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Abstract. Many partial differential equations with rapid spatial or temporal scales have effective

descriptions which can be derived by homogenisation or averaging. In this article we deal with

examples, where quantitative estimates of the error is possible for higher order homogenisation and

averaging. In particular, we provide theorems, which allow homogenisation and averaging beyond

all orders by giving exponential estimates of appropriately averaged and homogenised descriptions.

Methods include iterated averaging transformations, optimal truncation of asymptotic expansions

and highly regular solutions (Gevrey regularity). Prototypical examples are reaction-diffusion equa-

tions with heterogeneous reaction terms or rapid external forcing, nonlinear Schrödinger equations

describing dispersion management, and second-order linear elliptic equations.

1. Introduction

Many classical multiscale problems are modelled by (partial) differential equations which are het-

erogeneous in space (explicitly depending on the space variable x) or nonautonomous (explicitly

dependent on time t). The multiscale character is introduced, if these dependencies are rapid, i.e.

they are on a fast scale. Typically, this is achieved by introducing a small parameter ε and con-

sidering dependencies of the form x/ε or t/ε. Application areas, where such descriptions are used,

include continuum mechanics, chemical reactions, nonlinear optics, ecology, and celestial mechan-

ics among others. The x/ε describes e.g. the underlying varying microstructure of the medium,

whereas an t/ε dependency is used for rapid external excitations.

Then there are two main approaches to such problems when comparing the heterogeneous/ nonau-

tonomous partial differential equations with their homogeneous/ autonomous counterparts. Firstly

one can identify effects that are created by the multiscale structure. Secondly one can try to find

effective descriptions by homogeneous and autonomous equations without any explicit multiscale

structure. This process is usually called homogenisation for space-dependent problems and av-

eraging for time-dependent problems. Of course, these two approaches are related, as effective

descriptions can be used to estimate the size of effects.

There are many different methods to derive the homogenised or averaged descriptions, these can

be grouped roughly into two groups. The first one is using weak convergence methods (see e.g.

[Tar79, Tar86, Bor98, GMMP97, JKO94]), which are applicable to many problems but which usually

do not provide a quantitative bound on the effectiveness, i.e. on the error of approximation. The

next group of methods is based on asymptotic expansions in the small parameter ε. When ruling

out purely formal methods, then the rigorous asymptotic techniques can be also used to derive
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quantitative error bounds on the approximation error. These will be then in some finite or even

exponential order in ε. Some classical methods can be found in [AKN97, BLP78, BP84, JKO94,

LM88]. To derive such estimates, the finer analysis often also requires additional assumptions on

the structure of the differential equation.

Besides certain regularity assumptions on the solutions, we will mainly consider cases where the

underlying microstructure and external excitation is either periodic or quasiperiodic. When ex-

panding a rigorous finite order procedure into a series, even in a very benign example, like periodic

averaging of analytic ordinary differential equations

ẋ = f(x, t/ε),

convergence of the expansion cannot be expected in general. Nevertheless, beyond a finite as-

ymptotic expansion, there are exponential estimates in several aspects, early examples are by

Nekhoroshev, and Neishtadt; see, e.g., [Nek79, Nei84, LM88]. These then yield upper estimates on

all kinds of effects created by the periodic nonautonomous structure.

Here, the purpose of this article is to describe a number of asymptotic techniques which provide

effective descriptions up to exponentially small errors for wide classes of multiscale problems. The

remainder of the article has the following structure. First we will provide a list of prototypical partial

differential equations and interesting solutions involving multiple scales in section 2. Then we will

describe several finite order methods like classical averaging, homogenisation and their relation to

normal forms in the dynamical systems literature (section 3). Detailed results on techniques for

upper exponential estimates for the earlier examples will be given in section 4. In section 5, we will

use these results to estimate several possible effects. We conclude with a discussion, where we are

e.g. describing some situations, where lower estimates are possible, section 6.

2. Examples

We provide some typical examples for which effective descriptions beyond every order will be

possible. For larger classes of examples and more general assumptions, we refer to the relevant

papers [Mat01, MS03, Mat04, KMS06].

