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1 Introduction

In this note we analyse some aspects of the Hamiltonian dynamics of an elastic 2D
lattice of particles interacting via interatomic potentials. As in the recent elastostatic
investigation [FT01], we consider a cubic lattice where the particles have equal mass
and only nearest and next nearest neighbours interact. The associated Hamiltonian
dynamical system, obtained by including the kinetic energy of the particles, is a
natural 2D analogon of the 1D Fermi-Pasta-Ulam lattice introduced in [FPU55]. (It
cannot be simplified into a nearest-neighbour model, which would have no shear
resistance and would hence be incapable of capturing 2D elasticity.)

Our interest here is the existence of solitary waves moving through the 2D lat-
tice. We prove the existence of small-amplitude supersonic longitudinal solitary
waves moving along the (1,0) direction, and determine explicitly their asymptotic
profile in the near-sonic regime. These results hold for generic potentials, but most
interestingly, the solitary waves even exist when the potentials are harmonic, i.e.
when the interparticle forces are linear with respect to particle distance.

Note that in this case the Hamiltonian equations of motion are still nonlinear,
due to the frame-indifference of the interatomic forces. (In continuum elasticity the-
ory the analogous nonlinearity has been termed ‘geometric’, to distinguish it from
non-universal nonlinearities due to specific modelling assumptions.) This geomet-
ric nonlinearity and the ensuing solitary waves are a genuinely 2D phenomenon:
in 1D chains with harmonic springs no solitary waves exist [FW94, Sec.7]. Physi-
cally this means that the 2D waves are created purely by the coupling between the
neighbouring harmonic chains.

These waves are always found to be extension waves, universally with respect
to the choice of equilibrium lengths and spring constants for the nearest-neighbour
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Figure 1: Particle positions for the solitary wave in the lattice with linear springs.
The parameter values used here are K1 = 5, Ky = a1 = a2/vV2 =1, (¢ — ¢5)/cs =
1/24. The solitary wave is always an extension wave and the site of the most
extended cell moves along the (1,0) direction.

and diagonal springs. This is related to the somewhat counterintuitive fact that
the effective coupling between horizontal neighbours which ensues from the vertical
interactions is found to be always hardening with respect to extension, and softening
with respect to compression. (Intuitively, one might have expected that hardening
or softening would depend on whether in the cubic equilibrium state of the lattice,
the diagonal springs are under compression or under tension.)

Furthermore we show that no transversal solitary waves — and indeed no non-
longitudinal solitary waves — exist which propagate in the (1,0) direction.

The (1,0) direction has been chosen here because it leads to the smallest num-
ber of delays in the ensuing system of differential-difference equations (namely one
forward-delay and one backward-delay). The interesting issue of wave propagation
in general directions lies beyond the scope of this note. In the simpler case of diffu-
sive evolution of passive scalars on 2D lattices, there has been much recent progress
on this issue, see e.g. [CM-PS98, CM-PV99, M-P99]. In these studies, one is dealing
with discrete analoga of scalar semi-linear reaction-diffusion equations, where the
coupling between the discrete sites is linear and maximum principles hold. By con-
trast, the elastic lattice studied here is a discrete analogon of a system of quasi-linear
conservation laws, where the coupling between sites is necessarily nonlinear due to
geometric reasons. Whether some of the techniques of [CM-PS98, CM-PV99, M-P99]
can be carried over to such systems remains to be seen.

The existence proof for the longitudinal waves proceeds by reduction to an ef-
fective 1D Hamiltonian of Fermi-Pasta-Ulam type (which accounts exactly for the
vertical coupling), and use of recent work on 1D Fermi-Pasta-Ulam lattices. Specif-
ically we will use the results of [FP99], because they deliver not just existence but
also the asymptotic profile shape; other methods to prove existence of travelling
waves are given in [FW94, TK99, 100]. By contrast we have to use the 2D structure
of the problem for our non-existence proof. In particular we show that a reduction



to an effective 1D Hamiltonian is impossible for non-longitudinal waves.

