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1 Introdu
tionIn this note we analyse some aspe
ts of the Hamiltonian dynami
s of an elasti
 2Dlatti
e of parti
les intera
ting via interatomi
 potentials. As in the re
ent elastostati
investigation [FT01℄, we 
onsider a 
ubi
 latti
e where the parti
les have equal massand only nearest and next nearest neighbours intera
t. The asso
iated Hamiltoniandynami
al system, obtained by in
luding the kineti
 energy of the parti
les, is anatural 2D analogon of the 1D Fermi-Pasta-Ulam latti
e introdu
ed in [FPU55℄. (It
annot be simpli�ed into a nearest-neighbour model, whi
h would have no shearresistan
e and would hen
e be in
apable of 
apturing 2D elasti
ity.)Our interest here is the existen
e of solitary waves moving through the 2D lat-ti
e. We prove the existen
e of small-amplitude supersoni
 longitudinal solitarywaves moving along the (1; 0) dire
tion, and determine expli
itly their asymptoti
pro�le in the near-soni
 regime. These results hold for generi
 potentials, but mostinterestingly, the solitary waves even exist when the potentials are harmoni
, i.e.when the interparti
le for
es are linear with respe
t to parti
le distan
e.Note that in this 
ase the Hamiltonian equations of motion are still nonlinear,due to the frame-indi�eren
e of the interatomi
 for
es. (In 
ontinuum elasti
ity the-ory the analogous nonlinearity has been termed `geometri
', to distinguish it fromnon-universal nonlinearities due to spe
i�
 modelling assumptions.) This geomet-ri
 nonlinearity and the ensuing solitary waves are a genuinely 2D phenomenon:in 1D 
hains with harmoni
 springs no solitary waves exist [FW94, Se
.7℄. Physi-
ally this means that the 2D waves are 
reated purely by the 
oupling between theneighbouring harmoni
 
hains.These waves are always found to be extension waves, universally with respe
tto the 
hoi
e of equilibrium lengths and spring 
onstants for the nearest-neighbour�Permanent address: Freie Universit�at Berlin, Institut f�ur Mathematik I, Arnimallee 2-6, 14195Berlin, Germany, matthies�math.fu-berlin.de 1



Figure 1: Parti
le positions for the solitary wave in the latti
e with linear springs.The parameter values used here are K1 = 5, K2 = a1 = a2=p2 = 1, (
 � 
s)=
s =1=24. The solitary wave is always an extension wave and the site of the mostextended 
ell moves along the (1; 0) dire
tion.and diagonal springs. This is related to the somewhat 
ounterintuitive fa
t thatthe e�e
tive 
oupling between horizontal neighbours whi
h ensues from the verti
alintera
tions is found to be always hardening with respe
t to extension, and softeningwith respe
t to 
ompression. (Intuitively, one might have expe
ted that hardeningor softening would depend on whether in the 
ubi
 equilibrium state of the latti
e,the diagonal springs are under 
ompression or under tension.)Furthermore we show that no transversal solitary waves � and indeed no non-longitudinal solitary waves � exist whi
h propagate in the (1; 0) dire
tion.The (1; 0) dire
tion has been 
hosen here be
ause it leads to the smallest num-ber of delays in the ensuing system of di�erential-di�eren
e equations (namely oneforward-delay and one ba
kward-delay). The interesting issue of wave propagationin general dire
tions lies beyond the s
ope of this note. In the simpler 
ase of di�u-sive evolution of passive s
alars on 2D latti
es, there has been mu
h re
ent progresson this issue, see e.g. [CM-PS98, CM-PV99, M-P99℄. In these studies, one is dealingwith dis
rete analoga of s
alar semi-linear rea
tion-di�usion equations, where the
oupling between the dis
rete sites is linear and maximum prin
iples hold. By 
on-trast, the elasti
 latti
e studied here is a dis
rete analogon of a system of quasi-linear
onservation laws, where the 
oupling between sites is ne
essarily nonlinear due togeometri
 reasons. Whether some of the te
hniques of [CM-PS98, CM-PV99, M-P99℄
an be 
arried over to su
h systems remains to be seen.The existen
e proof for the longitudinal waves pro
eeds by redu
tion to an ef-fe
tive 1D Hamiltonian of Fermi-Pasta-Ulam type (whi
h a

