

Proposition 3.5. For all « > EV with A\*(«) < logd, almost surely,

lim —log#{veT ZV v;) >an}:logd—/\*(a).

n—oo

Proof. First note that the proof of Lemma 2.1 shows that a5 — A(f) is maximised at 3 € [0, ;)
such that o = N (8). For the upper bound consider

w(8) = nhféoﬁl‘)g Y SV > hmsupflog Y Ve v an)

vET, nmoee vET,

> af + limsup — log#{veT ZV v;) >om}

Now, by the expression for the free energy in (1), we know that ¢(3) = A\(3) + logd for 5 < ..
Therefore, rearranging the previous display yields

limsup — log#{v e, ZV (v;) > om} < p(B)—ap

= 10gd+ A(5) =N (B)8 =logd — X (),

where we used the definition of § as the maximizer of the Legendre-Fenchel transform.

For the lower bound, recall that A\* is continuous on its domain and consider € > 0 small enough
such that logd — \*(a + €) > 0. In particular, we can find 0 < 3 < (. such that o + ¢ = X ().
Then, consider the set

n

p={ccor: m 3. V(&) = X(9), Jim, 2 logu(B(&:) = F(B)}

By Proposition 3.1, u®(E) = 1. Moreover, recalling that A'(8) — e = «, for any k € N, the set
FE is covered by the collection

U Ut ZV% > an, u®(B(v)) < e U=}
n=~k |v|=n

Hence, if we write ¢ = liminf, _ %log #{v e T, : Z?:1 V(v;) > an}, we obtain for k
sufficiently large

1=u®(E Z > Uz vizan Lo By <enu@-ay i (B))
n=~k |v|=n
< Z #{veT, ZV (v;) > an}e” n(f(B)—e) < Z enla—f(B)+2¢)
j=1 n==k

Therefore, if ¢ — f(8) + 2¢ < 0, the sum on the right hand side converges, so by taking k large
enough we could make the right hand side < 1 contradicting u®(E) = 1. Thus, we conclude
that ¢ — f(B) +2¢ > 0.

10



Finally, we recall that f(8) = logd + A(8) — BN (8) = logd — X\*(a + €) so that we have shown
that

qzliminfllog#{veTn : E V(vj) zan} > f(B) —2e =logd — A" (o +¢) — 2¢.
n—oo N
i=1

Therefore, recalling that A* is continuous, we obtain the required lower bound by lettinge | 0. [

4 Localisation in the weak disorder phase

In this section, we prove Theorem 1.1 using the theory developed in Section 3.

Lemma 4.1. Suppose T C T is any subtree satisfying /N”(@T) > 0, then

liminf - log [T5,| > f(3).

Proof. Using Frostman’s lemma, see e.g. Proposition 2.3 in [Fal97], in combination with (6) we
infer that the Hausdorff dimension of &T must be at least f(3). The Hausdorff dimension of the
boundary of a tree is the logarithm of its branching rate, which is bounded from above by the
lower growth rate, see e.g. [LP05]. O

The next lemma enables us to choose suitable trees for Theorem 1.1(a).
Lemma 4.2. Almost surely, for any e > 0 there exists a subtree T® C T with u®(0T®) > 1—e¢,
and a sequence 0, | 0 such that, for every £ € 0T andn > 1,

n

%Z V(E)>NB) — 0, and  p®(B(E,)) > e @)

=1

Proof. Since 0T is a complete separable metric space and p® is a finite measure, we know that
u® is regular, see [Sch05]. By Egorov’s theorem, see e.g. [Ash00], we can can pick a closed
subset A, C 9T with the properties that u®(A;) > 1 — € and the limits of Proposition 3.1 hold
uniformly on A.. This means that there exists d,, | 0 such that the displayed properties in the
lemma hold. Now define -

= Us¢

£€A: j=0

the set of all vertices on the rays of A, with the tree structure inherited from 7. It is clear that
T is a tree and, as A, is compact, we have that 9T = A.. O