2 Model and Equations of Motion

The particles in our infinite lattice are indexed by (i,5) € Z2. The position of the
(i,7)" particle at time ¢ is denoted by

T4l 9
( roj ) +¢; () €IR%
Here r, > 0 is a reference lattice parameter, which will from Section 3 onwards be
chosen so that the state ¢; ; = 0 (4,7 € Z) is an equilibrium, in which case the g;
are the out-of-equilibrium displacements of the particles.

With the usual notation p; ;(t) for the momentum of the (i,7)" particle, the
dynamics is described by the infinite-dimensional Hamiltonian

H = Z (%|pi,j

ijEZ

2+ Vi(lreer + Giv1g — gigl) + Vi(lreea + giji1 — i)

)+ Vallre(er — e2) + gis1j — qig1]))(2.1)

Here | - | denotes the Euclidean norm on IR?, e; and ey are the lattice basis vectors
(1,0) and (0,1), V; is the potential for the horizontal and vertical interactions and
V4 corresponds to the diagonal interactions. In this section Vi, Vo can be arbitrary
differentiable functions from (0, 00) — IR; prototypical are the harmonic potentials

+Va(lre(er +e2) + qiv1j41 — Gij

Vi(r) = %(r—alf (2.2)
Vo(r) = %(r—@){ (2.3)

in which case there is a unique equilibrium lattice parameter, given by

- K1a1 +\/§K2a2
K 42Ky,

(2.4)

cf. [FTO1].

The equation of motion for each particle contains eight forcing terms, due (in
order of appearance) to its nearest neighbours on the right, left, top and bottom
and its next nearest neighbours on the top right, bottom left, bottom right and top
left: Abbreviating f(2) := Vl'(|z|)‘7z‘, g(z) == V2'(|z|)|—§|,

Gij = Pij
0
94,5
= —{—f(ree1 + qit1,; — ¢ij) + f(reer + ¢ij — Gi—1,5)
—f(ree2 + qij+1 — Gij) + f(reez + gij — gij—1)
—g(ri(er +e2) + git1,j+1 — Gij) + g(r«(er +e2) + iy — Gi—1,j-1)
—g(re(er —e2) +qgiv1,j-1 — Gi,j) + g(re(er —e2) + iy — gi-1,5+1)} -

Gij = DPij=— H (2.5)
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Figure 2: Unit cell of the lattice

3 Solitary waves

We are looking for travelling waves, i.e. we seek solutions of the type
- i
6i(t) = k- ( : ) - ct), (3.1

where k € IR? (|k| = 1) is the direction of propagation of the wave and c its speed.
We consider here the special case where k is parallel to the lattice vectors e; or es.
For k = e; the travelling wave ansatz simplifies to ¢; j(t) = ¢(i — ct) (independently
of 7) and the equations of motion (2.5) reduce to the following system of differential-
difference equations for the profile §(x), z = i = ct (note that two of the eight forcing
terms cancel, namely those due to the top and the bottom neighbour):

') =~ {~f(reer +d(@+1) = G(2) + f(reer +G(2) — gz — 1)) (3:2)
—g(re(er +e2) +q4(z + 1) = ¢(z)) + g(ruler + e2) + ¢(2) — ¢(z = 1))
—g(re(er — e2) +q(z +1) = ¢(z)) + g(re(er — e2) + ¢(z) — gz = 1))} .

So we have here one forward and one backward delay. Travelling waves with arbitrary
k will give differential-difference equations with up to 4 forward and 4 backward
delays, as there are 8 different particles with which a given particle interacts and all
can be at different positions of the wave.

Special cases of ¢ are unidirectional waves where the particles move in a single
direction, i.e. §(z) = dg(z), where ¢ is scalar and d € IR? is the amplitude director.
Pure longitudinal waves (d||k) and transversal waves (d - £ = 0) are examples of
these.