ounts exa
tly for theverti
al 
oupling), and use of re
ent work on 1D Fermi-Pasta-Ulam latti
es. Spe
if-i
ally we will use the results of [FP99℄, be
ause they deliver not just existen
e butalso the asymptoti
 pro�le shape; other methods to prove existen
e of travellingwaves are given in [FW94, IK99, I00℄. By 
ontrast we have to use the 2D stru
tureof the problem for our non-existen
e proof. In parti
ular we show that a redu
tion2



to an e�e
tive 1D Hamiltonian is impossible for non-longitudinal waves.2 Model and Equations of MotionThe parti
les in our in�nite latti
e are indexed by (i; j) 2 ZZ 2. The position of the(i; j)th parti
le at time t is denoted by r�ir�j !+ qi;j(t) 2 IR2:Here r� > 0 is a referen
e latti
e parameter, whi
h will from Se
tion 3 onwards be
hosen so that the state qi;j = 0 (i; j 2 ZZ ) is an equilibrium, in whi
h 
ase the qi;jare the out-of-equilibrium displa
ements of the parti
les.With the usual notation pi;j(t) for the momentum of the (i; j)th parti
le, thedynami
s is des
ribed by the in�nite-dimensional HamiltonianH = Xi;j2 ZZ �12 jpi;j j2 + V1(jr�e1 + qi+1;j � qi;jj) + V1(jr�e2 + qi;j+1 � qi;jj)+V2(jr�(e1 + e2) + qi+1;j+1 � qi;jj) + V2(jr�(e1 � e2) + qi+1;j � qi;j+1j)�:(2.1)Here j � j denotes the Eu
lidean norm on IR2, e1 and e2 are the latti
e basis ve
tors(1; 0) and (0; 1), V1 is the potential for the horizontal and verti
al intera
tions andV2 
orresponds to the diagonal intera
tions. In this se
tion V1, V2 
an be arbitrarydi�erentiable fun
tions from (0;1)! IR; prototypi
al are the harmoni
 potentialsV1(r) = K12 (r � a1)2 (2.2)V2(r) = K22 (r � a2)2; (2.3)in whi
h 
ase there is a unique equilibrium latti
e parameter, given byr� = K1a1 +p2K2a2K1 + 2K2 ; (2.4)
f. [FT01℄.The equation of motion for ea
h parti
le 
ontains eight for
ing terms, due (inorder of appearan
e) to its nearest neighbours on the right, left, top and bottomand its next nearest neighbours on the top right, bottom left, bottom right and topleft: Abbreviating f(z) := V 01(jzj) zjzj , g(z) := V 02(jzj) zjzj ,_qi;j = pi;j�qi;j = _pi;j = � ��qi;jH (2.5)= �f�f(r�e1 + qi+1;j � qi;j) + f(r�e1 + qi;j � qi�1;j)�f(r�e2 + qi;j+1 � qi;j) + f(r�e2 + qi;j � qi;j�1)�g(r�(e1 + e2) + qi+1;j+1 � qi;j) + g(r�(e1 + e2) + qi;j � qi�1;j�1)�g(r�(e1 � e2) + qi+1;j�1 � qi;j) + g(r�(e1 � e2) + qi;j � qi�1;j+1)g :3
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Figure 2: Unit 
ell of the latti
e3 Solitary wavesWe are looking for travelling waves, i.e. we seek solutions of the typeqi;j(t) = ~q(k �  ij !� 
t); (3.1)where k 2 IR2 (jkj = 1) is the dire
tion of propagation of the wave and 
 its speed.We 
onsider here the spe
ial 
ase where k is parallel to the latti
e ve
tors e1 or e2.For k = e1 the travelling wave ansatz simpli�es to qi;j(t) = ~q(i� 
t) (independentlyof j) and the equations of motion (2.5) redu
e to the following system of di�erential-di�eren
e equations for the pro�le ~q(x), x = i = 
t (note that two of the eight for
ingterms 
an
el, namely those due to the top and the bottom neighbour):
2~q00(x) = � f�f(r�e1 + ~q(x+ 1)� ~q(x)) + f(r�e1 + ~q(x)� ~q(x� 1)) (3.2)�g(r�(e1 + e2) + ~q(x+ 1)� ~q(x)) + g(r�(e1 + e2) + ~q(x)� ~q(x� 1))�g(r�(e1 � e2) + ~q(x+ 1)� ~q(x)) + g(r�(e1 � e2) + ~q(x)� ~q(x� 1))g :So we have here one forward and one ba
kward delay. Travelling waves with arbitraryk will give di�erential-di�eren
e equations with up to 4 forward and 4 ba
kwarddelays, as there are 8 di�erent parti
les with whi
h a given parti
le intera
ts and all
an be at di�erent positions of the wave.Spe
ial 
ases of ~q are unidire
tional waves where the parti
les move in a singledire
tion, i.e. ~q(x) = dq(x), where q is s
alar and d 2 IR2 is the amplitude dire
tor.Pure longitudinal waves (d jj k) and transversal waves (d � k = 0) are examples ofthese.By a solitary wave (of speed 
) we mean a non
onstant solution ~q
 2 C2(IR; IR2)to the travelling wave equation (3.2) for whi
h the relative displa
ement (or elasti
strain) ~r
(x) := ~q
(x+1)� ~q
(x) tends to zero as x! �1, in the sense that ~r
 belongsto the Sobolev spa
e H1(IR) of square-integrable fun
tions with square-integrable4