2.1. Partial differential equations with rapid time dependence. The basic example of

nonautonomous differential equations is the periodic ordinary differential equation

(2.1) u̇ = f(u, t/ε) with f(., τ) = f(., τ + 1) for all τ ∈ R

To describe more general dependencies than the purely periodic one, we introduce the phase φ ∈
Tm = (R/Z)m,m ∈ N. Then we rewrite the autonomous equation as

u̇ = f(u, φ)

φ̇ =
1
ε
Ω(u, φ)(2.2)
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with Ω(u, φ) ≥ c0 > 0. Then m = 1,Ω(u, φ) = 1 recovers the periodic case. Results on averaging

in this situation, under certain assumptions on Ω, can be found in [BoMi61, SV85]. Exponential

estimates are due to Neishtadt [Nei84] for m = 1 and to Simó [Sim94] for m > 1 and

Ω(u, φ) = ω ∈ Rm with Diophantine conditions on ω

|(`, ω)| ≥ γ|`|−τ for some γ > 0, τ > m− 1 and all ` ∈ Zm(2.3)

Partial differential equations with such a structure can be found in the context of systems of

reaction-diffusion equations

ut = D∆u+ f(u) + g(u, φ)

φ̇ =
1
ε
Ω(u, φ)(2.4)

(u(0), φ(0)) = (u0, φ0) ∈ X × Tm

with D = diag(d1, . . . , dn). We will consider the functiion u on [0, 1]d with periodic boundary

conditions. Initial conditions are in the phase space X = Hs
per([0, 1]d,Rn) with s > d/2 to ensure

the embedding of X into C0 and differentiability of the nonlinearities in X. Reaction diffusion

equations are the prime example for pattern formation, for a review see [FS03]. An external forcing

can be introduced in light sensitive reactors by periodic changes, see e.g. [SaScWu99, RMMSC03]

for a framework and an example.

Another example are nonlinear Schrödinger type equations, which e.g. describe the evolution

of pulses in optical fibres [NM92]. The evolution then describes the changes of the pulse while

propagating along the fibre, so changes in the material due to dispersion management and localised

amplification are described as

iut = d(φ)uxx + C(φ, |u|)u

φ̇ =
1
ε
Ω(u) + g(u, φ)(2.5)

As a phase-space we use as in (2.4) some Sobolev space, denoted again by X. Variants describing

general interaction between fast oscillations and pulses can be also described in the setting of

Hamiltonian PDE. For the necessary frame work and the description of non-adiabatic coupling, we

refer the reader to [MS03].

2.2. Partial differential equations with rapid space dependence. First we consider a het-

erogeneous version of (2.4), where the heterogeneity is in the reaction term, examples of these can

be found in several modelling areas [BHR05, Kee00, KS98]:

ut = ∆x,yu+ f(u, x/ε)(2.6)

We will be in particular interested in the behaviour in infinite cylinders, i.e. x ∈ R and y ∈ Σ with

Σ a bounded cross-section. In particular, let Σ = [0, 1]d with periodic boundary conditions in y.
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When looking for stationary solutions, we obtain

∆x,yu+ f(u, x/ε) = 0.(2.7)

We rewrite the equation and use the idea of spatial dynamics. It is a way to construct special

solutions to PDE on unbounded domains. For this we let

U =

(
u

ux

)
; A =

(
0 I

−∆y 0

)
; F (U, x/ε) =

(
0

−f(u, x/ε)

)
Renaming x as time t, we again obtain an equation

Ut = AU + F (U, t/ε),(2.8)

which has the form of a rapidly forced evolution equation. The phase space X is a function space

on the cross-section Σ like X = Hs+1(Σ,Rn) × Hs(Σ,Rn). Even if the Cauchy problem is not

well-posed, this method of spatial dynamics has a long history, see [Kir82] and further work (see,

e.g.[IM91, AM95, FS03] and the references therein).