By a solitary wave (of speed ¢) we mean a nonconstant solution ¢, € C?(IR; IR?)
to the travelling wave equation (3.2) for which the relative displacement (or elastic
strain) 7.(z) := ¢.(z+1)—q.(z) tends to zero as x — +00, in the sense that 7. belongs
to the Sobolev space H!(IR) of square-integrable functions with square-integrable



derivative. (In fact the waves constructed below satisfy 7.(x) — 0 exponentially
fast, while our nonexistence results even rule out solitary waves satisfying the above
weak localization condition.)

The following theorem holds for generic nonlinear springs, but for simplicity
we will now put our emphasis on harmonic springs, where the overall potential is
anharmonic due to the geometry.

In the theorem, a certain role is played by the longitudinal speed of sound of the
lattice in (1,0) direction, which can be calculated to be

\/2K1a1 +V2Ksaz
cs = .

2r,

(3.3)

(See Section 4 for the dispersion relation of the 2D lattice, its interesting direction-
dependence, and possible implications for stability issues.)

Theorem 1 Assume that the interaction potentials and the lattice parameter are
given by (2.2), (2.8), (2.4). Let cs be as defined in (3.3), and recall that ey denotes
the lattice basis vector (1,0). Then the following results hold.

i. (Existence and asymptotic profile of longitudinal waves)

a) For all supersonic wavespeeds ¢ > cs which are sufficiently close to cs,
there exists a unique longitudinal single-pulse solitary wave §.(z) = e1q.(x), q.
scalar, propagating in ey direction. Here unique means unique up to the trivial
invariances of the travelling wave equation under spatial translation and ad-
ditive constants, and single-pulse means that the derivative of the associated
relative displacement profile re(z) = qe(x + 1) — q.(x) vanishes only at one
point.

b) The above wave has the following properties: it is an extension wave (i.e.
Te(z) > 0 for all x € R), for any choice of the spring constants K > 0,
Ky > 0 and spring equilibrium lengths ay > 0, ag > 0; 7. is even with respect
to reflection at the point xo where r. is mazimal; r. tends to zero exponentially
as © — +oo in the sense that e?©=olr (1) converges to a finite nonzero
limit as x — oo, where by(c) is the unique positive root of the equation
cles = (smh%o)/%o

c) In the regime of close-to-sonic wavespeed, the profile v, has the follow-

ing asymptotic shape: Abbreviating € := \/24(c — cs)/cs, re has characteristic
width of order 1/e and height of order € (i.e. it is a small-amplitude long
wave): more precisely there exist constants C > 0 and g9 > 0 such that for all

e <egp

1 .

= (2) -9
where @ is the KdV soliton profile

(2v2K a1 + 2Kzaz)r. (1 1 ))2
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» < C€?, (3.4)

O(z) = (3.5)



ii. (Nonezistence of other unidirectional waves) There exists a universal constant
0 > 0 such that for no wavespeed ¢ € IR and no amplitude director d # ey do
there exist any unidirectional solitary waves with amplitude max,cR |Tc(z)| < §
propagating in ey direction. In particular there are mo transversal solitary
waves.

iii. (Nonezistence of non-unidirectional waves) There exists a universal constant
0 > 0 such that for no supersonic wavespeed ¢ > cs does there exist any
(not necessarily unidirectional) solitary wave propagating in ey direction which
is not longitudinal (i.e. 7¢(x) - e not identically zero) and whose amplitude
satisfies maxg R |7e(z)| < 0.

The proofs of i., ii. and iii. are each based on different methods. To show i. we
will reduce the problem to a scalar 1D lattice problem and apply results for those
by Friesecke and Pego [FP99]. The proof of ii. is based on a monotonicity argument
which relies on the vectorial nature of the equation, while for iii. we analyse the
Fourier transform of (3.2).