derivative. (In fa
t the waves 
onstru
ted below satisfy ~r
(x) ! 0 exponentiallyfast, while our nonexisten
e results even rule out solitary waves satisfying the aboveweak lo
alization 
ondition.)The following theorem holds for generi
 nonlinear springs, but for simpli
itywe will now put our emphasis on harmoni
 springs, where the overall potential isanharmoni
 due to the geometry.In the theorem, a 
ertain role is played by the longitudinal speed of sound of thelatti
e in (1; 0) dire
tion, whi
h 
an be 
al
ulated to be
s = s2K1a1 +p2K2a22r� : (3.3)(See Se
tion 4 for the dispersion relation of the 2D latti
e, its interesting dire
tion-dependen
e, and possible impli
ations for stability issues.)Theorem 1 Assume that the intera
tion potentials and the latti
e parameter aregiven by (2.2), (2.3), (2.4). Let 
s be as de�ned in (3.3), and re
all that e1 denotesthe latti
e basis ve
tor (1; 0). Then the following results hold.i. (Existen
e and asymptoti
 pro�le of longitudinal waves)a) For all supersoni
 wavespeeds 
 > 
s whi
h are suÆ
iently 
lose to 
s,there exists a unique longitudinal single-pulse solitary wave ~q
(x) = e1q
(x), q
s
alar, propagating in e1 dire
tion. Here unique means unique up to the trivialinvarian
es of the travelling wave equation under spatial translation and ad-ditive 
onstants, and single-pulse means that the derivative of the asso
iatedrelative displa
ement pro�le r
(x) = q
(x + 1) � q
(x) vanishes only at onepoint.b) The above wave has the following properties: it is an extension wave (i.e.~r
(x) > 0 for all x 2 IR), for any 
hoi
e of the spring 
onstants K1 > 0,K2 > 0 and spring equilibrium lengths a1 > 0, a2 > 0; r
 is even with respe
tto re
e
tion at the point x0 where r
 is maximal; r
 tends to zero exponentiallyas x ! �1 in the sense that eb0(
)jx�x0jr
(x) 
onverges to a �nite nonzerolimit as x ! �1, where b0(
) is the unique positive root of the equation
=
s = (sinh b02 )= b02 .
) In the regime of 
lose-to-soni
 wavespeed, the pro�le r
 has the follow-ing asymptoti
 shape: Abbreviating " := p24(
 � 
s)=
s, r
 has 
hara
teristi
width of order 1=" and height of order "2 (i.e. it is a small-amplitude longwave): more pre
isely there exist 
onstants C > 0 and "0 > 0 su
h that for all" � "0 
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H1 � C"2; (3.4)where � is the KdV soliton pro�le�(x) = (2p2K1a1 + 2K2a2)r�3K2a2 �12se
h(12x)�2: (3.5)5