Proof of Theorem 1.1(a). We show that any one of the trees T, ¢ > 0, satisfies the requirements

of Theorem 1.1(a). Indeed, as the balls B(v), v € T are disjoint, we infer from Lemma 4.2
that there can be at most exp (n(f(8) + d,)) vertices in 7). Hence,

1
Llog 1] < £(8) + .
Recall that p®(9T) > 0. Combining this with Lemma 4.1 we obtain that
1
lim ~log |7 = £(8). (12)
n—oo N,

It remains to show that 7@ supports the free energy. By (12), almost surely, there exists a
sequence 7y, | 0, such that for all n > 1,

1
n log |Tr(f)| > f(ﬁ) - Tn -

11



Using Lemma 4.2 again, we see that

1 n y 1 (N (3) G .
EIOg( Z eﬁzj=1v(1j)) > EIOg (e (AN'(B)B—0n) |T’I'(L)|> > N(B)B = 6n + f(B) = Vn,
veTe

which converges to N (8)8 + f(8) = ¢(8). The opposite bound is trivial, hence the proof of
Theorem 1.1(a) is complete. O

The proof of Theorem 1.1(a) immediately gives the following corollary.

Corollary 4.3. Almost surely, for every 8 < (. and for every 0 < € < 1, there exists a tree
T® C T of growth rate

lim L log |T)| = £(5)
n

such that
pP{Eedr 9} >1—c¢.

We can now proceed with the second part of the proof of Theorem 1.1.

Proof of Theorem 1.1(b). Since f(3) is strictly decreasing on (0, 5.), we can choose 8 < 3’ < f3,
such that

lim sup ~ log |4, < £(8') < £(5).

n—oo N

Now, choose € > 0 small enough such that, for all n sufficiently large,

|A,| < e (B)=e),

By Proposition 3.5 we have, for large n,

#{veT, : D V() >nX(8)} > e"UE)=2) > 14, (13)
j=1
Next, order the vertices v',...,v%" in the nth generation of T" such that
SVEH=IVEH == V).
j=1 j=1 j=1
Then, clearly
[An|
Z P Xi= V) < Z BT V(y)
vEA, k=1

< S veT, o Y V() >N ()} X= V)
veTy, j=1

where the last inequality follows from (13). Note that by Lemma 2.2, for large n,

max 1 Z V(vy) < XN(Be) +e.
Jj=1

veT, N

Hence, we can write

ST {veT, Y V() =N (B)} e Eim VD)

veT, J=1

N n
< Z#{v €T, : aj_q < %ZV(’UJ‘) < + e} efnlaite)

Jj=1 J=1

12



where «; = (1 — %)/\’(ﬂ’) + ﬁk’(ﬂc), for i = 1,..., N and some fixed N. Writing ¢*(a) =
sup,cr{ar — ¢(7)} for the Legendre-Fenchel transform of ¢, we find that by Proposition 3.5
again, for n sufficiently large,

#{veT, : ZV(vj) > noy_g} < enT¢T(@imFe)

j=1

Combining the previous displays and taking N > % such that a; < o;_1 + €, we obtain

N
T T Vi) < 3 nlBa = (o) 4142009
vEA, =1 (14)

< Nexp {n( (604—90*(04))4—(1—#2@6)}.

max
Q€[N (B),A(Be)]
Since X' (4’) > EV it follows that

QE[A,gg,%ﬁ,(ﬂc)](ﬁa ¢ (a)) < QG[EH‘%(BC)](M ¢ (@) = ¢(8), (15)
where the last equality follows from the Legendre-Fenchel duality. But now, by (1), ¢ = A+logd
on the set [0, 5] and therefore ¢ is differentiable with derivative A’. Legendre-Fenchel duality
implies that ¢* is strictly convex on [EV, X' (5.)]. In particular, since the maximum on the right
hand side in (15) is achieved at \'(8) and X (8") > N (8), it follows that the inequality is in fact
strict. Hence, we can choose ¢ small enough such that