When considering travelling waves in heterogeneous media one is using the ansatz

u(x, y, t) = v(x− ct, y, x/ε),

i.e. the profile v of the travelling wave is changing periodicly while moving through the periodic

medium. This can be also formulated as a spatial dynamics problem, for details see [MSU06].

Variants also include heterogeneities in the main part like in classical homogenisation theory. The

homogenisation of heterogeneous second-order elliptic equations is appearing in many stationary

problems, consider

(2.9) −∇ · (A(x/ε)∇u)(x)) = f(x).

The matrix A ∈ L∞(T d) on T d = (R/Z)d is assumed to be symmetric and uniformly elliptic.

Furthermore we assume boundary conditions for x in some bounded domain, here again periodic

boundary conditions.

3. Finite order estimates and normal forms

The basic idea of this approach is to transform the equation to derive an effective, simpler version

of the differential equation. The method proved to be very successful in the analysis of finite

dimensional dynamical systems [LM88, SV85]. Now we consider problems, that can be written as

an evolution equation with external forcing like (2.4,2.8) and under further assumption also (2.5)

(see [Mat04]). More examples and references can be found in [Mat04, Ver05, Ver06], including

other variants of explicitly time dependent partial differential equations and other near-identity

transformations to obtain the form in (3.10). We consider

ut = Au+ f(u, φ)

φ̇ =
1
ε
Ω(u, φ),(3.10)
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where u ∈ X for some appropriate phase space X. Then a near-identity transformation on a ball

BR(X) can be written in the form

(3.11) u = v + εW (v, φ)

The transformed equation can be derived from

∂tu = ∂tv + ε∂vW (v, φ)∂tv + ε∂φW (v, φ)∂tφ

then

∂tv =(I + ε∂vW (v, φ))−1
{
A(v + εW (v, φ)) + f(v + εW (v, φ), φ)

− ε∂φW (v, φ)
1
ε
Ω(v, φ)

}
.

So depending on the form of Ω, one can try to reduce the externally forced term f by an appropriate

choice of W . It is notational convenient to split f such that

f(v, φ) = f̂(v) + g(v, φ) such that

〈g〉 =
∫

T m

g(v, ψ)dψ = 0.

In the simplest case of periodic external forcing, i.e. m = 1,Ω ≡ 1, we let

W (v, φ) =
∫ φ

0
g(v, ψ)dψ,

then the transformed equation has the form

∂tv =(I + ε∂vW (v, φ))−1
{
A(v + εW (v, φ)) + f̂(v + εW (v, φ))

+ g(v + εW (v, φ), φ)− g(v, φ)
}
.

This removes the lowest order nonautonomous terms. A problem is to estimate the remainder r, if

we rewrite the equation as

(3.12) vt = Av + f̄(v; ε) + r(v, φ; ε).

The remainder involves terms depending on the unbounded operator A, such that r is only formally

small. A more promising variant is to use some bounded Galerkin type approximation to perform

the estimates, where the Galerkin approximation vN is chosen depending on ε. For all our examples,

there exists a sequence of (Galerkin) projections (PN )N∈N which satisfy

(i) the sequence of projections converges strongly to the identity on the phase space X,

(3.13) lim
N→∞

PNu = u in X for all u ∈ X;

(ii) the projections PN commute with A on its domain of definition

(3.14) PNAu = APNu for all u ∈ D(A);
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(iii) the operator A is bounded on RgPN ,

(3.15) |APNu|X ≤ N |PNu|X for all u ∈ X.

The equation with projection PN on the approximation space is

(3.16) ∂tuN = AuN + PNf(uN , φ).

Then the transformed equation is

∂tvN = (I + ε∂vNW (vN , φ))−1
{
A(vN + εW (vN , φ)) + f(vN + εW (vN , φ), φ)

−ε∂φW (vN , φ)
1
ε
Ω(vN , φ)

}
.(3.17)

Regrouping again yields

(3.18) ∂tvN = AvN + f̄N (vN ; ε) + r1(vN , φ; ε)

then the remainder term is of order

sup
‖vN‖≤R

ε‖AvN‖‖g(vN , φ)‖,

for V in a large ball BR(X). The remainder is small for an appropriate choice of N(ε). E.g. when

we are choosing N(ε) such that ‖AvN‖ ∼ ε−1/2, we obtain a rigorous estimate on r1 ∈ O(ε1/2) in

the approximation space PNX, this is uniform for ε→ 0, N(ε) →∞.