ii. (Nonexisten
e of other unidire
tional waves) There exists a universal 
onstantÆ > 0 su
h that for no wavespeed 
 2 IR and no amplitude dire
tor d 6= e1 dothere exist any unidire
tional solitary waves with amplitude maxx2IR j~r
(x)j < Æpropagating in e1 dire
tion. In parti
ular there are no transversal solitarywaves.iii. (Nonexisten
e of non-unidire
tional waves) There exists a universal 
onstantÆ > 0 su
h that for no supersoni
 wavespeed 
 > 
s does there exist any(not ne
essarily unidire
tional) solitary wave propagating in e1 dire
tion whi
his not longitudinal (i.e. ~r
(x) � e2 not identi
ally zero) and whose amplitudesatis�es maxx2IR j~r
(x)j < Æ.The proofs of i., ii. and iii. are ea
h based on di�erent methods. To show i. wewill redu
e the problem to a s
alar 1D latti
e problem and apply results for thoseby Friese
ke and Pego [FP99℄. The proof of ii. is based on a monotoni
ity argumentwhi
h relies on the ve
torial nature of the equation, while for iii. we analyse theFourier transform of (3.2).3.1 Existen
e and asymptoti
 pro�le of longitudinal solitary wavesFor longitudinal waves qi;j(t) = e1q(i� 
t), or more general longitudinal motionsqi;j(t) � e2 � 0; qi;j(t) � e1 � qi(t) independently of j; (3.6)the ve
torial equation of motion (2.5) 
an be redu
ed to a s
alar one. First we 
laimthat the se
ond 
omponent (2.5)�e2 holds automati
ally. To see this note �rst thatthe left hand side of (2.5) is orthogonal to e2, as are the �rst two terms on the righthand side. Next, the third and fourth term on the right hand side 
an
el, due tothe j-independen
e of the qi;j. Finally the terms g(r�(e1 � e2) + qi+1;j�1 � qi;j) � e2have opposite and equal sign and equal magnitude and hen
e 
an
el, as do the termsg(r�(e1 � e2) + qi;j � qi�1;j�1) � e2.The �rst 
omponent (2.5)�e1 be
omes (using that g(r�(e1+e2)+(qj�qk)e1)�e1 =g(r�(e1 � e2) + (qj � qk)e1) � e1)�qi = � f�f((r� + qi+1 � qi)e1) � e1 + f((r� + qi � qi�1)e1) � e1�2g(r�(e1 + e2)(qi+1 � qi)e1) � e1 + 2g(r�(e1 + e2) + (qi � qi�1)e1) � e1g :This is (denoting _qi =: pi) the equation of motion �qi = _pi = ��Heff�qi for a newe�e
tive HamiltonianHeff = Xi2 ZZ �12 jpij2+Veff (qi+1�qi)�; Veff (�) = V1(jr�+�j)+2V2(qr�2 + (r� + �)2):(In parti
ular, any dynami
s for this 1D anharmoni
 latti
e 
an be embedded intothe 2D harmoni
 latti
e.) Spe
ifying to travelling waves qi;j(t) = e1q
(i � 
t), eqn.(3.2) redu
es to the travelling wave equation for the 1D latti
e,
2q00
 (x) = V 0eff (q
(x+ 1)� q
(x))� V 0eff (q
(x)� q
(x� 1)):6