(Ba—¢™(a) +2(1+ e < @(F) .

max
a€[N(B),A(Be)]

Then, for n large enough such that %logN < €, we can combine the previous display with (14)
to obtain the required inequality,

1 n 1
| B V(W) « Zloa N — o 149
log > e < ~logN + (Ba—¢*(a)) + (1 +208)e < ¢(B),

max
S Q€[N ()X (Bo)

which completes the proof of Theorem 1.1(b). O

5 Localisation in the critical regime

In this section, we prove Theorem 1.3, in other words, we show that in the critical and supercrit-
ical case a single ray supports the free energy. Recalling our convention that A (3.) = esssup V,
if B. = oo, Theorem 1.3 follows immediately from the following proposition. Although the result
looks similar to (5), its proof is considerably more involved as it deals with the critical case.

Proposition 5.1. Almost surely, there exists a ray & € 0T such that
tim L 37V = (5
n—oco n = J c) -

The proofs in this section use ideas from branching random walks as developed in Biggins and
Kyprianou [BK04] and Hambly et al. [HKKO03]. We split the proof in two parts according to
whether [, is finite or infinite.

13



5.1 Proof of Proposition 5.1 when 3. < o

Suppose that f has a positive root, i.e. 5. < co. Recall that in this case A(3.) +logd = .\ (6.),
which we will use frequently throughout this section. The idea of the proof is to restrict attention
to those polymers where the average of the weights is smaller than the critical weight A'(5.).
More precisely, introduce the cemetery state A and define new weights by setting for v € T,, and
for x > 0,
. E
7o () = Vi(v) if 335, V(vj) <x+kXN(B) for all k <n,
A otherwise .

Then, it is clear that if the weight associated to v is A, then all the descendants of v also have
the weight A. Moreover, for 2 = 0 we omit the superscript and write V := V9.

The aim is now to define a martingale which induces a change of measure such that under the
new measure there exists a ray with critical weight. First of all, introduce a size-biased version
V* of V, whose distribution is given by

Blg(V*)] = Blg(V)e* 0],
for any bounded, measurable function g. Note that

E[VefV)
E[V* = ———= = N(B.).
V'] = ey = X (60
Therefore, if (V]"‘7 j > 1) is a sequence of independent random variables with the same distribution
as V*, then the random walk with increments given by (V) has a drift \'(8:). Now, define
T=inf{n >1: Z?Zl Vi < nMN(B:)} as the first time that the random walk with increments
(V}") grows slower than its drift. Then, we set for x > 0,

h(z) = E[Z 1{ f:v; —nN(Be) € [O,x)}} ,
0 j=1

as the expected number of visits of the normalised random walk with increments (V]* - N(B))
to [0, z) before hitting (—o0,0). Furthermore, we set h(0) = 1.
For z > 0, we define the martingale (W7?: n > 0) by

— Z h(z — Z;;l V(vj) +nX(B:)) B 7=y V(wy)—n(A(Be)+Hogd) 1
" h(x) {Ve(v)#A} -

veT),

Again, for z = 0 we omit the superscript and write W,, = W2. In order to prove that this defines
a martingale, we need the following facts, see Lemma 10.1 in [BK04].

Lemma 5.2.

— C, for some constant C > 0.

(i) Aswﬂoo,@

(it) For z >0, we have E[h(z — V* + XN (Bc))1{z — V* 4+ X (B:) > 0}] = h(z).

Now, the proof that (W¥: n > 0) is a martingale with respect to the filtration given by F, =
a(V(v) : |v] <n) is a straight-forward calculation.

Lemma 5.3. The process (Wr: n > 1) defines a martingale of mean one.