3.1 Existence and asymptotic profile of longitudinal solitary waves
For longitudinal waves g; ;(t) = e1q(i — ct), or more general longitudinal motions
¢,j(t)-e2=0, qi;(t)- e = qi(t) independently of j, (3.6)

the vectorial equation of motion (2.5) can be reduced to a scalar one. First we claim
that the second component (2.5)-e5 holds automatically. To see this note first that
the left hand side of (2.5) is orthogonal to eg, as are the first two terms on the right
hand side. Next, the third and fourth term on the right hand side cancel, due to
the j-independence of the g; ;. Finally the terms g(r.(e1 % €2) + git1,j41 — i j) - €2
have opposite and equal sign and equal magnitude and hence cancel, as do the terms
g(re(er £ e2) + qij — giz1,551) - €2

The first component (2.5)-e; becomes (using that g(r.(e; +e2)+(gj —gqr)e1) -e1 =
g(ri(er —e2) + (¢j — ar)er) - 1)

Gi= — {=f(re +qiv1 —ai)er) -e1 + f((re + @i —qi-1)er) - ex
—2g(r«(e1 +e2)(giv1 — gi)er) - e1 +2g(r«(e1 +e2) + (g — gi—1)e1) -e1}-

This is (denoting ¢; =: p;) the equation of motion ¢; = p; = —%@1 for a new
effective Hamiltonian

Hepp= Y (%lpil2+‘/éff(qi+1—Qi)), Verr(p) = Vi(lritp)+2Va(y/r? + (re + p)?).
1€ Z

(In particular, any dynamics for this 1D anharmonic lattice can be embedded into

the 2D harmonic lattice.) Specifying to travelling waves ¢; ;(t) = e1q.(¢ — ct), eqn.

(3.2) reduces to the travelling wave equation for the 1D lattice,

gl () = Vipp(ge(w + 1) = ge(2) = Vipp(ge(®) = ge(w — 1)).



Applying [FP99, Theorem 1.1] gives existence and all properties of the waves de-
scribed in part i. of Theorem 1, noting that the required hypotheses on the potential
(V'(0) =0, V"(0) > 0, V"(0) # 0) are satisfied, for all choices of spring constants
K, Ky > 0 and spring equilibrium lengths a1, az > 0: Using (2.2), (2.3), (2.4) one
calculates

Vip(0) = 0
"y — Kiay + (vV2/2)Koas
eff( ) - Y
3K2a2
el}lf(o) = 2\/57“*2.

Interestingly, the anharmonic coefficient V""(0) (which governs the sign of the strain

profile, appearing in particular as a prefactor in the asymptotic shape formula
O(z) = “//,T((OO))(%sech(%))2 of [FP99]) is always positive, yielding extension waves.

3.2 Non-existence of unidirectional solitary waves of arbitrary speed

We now rule out non-longitudinal unidirectional solitary waves, i.e. waves of form

4(x) = dq(z) for d & Span{< (1) >} and ¢: IR = RR.

A necessary condition for the existence of such waves is

d+-q" =0, (3.7)

where d = ( do

d and d+ = ( _dd2 ) Using eq. (3.2) together with the identities
1

(ree1 + G(z1) — G(22)) - d- = —ruda, (re(er +e2) + G(z1) — G(22)) - d- = ro(dy — da),
(re(e1 — e2) + 4(z1) — G(x2)) - d& = ro(—=dy — dy) (for arbitrary z1, zo € R), we
calculate

d* - §"(x) = h(g(z + 1) — q(z)) — h(g(z) — q(z — 1)),

with
V/(lr.es + sd
h(s) = H(—T*dﬂ
744 * d 14 * — d
N H5(rs(e1 +ea) + S_|)r*(d1 )+ 5 (Jre(er —e2) + 8—|)r*(—d1 —dy).