Applying [FP99, Theorem 1.1℄ gives existen
e and all properties of the waves de-s
ribed in part i. of Theorem 1, noting that the required hypotheses on the potential(V 0(0) = 0, V 00(0) > 0, V 000(0) 6= 0) are satis�ed, for all 
hoi
es of spring 
onstantsK1; K2 > 0 and spring equilibrium lengths a1; a2 > 0: Using (2.2), (2.3), (2.4) one
al
ulates V 0eff (0) = 0V 00eff (0) = K1a1 + (p2=2)K2a2r�V 000eff (0) = 3K2a22p2r�2 :Interestingly, the anharmoni
 
oeÆ
ient V 000(0) (whi
h governs the sign of the strainpro�le, appearing in parti
ular as a prefa
tor in the asymptoti
 shape formula�(x) = V 00(0)V 000(0) (12 se
h(x2 ))2 of [FP99℄) is always positive, yielding extension waves.3.2 Non-existen
e of unidire
tional solitary waves of arbitrary speedWe now rule out non-longitudinal unidire
tional solitary waves, i.e. waves of form~q(x) = dq(x) for d 62 Spanf 10 !g and q : IR! IR:A ne
essary 
ondition for the existen
e of su
h waves isd? � ~q00 � 0; (3.7)where d =  d1d2 ! and d? =  �d2d1 !. Using eq. (3.2) together with the identities(r�e1 + ~q(x1)� ~q(x2)) � d? = �r�d2, (r�(e1 + e2) + ~q(x1)� ~q(x2)) � d? = r�(d1 � d2),(r�(e1 � e2) + ~q(x1) � ~q(x2)) � d? = r�(�d1 � d2) (for arbitrary x1, x2 2 IR), we
al
ulate d? � ~q00(x) = h(q(x+ 1)� q(x))� h(q(x) � q(x� 1));withh(s) = V 01(jr�e1 + sdj)jr�e1 + sdj (�r�d2)+ V 02(jr�(e1 + e2) + sdj)jr�(e1 + e2) + sdj r�(d1 � d2) + V 02(jr�(e1 � e2) + sdj)jr�(e1 � e2) + sdj r�(�d1 � d2):But for jdj = 1, h is analyti
 for jsj < r�, hen
e (sin
e h is non
onstant) its level setsare dis
rete. Hen
e provided supx2IR jq(x + 1) � q(x)j < r�, the equation h(q(x +1)� q(x))�h(q(x)� q(x� 1)) = 0 together with the 
ontinuous dependen
e of q onx implies q(x+ 1) � q(x) � 
onst. But q(x+ 1) � q(x) ! 0 as jxj ! 1 and hen
eq(x) � 
onst. This establishes Theorem 1 ii., with expli
it 
onstant Æ = r�. (We7