14



Proof. Recall that A\(8.) 4+ logd = BN (B). Then

MBI | 7] = B[ 3 A - SV(0y) - X(3))eH SN0 (70) 2 8} | 7]
VET 41 j=1

n

>y E[h(a: =S V() - Viw) + (n+ 1)X(Bc))
_veT, weTi(v) j=1
Ve (0)£A
w P (X V(vj)+V(w)—(n+1))\’([3c))1{2?:1 V(v,) 4+ V(w) <+ (n+ I)A/(ﬂc)} ’fn}
Now note that V(w) is independent of F,, and recall the definition of V*. Then we can continue
the display with

— Z ePe(Xiaa V(’Uj)—n)\,(ﬂc))E[h<z _ i V(Uj) + n)\/(ﬂ) —V* 4 X(ﬂc))
=1

_veT, J
V() #£A x W{w =377 V(vg) +nXN(Be) = V* + N(Be) > 0}}
= Y b V) N () VG  p(aywy
_vET, Jj=1
Ve (v)£A
where we have used Lemma 5.2 (ii). This lemma also confirms that W has mean 1. O

Allowing the cemetery state as a possible weight in SpinedTrees we can, similarly as in Sec-
tion 3.1, extend the measure P to a measure P* on SpinedTrees by choosing the spine uniformly,
i.e. by choosing &,,11 with equal probability from the children of &,,. Define the extended filtration

Fr=0(Fn, &,i=1,...,n).

We now perform a change of measure such that the weights (V' (¢;)) along the spine will be chosen
such that Z?Zl(V(fj) — XN(B.)) follows the law of a random walk conditioned to stay positive.
More precisely, define the probability measure Q* via

dQ*
dPp+

— h(nX'(8) ZV )) e Zi V@O (g, £ A

n

From the definition it follows that under the new measure Q*, the distribution of the weights is
constructed as follows:

e The spine ¢ is chosen uniformly, i.e. &,4+1 is chosen uniformly among the children of &,.

e The weights along the spine £ are distributed such that their average is conditioned to be
less than the critical weight A'(53.), i.e. if at time n the weights along the spine satisfy
s = 371 V(&) < nN(Bc), then the weight for &,41 is chosen according to Doob’s h-
transform,

@ [V(6unn) € dz| S ViE) =]
j=1

_ h{(n+ DN () — (2 +9))
R(nX (Be) — 5)

1{z+s < (n+ 1N (B)} P APV € dz}.
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e The weights of the vertices not on the spine remain unaffected by the change of measure. In
other words, if 7, is a sibling of &,, then we generate a weight V' (),,) with the distribution
of V' and attach it to n, if

S VIE) + Vi) <X (),

and otherwise 7, receives the weight A. Then conditionally on V(nn) # A, the random
disorder in the tree started in 7, is given by the weights (V*(v) : v € T'(n,)) for

)‘l(ﬂc) - i V(gj) - V(nn)
j=1

If we restrict Q* to the o-algebra F = o(|J,,»; Fr), we obtain a measure Q defined on the space
of trees with weights. Moreover, we obtain its density on JF,.

Lemma 5.4.

=W,.

P,

Proof. Writing P*[-] for the expectation with respect to P*, we obtain from the definition of
conditional expectation

dQ* * - > n
v, T [n(n (50 - ;v(gj)) P TIVE@NOL T (e,) £ A) | 7]
:P*[Z 1{¢&, = v} h(n zn:V ) Be 2251 V(vs)— n)\(ﬁ)l{v( #A}’}—}
veT), j=1
= Z (TL)\, ﬂc i V ) j=1 V(v5)—nA(B) P*{fn _ ’U} —W,,
veT, j=1
V(v)#A
which proves the claim. O

The next step will be to show that Q is absolutely continuous with respect to PP.