Ir«(e1 + e2) + sd |r«(e1r — e2) + sd

But for |d| = 1, h is analytic for |s| < r,, hence (since h is nonconstant) its level sets
are discrete. Hence provided sup,cg |¢(z + 1) — ¢(z)| < rs, the equation h(g(z +
1) —q(z)) —h(g(z) — g(z — 1)) = 0 together with the continuous dependence of ¢ on
z implies g(z + 1) — ¢(z) = const. But g(z + 1) — g(z) — 0 as |z| — oo and hence
q(z) = const. This establishes Theorem 1 ii., with explicit constant § = r,. (We



remark that the above argument has not required analyticity of the potentials but
merely the generic property that h is not identically constant in a neighbourhood of
zero. The nice feature of the harmonic potentials (2.2), (2.3) is that no restrictions
whatsoever were needed on the spring constants Kj, Ks and spring equilibrium
lengths a1, as.)

3.3 Non-existence of general solitary waves of supersonic speed

Finally we rule out solitary waves without a fixed amplitude director, i.e. waves of
form g; j(t) = G(i — ct) (G : R — IR?).

If the displacement profile g. solves eq. (3.2) then the relative displacement
profile 7.(z) = ¢.(x + 1) — G.(z)) solves the following centered difference equation
(where we use the symbolic notation e*?7(z,t) = #(z + 1,1))

~I
27"

A = (e — 2+e_‘9)(f(7"*61 +7¢) +g(re(er +e2) +7¢) +g(ri(er —e2) +fc)). (3.8)

So it suffices to rule out non-longitudinal solutions (i.e. 7.(z) - e2 not identically
zero) to (3.8).

To analyse this equation we follow the method introduced in a 1D context in
[FP99], albeit our goal (to prove nonexistence) is different from theirs (to prove
existence). Separating out the linear contributions to f and g, i.e. writing the
forcing terms in the form

flreer +1) + g(re(er +e2) + 1) + g(re(er —e2) + 1) = Ar + N(r), with

Ae M**2 N(r) — 0 (|r] = 0), (3.9)

||

and applying the Fourier transform with the normalisation f(¢) = [, e T f(z)dx
transforms (3.8) into the system

—PE%F(€) = —4sin’ g |47 + N()] - (3.10)

A tedious calculation shows that

A= ( (641 0 ) . oy = e,}f(o) _ K1a1 + (\/5/2)K2a2, s (\/5/2)K2a2

0 ao T T

In particular ay — ag = Kjaq/r. > 0. This will be essential below. For supersonic
¢, i.e. ¢ > Jai, eq. (3.10) can be rewritten as a fixed point equation involving a
certain matrix-valued Fourier multiplier p(&),

~ —

re(§) = pEIN(7) (),

asin?(§) sinc”(5)
- 0 2 ¢ 0
(6) = c2€2—4ay sin®(35) _ c2—a18INC7(3)
p 0 4sin®(§) 0 sinc’(§)
c2€2—4as sin2(%) 627OéQSinC2(%)



where sinc(z) = sin(z)/z. By Plancherel’s formula and the fact that |sinc(z)| < 1
for all z € IR,

~ 1 -
e - e2llrer) = —1/27r||'rc “e2||r2(R)
1 sinc? .
: v27r||02 - a2sinc2||L°°('R)||N(rC) - e2|[r2(R)
1 ~
- HHN(TC)'eQHL?(IR)-

Lemma 3.1 There exists a constant C' > 0 such that the nonlinearity N satisfies
[N(r) - e2| < Clr- eg|r]
for all r € IR? with |r| < r*/2.

Proof: According to (3.9),
N(r)-es = (f(z +rie1) +g(r +r(e1 + e2)) + gz +r'(er - 62))) reg — ag(r - eg).

First we claim that for r with r- ey = 0 we have N(r)-es = 0. Indeed the first term
in N points in e; direction, the es-components of the next two terms cancel, and
the last (linear) term is zero. Thus we can write

N(r)-e2 = (r-e2)N(r), (3.11)

where the function N is continuously differentiable for Ir| < r*, and lim, g N (r)=0
holds by (3.9). By the mean-value theorem we have for, say, |r| < r*/2 the estimate

IN(r)] < (‘T‘rggfﬂ VN (r)])Iz] = Clr].