The important property is now, that (3.18) has still the form of the original equation (3.16).

So the equation can be transformed again to obtain a new remainder term r2. This is of order

sup‖vN‖≤R ε‖Avn‖‖r1(vN , φ)‖, such that r2 ∈ O(ε) for the same choice of N(ε) with ε→ 0, N(ε) →
∞. The transformed equation has again the same form. Hence this procedure can be iterated

to obtain arbitrary finite order estimate O(εk), provided we can ensure enough regularity of the

nonlinearity.

In a detailed analysis taking into account all parts of the remainder term one can see, that the

constant in the O(εk) remainder will become large with k. So this procedure will not lead to a

convergent asymptotic expansion. But keeping track of the constants in the remainder estimates

depending on k and ε is crucial for later exponential estimates.

Here of course, the error of the Galerkin approximation is still to be estimated. When extending

the transformation back to the full space by

u = v + εPNW (PNv, φ),

this leads to

∂tv = Av + f̄(v; ε) + r(v, φ; ε)

with additional terms in f̄ and r due to the Galerkin approximation. The additional terms are all

of the form G(v − PNv).
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Another situation with an explicit choice of W is for m = 1 and Ω(v, φ) = Ω̄(v) + εβ(v, φ).

The phase φ will also be transformed. We choose the explicit change of coordinate (uN , φ) =

(vN , ψ) + εW (vN , ψ)

(3.19) W (vN , ψ; ε) =

(
W 1(vN , ψ; ε)

W 2(vN , ψ; ε)

)
,

with

W 1(vN , ψ; ε) =
1

Ω̄(vN )

∫ φ

0
g(vN , τ)dτ

and

W 2(vN , ψ; ε) =
1

Ω̄(vN )

∫ φ

0
β(vN , τ)

+ ∂vN Ω̄(vN )(W 1
k+1(vN , τ)− 〈W 1(vN , .)〉)dτ,

where 〈.〉 again denotes the T 1-average.

The third situation is the quasiperiodic case, i.e. m > 1 and Ω(v, φ) = ω with ω = (ω1, . . . , ωm)

fulfilling Diophantine conditions: there are constants γ > 0 and τ > m− 1 such that for all ` ∈ Zp

(3.20) |(`, ω)| ≥ γ|`|−τ

as for the finite dimensional result (2.3). Then the transformation is given terms of the Fourier

expansion of the phase dependent term. Letting

g(uN , φ; ε) =
∑
`∈Zp

g`(uN ; ε) exp(i2π(`, φ))

then we transform uN = vN + εW (vN , φ; ε) with

(3.21) W (vN , φ; ε) =
∑
`∈Zp

g`(vN ; ε)
2πi(`, ω)

exp(i2π(`, φ))

Classical homogenisation theory of (2.9) gives an asymptotic expansion (cf. e.g. [BP84]):

(3.22) uε,N (x) =
N+2∑
n=0

εmu(n) (x, x/ε) ,

where the functions u(l)(x, y) are required to be periodic in the fast variable y. For this problem

one can construct in this way a full asymptotic expansion with u(l) adopting the following form

(see e.g. [BP84], [CS04]):

(3.23) u(n)(x, y) =
n∑

l=0

∑
|k|=l

Nk(y)Dk
x vn−l(x),

where N0(y) ≡ 1 and Nk(y) are periodic solutions of the main (|k| = 1) and higher order (|k| > 1)

unit cell problems in y. The functions vs(x), s ≥ 0, solve certain recurrent systems of equations in

x, see [BP84, KMS06]. This cannot be easily rephrased as an iterative procedure but the idea of

tracking the dependence of the constants and taking expansion depending on ε can also be used in
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the context of (2.9). For other quantitative estimates on homogenisation involving quasiperiodic

terms see [FV01].