Lemma 5.5. Q is absolutely continuous with respect to P with Radon-Nikodym derivative

W = limsup W,,.

n—oo

Furthermore, Q*-almost surely
lim En V(&) = N(B)
n—oo N = J c) -

Proof. By a standard measure theoretic result, see for instance Lemma 11.2. in [LP05],

aQ

1P =W <= W <oo Q-almost surely. (16)

Denote by G = o(V (&) : k = 1,2,...) the o-algebra containing all the information about the
weights along the spine. The first step is to calculate the conditional expectation Q*[W,, |G].
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With this in mind, consider a path v € T,,. Decomposing according to the last common ancestor
with the spine,

0 - Be 37 V(05)—n(A(Be)+log d)
*[n(nx (8 ;v ) e Hosd) 1V (0) # A} | 6]

m

-y h(m/\' Be) ZV(@‘)) efe Zita V(&) —mA(B) Hoa d) O fax (k: vy, = &} = m)}

m=0 j=1

. RGN (B) =30 V() BV (i) —A(Be) _
X E[ ;H . R((i— 1N (Be)— 3527 V () ¢ 1{2;:1 V(v;)<iN(Be)} Fm

< h(m/\’(ﬂc) _ Z V(fj)) d " ePe 251 VI(E5)—m(A(Be)+log d) ’
—0 j=1

3

where we used the fact that under Q* the weights of the vertices not on the spine have the
same distribution as under P*, so that we can apply Lemma 5.2 (ii) repeatedly to show that the
conditional expectation of the product is equal to 1. Summing over all v € T,, we obtain from
the previous equation

Q*[Wnlg}gi (m)\ (Be) iv ) 7o V(E)—m(A(Be)Hog d)
m=0 j=1

Recall that Z;:l V(&) under Q* has the law of a random walk conditioned to stay strictly below
n\ (Bc). In other words, — 377, V/(§;) +n\'(Bc) follows the law of a random walk conditioned
to stay positive. It is known, see for instance [HKKO03] where they treat the case of a random
walk conditioned to stay non-negative, that Q*-almost surely for any € > 0, there exist constants
C1,Cs > 0 such that for all sufficiently large n,

Cine ™ < = > V(&) +nN(B) < Con e (17)
j=1

Hence, using that by Lemma 5.2, h(z)/z — C as @ — oo, the previous estimate shows that,
Q*-almost surely
limsup Q*[W,, |G] < o0

n—oo

By Fatou’s lemma we can conclude that liminf, .., W, is also Q*-almost surely finite, so in
particular it is Q-almost surely finite. From the representation in Lemma 5.4, we see that 1/W,,
is a nonnegative super-martingale under Q and hence it has a Q-almost sure limit. Hence, Q-
almost surely W = limsup,,_,., W,, = liminf,,_,,, W,, < oo, so that by (16), Q is absolutely
continuous with respect to P with Radon-Nikodym derivative W. Moreover, (17) shows that
Q*-almost surely

) 1 n ,
Jim = VI(E) =N (Be). O
Jj=1
Now, we are finally in the position to complete the proof of Proposition 5.1.

Proof of Proposition 5.1 when 5. < co. By Lemma 5.5, we know that Q*-almost surely, the
weights along the spine satisfy

Jim > VIE) = N () (18)
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Now projecting down onto F, we see that Q-almost surely there exists a ray & € 9T that
satisfies (18). But since Q is absolutely continuous with respect to P, we can deduce that

n
IP’{ there exists £ € 9T with lim 13 V(g) = )\’(ﬁc)} >0.
n— oo —
j=
But the event in question is a tail event with respect to the i.i.d. family of weights, so that by
Kolmogorov’s zero-one law it follows that the event has probability 1. O

5.2 Proof of Proposition 5.1 when (., =

We now consider the case that f does not have a positive root. By Lemma 2.1 this implies
that w = esssup V is finite and P{V = w} > 1 We start by considering the spe(ual case of a
Bernoulli disorder. Therefore, assume that P{V =1} =p=1-P{V =0} with p > 5. At the
end of this section we will see that it is easy to generalize the result and to prove Pr0p081tion 5.1
for a general disorder with . = oo.

Lemma 5.6. For the Bernoulli disorder with success probability p > %, almost surely, there
exists a ray € € 9T such that

1 n
lim — ) =
i 2 V)

As in the previous Section 5.1 we use a change of measure argument. In this case, our aim is to
produce a new measure under which the spine has an asymptotic average weight equal to 1.