The assertion of the lemma now follows from (3.11). O

It follows that ||7.-ea]|r2 < ﬁ”’f’c”[]m ||7c-e2||r2. This implies .- ey = 0 provided

||7e||lne < (a1 — a2)/C. The proof of Theorem 1 is complete.

4 Remarks on stability

The longstanding question of dynamic stability of the solitary wave in the 1D Fermi-
Pasta-Ulam chain has recently been resolved affirmatively by Friesecke and Pego in
a series of papers [FP01]. This result directly gives the stability of the 2D solitary
wave found in this paper with respect to purely longitudinal perturbations, i.e.
perturbations which can be realized as perturbed initial conditions in the effective
Hamiltonian of section 3.1.

Next we discuss dynamic stability with respect to non-longitudinal perturbations.
It is crucial in the 1D results that the wave is supersonic, i.e. its wavespeed exceeds



that of any acoustic phonon. We proceed to calculate the dispersion relation for
phonons in the 2D lattice. That is we seek solutions of form

gju(t) = acd’®EL N g = ( " )

7l
to the linearized equation of motion
Gio = Ar(reen)(@js1e — 2¢50 + qj-1,0) + Ar(ree1) (041 — 2650 + @j0-1)
+  Ao(re(er + e2)(qjr1,041 — 2q5,0 + @j—1,0-1) + A2(re(—e1 + e2) (1,041 — 2¢5,0 + Gj1,0-1)

where A1, As are the 2 x 2 matrices A; (qU) = D2V1(|qU+q|)|q:0, A2(q0) = Dg‘/é(|q0+
q|)|g=0. Under this ansatz the equation reduces to the matrix eigenvalue problem

Dga = wQQ
with the dispersion matrix
D = 4sin? "= A (roer) + 4sin? 2222 A (r,e)
+  4sin? M;’”)Ag(r*(el + e9)) + 4sin? “(L;H”)AQ(T*(—Q +e3))

where

1 0 1-4 9
AI(T*31)2K1<0 l_a_1>7 A1(7“*62)=K1< 0’"* 1>,
1
2
1
2

AQ(T*(GI + 62)) = Kg[(

N—
+
—

—_
|

*
N—
/N
|
D=0 |
|
N | =0 —
N—
|

D=0

|
D=0
N——
—

11 1
as 5 B 5
Ag(re(—e; +e2)) = Ko |(1 — ?2 7 )+ ?
2(re(—e1 + ) = Ko ( mﬁ(% ) (_%
Hence the dispersion relation w(k) is given by

1 «k .9 Tik
Z(wi(k))Z = K <1 - ﬁ) (sin2 TTI + sin? T2 2)
)

27
a9 > (sin2 T*(k'l + k2 + sin2 ’I“*(kl — k‘g))

2V/2r, 2 2
2
+ [Klal <sim2 —r*kl — sin? _r*kgﬂ
27, 2 2

1
K Lk + K Wk — k 2) 2

Depending on the spring constants and spring equilibrium lengths K7, K5 and aq, as,
the maximal group velocity |Viw(k)| is attained for different directions k. For

Ki=0and a; = ag/ﬁ, the dispersion relation reduces to

wi(k) k‘l + k‘g
4 2

+ K2<1—

= Ky sin?(r, )

10



and the maximal group velocity is attained in (1,1) direction. For Ko = 0 and
ay = az/v/2 one has

. 9 Tx k?
S1n — S —
2 2 2

+ sin

wik) K (sin2 r*2k1 . 9 7"*2k2) " Ki|. o7k

and the maximal group velocity is attained in (1,0) direction. Numerical plots of w
for different parameters suggest that only these two directions occur, with a sharp
crossover. So in the last example, the solitary wave is supersonic with respect to the
entire acoustic spectrum. By contrast in the first example the solitary wave is slower
than transversal phonons. A possible scenario for the stability of the solitary wave
with respect to non-longitudinal perturbations is then as follows: The solitary wave
could still be stable when it is supersonic, whereas it looses stability when there are
faster transversal phonons.
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