The method of iterative transformation procedures are encountered widely in dynamical systems

theory as the concept of normal forms, see e.g. [AKN97, Van89]. An important question is the

description of the behaviour near an equilibrium of

u̇ = Au+ f(u), u ∈ Rn,

where f is of higher order in u. A particular simple form is sought for f . If A has purely imaginary

spectrum and is semisimple (i.e. there are no Jordan blocks of size 2 or bigger in its complex Jor-

dan normal form), then we obtain a normal form transformation by averaging, see [Van89][Sec.2.4].

When we assume that exp(At) is periodic with period T , then all terms can be removed by appro-

priate coordinate changes, except those which are invariant under the averaging operator

πf(u) =
1
T

∫ T

0
exp(−At)f(exp(At)u)dt

for all u ∈ R. But while removing terms, which are not invariant under π, one also changes certain

higher order invariant terms, such that pure averaging will not give a correct normal form.

The relation of averaging and purely imaginary spectrum has also been used in the context of wave

equations and similar partial differential equations, see [Bam03a, Bam03b, Bam06, Kr89, Ver05,

Ver06]. Here also the reductions to Galerkin approximations were used depending on a small

parameter, which is introduced via scaling u 7→ εu to obtain

∂tu = Au+ εf̃(u, ε),

with f̃(u, ε) = 1/ε2f(εu) ∈ O(1). The equation is then simplified by averaging the semigroup

exp(At). Here the name ‘Galerkin averaging’ was introduced. The development of ‘Exponential

averaging’ in [Mat01, MS03] was independent of this.

4. Exponential estimates

We will now collect methods to move from finite order normal form and averaging transformations

to exponential estimates in the framework described above. In particular, we obtain results to

all orders O(εk) and beyond. In the last section, we derived iterative estimates on the Galerkin

approximation space PNX, and obtained error terms due to the Galerkin approximation. We will

control both errors at the same time. There are three variables to choose to minimise the error.

Firstly there is ε, which is given, then we have the choice of the number of normal form steps and

there is also the index N of the Galerkin approximation.

The crucial ingredient, which dictates the optimal coupling, is the dependence of the error on

N , which is in our examples a question of regularity. As it is a question about the decay of

spatial Fourier coefficients for periodic boundary conditions or the decay of the Fourier transform

for problems on Rd. A class of function spaces is introduced to capture this. We define the
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Gevrey space in the following way: Assuming that there exists a closed, densely defined, boundedly

invertible operator Γσ,p with domain of definition

(4.24) Gσ,ν := D(Γσ,ν) ⊂ D(A),

such that RgPN ⊂ Gσ,ν , Γσ,ν(RgPN ) = RgPN for all N , and

Γσ,νAu = AΓσ,νu for all u ∈ RgPN .

We equip the Gevrey spaces Gσ,ν with the graph norm

(4.25) |u|Gσ,p = |u|X + |Γσ,νu|X .

For the theorem, we will assume that Gevrey-regular functions u ∈ Gσ,ν are exponentially well

approximated by the Galerkin projections PN , i.e.

(4.26) |Γ−1
σ,ν(I − PN )| ≤ C0 exp(−σ/Nν),

for N -independent constants C0(σ, ν). Now we are in a position to formulate the following theorems

about exponential estimates.

Theorem 1 (Exponential averaging of parabolic equation under periodic forcing [Mat01]). Let

the nonlineairties f, g be entire functions on Rn, let g be continuous on T 1 and let Ω ≡ 1 in

equation (2.4). Then the equation can be transformed on bounded sets in X by a real analytic and

time-periodic change of coordinates for 0 < ε < ε0

(4.27) u = v + εW (v, t/ε; ε)

with W bounded on any ball of radius R in X. The transformed nonautonomous terms r are

exponentially small after a short transient, but the equation may contain nonlocal terms f̄ :

(4.28)
∂

∂t
v(x, t) = D∆v(x, t) + f(v(x, t)) + f̄(v(t); ε)(x) + r(v(t), t/ε; ε)(x),

with v(0) = u0, |v(0)|X < R and t ∈ (0, t∗)

sup
|v(0)|X<R

|α(v(t))|X ≤ Cε exp(−min(t, c)ε−1/3),

sup
|v(0)|X<R

|f̄(V (t))|X ≤ Cε+ C exp(−min(t, c)ε−1/3)

where C, c, ε0 do not depend on u0.