Proof. Fix p € [%,1). Define a sequence (p;);>1 of increasing numbers in [p, 1) that converges
to 1 by setting p; = max{(%)z/ ¢ p}. As before, let P be the probability measure such that the
random variables (V' (v) : v € T') are independent random variables with Bernoulli distribution
with success probability p. Next, we extend P to a probability measure P* on the set of spined
trees such that the spine is chosen uniformly. Also, set Ff = o(V(v), |v| < n,€(j),5 < n) and
denote its projection onto the trees with random weights by F,, = o(V(v), |v] < n). Then, we
can define a new probability measure Q* on the set of spined trees by setting

_ ﬁ (IH)V(&) (1 _pi>1_v(€i).
Frooa=1 NP I=p

It is easy to check that the right hand side defines a martingale under P*, which implies that
the measure Q* is well-defined. Moreover, under the new measure the spine £ is still chosen
uniformly, but V() is now Bernoulli with success probability p;, whereas if v # &;, for any 4,
V' (v) is still Bernoulli with success probability p.

dQ*
dP*

Now, we can define Q as the projection of Q* onto F = U(Unzl F.). Then, as before

* n V(&) o\ 1-V(&)
w, oG () 1A
(v) _ 1-V(v)
g ll(2) ()

1 < >V(U) (1 —pi>1_V(v)
vET, ar i 1-p

18



Clearly, (M,,n > 0) defines a martingale with respect to P and the filtration (F,,n > 0). As
in the proof of Lemma 5.5, our aim will be to show that M = limsup,, ,.. M, < oo, Q-almost
surely. For this purpose define G = (V' (&;) : i > 1) and consider the conditional expectation

n Di V(v) 1—p; 1-V(v)
[M |g [Z Z 1{max{k W=k }= m}dn H( > (1—1)) ‘g}

veT, m=0

n.om V(&) 1-V (&)
1- 1
= Z H (pl) <p> #{v €T, : max{k: vy =&} =m}
m=0i=1 p 1 -p
LR P i V(&) —pi 1-V (&)
<> w1l <) f :
m=0 =1

Now, recall that p; > p so that t—;’f’ < %. Hence, using that p; is increasing and p > 57 we can
deduce from the previous display that
n 1 m
COCED se | UE o

m=0 =1
Hence, limsup,,_,., Q*[M, |G] < oo, since p = W for all m large enough. Precisely, as in
Section 5.1 we can thus deduce by Fatou’s lemma that liminf,, ., M, is Q*-almost surely finite
and thus Q-almost surely finite. By construction, ﬁn is a positive Q-martingale, which implies
that its limit exists and hence M = lim,, o, M,, < oo, Q-almost surely. Therefore, Q is absolutely
continuous with respect to P with Radon-Nikodym derivative M.
We have seen that Q*[V(&;)] = p;. Since p; — 1 asi — o0, it is clear that lim,, %(@*[Z?Zl V(&) =
lim,, o0 %Z?:l p; = 1. Now 0 < V(§;) <1 so that by Lebesgue’s dominated convergence theo-

rem,
n

Q* {hmsup (1 - fZV (&) )] <1 —HILII;OQ*{%ZV(@)} =
n—oco =

Since0<1—1 5 2i=1 V(&) < 1, we deduce that Q*-almost surely lim,,—, L i V(g =1,

Hence, Q-almost surely, there exists a ray £ € 9T such that lim, . = Z] V() =1 AsQis
absolutely continuous with respect to P it follows that

: I R
IP{ there exists £ € 9T with nan;O - z; V() = 1} >0.
]:
As in the previous section, we deduce from Kolmogorov’s zero-one law that this probability is in
fact equal to 1, so that we have proved Lemma 5.6. ]

We now use the previous lemma for the Bernoulli disorder to complete the proof of Proposi-
tion 5.1. Assume that V is any random variable such that the corresponding function f has no
positive root. Recall that this means that P{V = w} > % for w = esssup V' < oc.

