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Original Model
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Simplified Model

SAMBa )

d ,

3. T = —a(T - 200) + bNOY
iNocat — Noin . Noout . aR(T, Nocat7 NHload)
dt X X X X 3
d

5 NHZ™ = NHZ' — NH$™ — R(T, NOS™*, NHy*)

R(T,NOZ*,NH*9) = £(T)NOS*NHZ>
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Simplified Model
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Challenge: Correctly control the amount of NHQ” injected into the system
at every time step t.
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Challenge

Challenge: Correctly control the amount of NHg” injected into the system
at every time step t.

Idea: Use Reinforcement-Learning to train a controller capable of correctly
deciding the optimal amount.
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Q-Learning

Reinforcement Learning involves an agent, moving through a state space,
S, by selecting an action from an action space, A, at each state.

Given we are at some state s; € S, taking an action a; € A provides the
agent with the reward r = r(s, a) and new state s;;.

The aim of the agent is to maximise the total (future) reward.
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Chess Example SAMBa
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Q-Learning

Idea:
Qs.2)~ E future discounted sum of rewards if we start at state
s,a)~ ) ]
and then follow current policy for the rest of time
Ideally:

Q(st, at) = re + v maxE[Q(st+1, )]

The objective of the training is to update Q iteratively to take into
account future values of Q, i.e. to correctly reflect the value of rewards
available after multiple actions.

Q(st,ar) <— Q(st,ar) —« (Q(st, ap) —re—1y- mjaxIE[Q(stH, a)])
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Toy Model in Simulink
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Results | - Output Gases
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Results Il - Predicted vs True Discounted Cost
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Results Il - Comparison of Policies
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Remarks

Pros

@ Our agent can learn a policy governed by a system of differential
equations without seeing them.

@ Ability to have "online” learning to cater policy to the user.

@ Cheap evaluation to determine appropriate control.

Cons

@ A parameter space to search i.e. discount factor «, learning rate a,
and exploration rate €.

@ Long training time.
Future
@ Tune the toy model to be more realistic.
@ Use the original set of differential equations.

@ Allow noisy measurements.
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