remark that the above argument has not required analyti
ity of the potentials butmerely the generi
 property that h is not identi
ally 
onstant in a neighbourhood ofzero. The ni
e feature of the harmoni
 potentials (2.2), (2.3) is that no restri
tionswhatsoever were needed on the spring 
onstants K1, K2 and spring equilibriumlengths a1, a2.)3.3 Non-existen
e of general solitary waves of supersoni
 speedFinally we rule out solitary waves without a �xed amplitude dire
tor, i.e. waves ofform qi;j(t) = ~q
(i� 
t) (~q : IR! IR2).If the displa
ement pro�le ~q
 solves eq. (3.2) then the relative displa
ementpro�le ~r
(x) = ~q
(x + 1) � ~q
(x)) solves the following 
entered di�eren
e equation(where we use the symboli
 notation e��~r(x; t) = ~r(x� 1; t))
2~r00
 = (e� � 2+ e��)�f(r�e1+ ~r
)+ g(r�(e1+ e2)+ ~r
)+ g(r�(e1� e2)+ ~r
)�: (3.8)So it suÆ
es to rule out non-longitudinal solutions (i.e. ~r
(x) � e2 not identi
allyzero) to (3.8).To analyse this equation we follow the method introdu
ed in a 1D 
ontext in[FP99℄, albeit our goal (to prove nonexisten
e) is di�erent from theirs (to proveexisten
e). Separating out the linear 
ontributions to f and g, i.e. writing thefor
ing terms in the formf(r�e1 + r) + g(r�(e1 + e2) + r) + g(r�(e1 � e2) + r) = Ar +N(r); withA 2M2�2; N(r)jrj ! 0 (jrj ! 0); (3.9)and applying the Fourier transform with the normalisation f̂(�) = R1�1 e�i�xf(x)dxtransforms (3.8) into the system�
2�2 b~r
(�) = �4 sin2 �2 hA b~r
 + dN(~r
)i : (3.10)A tedious 
al
ulation shows thatA =  �1 00 �2 ! ; �1 = V 00eff (0) = K1a1 + (p2=2)K2a2r� ; �2 = (p2=2)K2a2r� :In parti
ular �1 � �2 = K1a1=r� > 0. This will be essential below. For supersoni

, i.e. 
 > p�1, eq. (3.10) 
an be rewritten as a �xed point equation involving a
ertain matrix-valued Fourier multiplier p(�),b~r
(�) = p(�) dN(~r
)(�);p(�) = 0BB� 4 sin2( �2 )
2�2�4�1 sin2( �2 ) 00 4 sin2( �2 )
2�2�4�2 sin2( �2 ) 1CCA = 0BB� sin
2( �2 )
2��1sin
2( �2 ) 00 sin
2( �2 )
2��2sin
2( �2 ) 1CCA8



where sin
(z) = sin(z)=z. By Plan
herel's formula and the fa
t that jsin
(z)j � 1for all z 2 IR,jj~r
 � e2jjL2(IR) = 1p2� jj b~r
 � e2jjL2(IR)� 1p2� jj sin
2
2 � �2sin
2 jjL1(IR)jj dN(~r
) � e2jjL2(IR)= 1�1 � �2 jjN(~r
) � e2jjL2(IR):Lemma 3.1 There exists a 
onstant C > 0 su
h that the nonlinearity N satis�esjN(r) � e2j � Cjr � e2jjrjfor all r 2 IR2 with jrj � r�=2.Proof: A

ording to (3.9),N(r) � e2 = �f(r + r�e1) + g(r + r�(e1 + e2)) + g(r + r�(e1 � e2))� � e2 � �2(r � e2):First we 
laim that for r with r � e2 = 0 we have N(r) � e2 = 0. Indeed the �rst termin N points in e1 dire
tion, the e2-
omponents of the next two terms 
an
el, andthe last (linear) term is zero. Thus we 
an writeN(r) � e2 = (r � e2) ~N(r); (3.11)where the fun
tion ~N is 
ontinuously di�erentiable for jrj < r�, and limr!0 ~N(r) = 0holds by (3.9). By the mean-value theorem we have for, say, jrj � r�=2 the estimatej ~N(r)j � � maxjrj�r�=2 jr ~N(r)j�jrj = Cjrj:The assertion of the lemma now follows from (3.11). 2It follows that jj~r
 �e2jjL2 � C�1��2 jj~r
jjL1 jj~r
 �e2jjL2 . This implies ~r
 �e2 � 0 providedjj~r
jjL1 < (�1 � �2)=C. The proof of Theorem 1 is 
omplete.4 Remarks on stabilityThe longstanding question of dynami
 stability of the solitary wave in the 1D Fermi-Pasta-Ulam 
hain has re
ently been resolved aÆrmatively by Friese
ke and Pego ina series of papers [FP01℄. This result dire
tly gives the stability of the 2D solitarywave found in this paper with respe
t to purely longitudinal perturbations, i.e.perturbations whi
h 
an be realized as perturbed initial 
onditions in the e�e
tiveHamiltonian of se
tion 3.1.Next we dis
uss dynami
 stability with respe
t to non-longitudinal perturbations.It is 
ru
ial in the 1D results that the wave is supersoni
, i.e. its wavespeed ex
eeds9