Proof of Proposition 5.1 when 5. = co. Given the disorder (V(v),v € T), define the random

variables V(v) = 1{V(v) = w}. Then p := P{V(v) = 1} = P{V (v) = w} > L. Lemma 5.6 shows
that there exists a ray £ € T such that

1 n 5
lim — )=
j=1
Therefore,

hmlnf—ZV &) > hmlnf— ZV &V () =w) > whmmf— ZV &) =

n—oo N n—oo N
Jj=1
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Finally, as the reversed inequality is trivial, we have completed the proof. O

6 o-percolation on regular trees

We now show how the directed polymer model on trees can be interpreted in the framework
of p-percolation. Consider a d-ary tree T as before and, for p € [0,1], define the disorder
Vp = (Vp(v): v € T) as a family of i.i.d. Bernoulli random variables with success parameter p.
An edge leading to a vertex v with weight V,(v) = 1 is considered to be open and if V,(v) = 0
it is defined to be closed. For g € [p, 1], we say that g-percolation occurs if there exists a path
& € 0T such that

1 n
liminf — i .
minf > V(&) = o
j=1
Lemma 6.1. Fiz p € (0,1) and let \,(8) = logE[e?V?]. Let ac(p) =1, if p > %, and otherwise
let ae(p) be the unique solution of A (a) = logd in the interval (p,1). Then, if a < ae(p), almost
surely, there exists € € T such that

1 n
lim inf — N>
iminf =% V() > o,
j=1
but if o > a.(p) almost surely no such & € 9T exists.

Proof. Using Lemma 2.1 we see that the critical parameter 3. = (.(p) for the polymer model

with disorder V, is infinite if p > é and finite otherwise. In the latter case, this implies that

ac(p) is well-defined and a.(p) = A,(B:). From Proposition 5.1 we hence obtain in both cases
that there exists a ray £ € 9T such that

Tim SV (E) = aclp).
j=1

To show that there is no ray & € 97 along which we obtain a larger liminf, we may assume that
p< é. Recall that, by (1), the free energy

1 n
@p(ﬂ) = lim —log Z e[jzj:1 Vp(vj)

n—oo n
veT,

satisfies o, (8:) = Beac(p). Hence, for any ray ¢ € 0T,
n

1 1 1 n
liminf -3 V(&) < - liminf - log 3 ™ S Vo) — o) _
j=1

c e veT, ﬂc
which proves the second part of Lemma 6.1. O

As the next step, we give an explicit formula for a.(p) when p < é. First, we compute the
logarithmic moment generating function and its derivative

B
Ap(8) = log E[e?Y7] = log(pe® + (1 — d M@ =—2>2
p(B) = log E[e”"r] = log(pe” + (1 —p)) and A,(B) Py
Then, using that a.(p) = A, (8c(p)) for the polymer with disorder V,, we get
pele(®)

= 19

Q¢ (p)
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As logd = A (0 (p)) = ac(p)Be(p) — log(pe ) + (1 — p)), we obtain
pe®) (1 — p)l=ee®) g = o (p)*P) (1 — g (p)) @), (20)

It is easy to see from Lemma 6.1 that a.(-) is an increasing function on (0, 1], and from (20)
that it is strictly increasing.

To complete the proof of Theorem 1.4 fix ¢ € (0,1]. First note (by taking the derivative) that the
function g(p) = p?(1 — p)'~¢ is strictly increasing on the interval (0, o] so that there is indeed a
unique solution to the equation characterising p.. In the special case o = 1 this solution is given
by p. = é. Back to the general case, by (20) we have ¢ = a.(p.). This value p, is indeed the
critical parameter, since if p > p. we have a.(p) > ac(p.) = o so that g-percolation occurs by
Lemma 6.1. Moreover, if p < pc, then a¢(p) < ac(pe) = o so that g-percolation does not occur,

which completes the proof of Theorem 1.4.
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