that of any a
ousti
 phonon. We pro
eed to 
al
ulate the dispersion relation forphonons in the 2D latti
e. That is we seek solutions of formqj;`(t) = aei(k�x�!t); x =  r�jr�` !to the linearized equation of motion�qj;` = A1(r�e1)(qj+1;` � 2qj;` + qj�1;`) +A1(r�e1)(qj;`+1 � 2qj;` + qj;`�1)+ A2(r�(e1 + e2)(qj+1;`+1 � 2qj;` + qj�1;`�1) +A2(r�(�e1 + e2)(qj�1;`+1 � 2qj;` + qj+1;`�1)where A1, A2 are the 2�2 matri
es A1(q0) = D2qV1(jq0+qj)jq=0, A2(q0) = D2qV2(jq0+qj)jq=0. Under this ansatz the equation redu
es to the matrix eigenvalue problemDa = !2awith the dispersion matrixD = 4 sin2 r�k12 A1(r�e1) + 4 sin2 r�k22 A1(r�e2)+ 4 sin2 r�(k1+k2)2 A2(r�(e1 + e2)) + 4 sin2 r�(�k1+k2)2 A2(r�(�e1 + e2))where A1(r�e1) = K1  1 00 1� a1r� ! ; A1(r�e2) = K1 1� a1r� 00 1 ! ;A2(r�(e1 + e2)) = K2h 12 1212 12 !+ (1� a2p2r� ) 12 �12�12 12 !i;A2(r�(�e1 + e2)) = K2h(1� a2p2r� ) 12 1212 12 !+  12 �12�12 12 !i:Hen
e the dispersion relation !(k) is given by14(!�(k))2 = K1 �1� a12r���sin2 r�k12 + sin2 r�k22 �+ K2 �1� a22p2r���sin2 r�(k1 + k2)2 + sin2 r�(k1 � k2)2 �� (�K1a12r� �sin2 r�k12 � sin2 r�k22 ��2+ � K2a22p2r� �sin2 r�(k1 + k2)2 � sin2 r�(k1 � k2)2 ��2) 12 :(4.12)Depending on the spring 
onstants and spring equilibrium lengthsK1;K2 and a1; a2,the maximal group velo
ity jrk!(k)j is attained for di�erent dire
tions k. ForK1 = 0 and a1 = a2=p2, the dispersion relation redu
es to!2�(k)4 = K2 sin2(r� k1 � k22 )10



and the maximal group velo
ity is attained in (1; 1) dire
tion. For K2 = 0 anda1 = a2=p2 one has!2�(k)4 = K12 �sin2 r�k12 + sin2 r�k22 �+ K12 ���sin2 r�k12 � sin2 r�k22 ���and the maximal group velo
ity is attained in (1; 0) dire
tion. Numeri
al plots of !�for di�erent parameters suggest that only these two dire
tions o

ur, with a sharp
rossover. So in the last example, the solitary wave is supersoni
 with respe
t to theentire a
ousti
 spe
trum. By 
ontrast in the �rst example the solitary wave is slowerthan transversal phonons. A possible s
enario for the stability of the solitary wavewith respe
t to non-longitudinal perturbations is then as follows: The solitary wave
ould still be stable when it is supersoni
, whereas it looses stability when there arefaster transversal phonons.A
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