Proof. For a detailed proof see [Mat01]. We will sketch the proof using the transformation of (3.16)

in the previous section. Adapting the results of [Nei84] and a coupling

N(ε)εα = 1

we can estimate the remainder term in the approximation space PNX. For this we use a complex

extension and a Cauchy estimate. Performing k = [ε−1+α] transformation steps as in (3.18) and
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proving that |rj+1| ≤ |rj |/2 for j = 1, . . . , k yields that the remainder term on the approximation

space is

|rk| ≤ C2−k ≤ C exp(−cε−1+α)

for an appropriate choice of C and c. The autonomous correction term is at most of order O(ε). To

estimate the effect of the transformation on the full space X, we use a regularity result for equation

(2.4). Letting A = ∆ and

(4.29) Γσ,ν = exp(−σ|A|ν)

we obtain that

u(t) ∈

{
Gt,1/2 for t ∈ [0, t∗]

Gt∗,1/2 for t > t∗

as long as |u(t)|X remains bounded. This and similar results can be found in [Pro91, TBDHT96,

FT98], adaptions to equations with nonlocal operators as they appear in the transformed equations

can be found in [Mat01]. Using this regularity result and (4.26), we can estimate the additional

error terms due the Galerkin approximation of the form G(v − PNv). Thus the overall remainder

can be bounded by

|rk(ε)|X + |G(v(t)− PN(ε)v(t))|X

≤ C exp(−cε−1+α) + C0 exp(−min(t, t∗)/N(ε)1/2)

= C exp(−cε−1+α) + C0 exp(−min(t, t∗)ε−α/2).

Choosing α = 2/3 yields the desired result for an appropriate choice of C and c. The other results

including the estimate on f̄ are direct consequences of the detailed analysis in [Mat01]. �

So far the analysis was about the equation, now we compare the solutions of (4.28) with solutions

of the truncated equation,

∂tu = ∆u+ f(u) + f̄(u; ε)(4.30)

Corollary 2 (Gronwall estimates with Gevrey initial data). Let the assumptions of Theorem 1 hold,

and additionally assume that (2.4) has only globally bounded solutions. Fix R > 0, the maximal

amplitude of the solution. Then for any t0 > 0 there are constants ε0(t0) > 0, and C ′(t0), c′(t0) > 0

such that the following holds.

Let u(t) be a solution to the truncated equation (4.30) with norm bounded by R in the Gevrey space

Gt∗,1/2, for a time interval 0 ≤ t ≤ t0 <∞.

Then there exists a unique solution v(t) on 0 ≤ t ≤ t0 to (4.28) with initial value u(0). Moreover,

the solutions are exponentially close in ε < ε0,

|v(t)− u(t)|X ≤ C ′ exp
(
−c′ε−1/3

)
,

for all 0 ≤ t ≤ t0.
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Proof. The difference w(t) = v(t)− u(t) satisfies the equation

∂tw = A(t)w + r(t),

where

A(t) = A+
∫ 1

0
(∂uf + ∂uf̄)(τu+ (1− τ)v)dτ

and

r(t) = r(v(t))− r(u(t)),

where for the sake of notation, we omitted the arguments t and ε. Since f , f̄ , and r possess bounded

derivatives on bounded sets of Gt∗,1/2, the result is an immediate consequence of a standard Gronwall

lemma. Note that Gevrey initial data will stay in the Gevrey space Gt∗,1/2, such that there is no

transient in the exponential estimate. We also note that the estimate on the remainder r is in the

X-topology, only, such that the closeness result only holds in this topology. Furthermore when

starting with arbitrary initial data, the transient in the exponential estimate would destroy an

exponential estimate. �

In the next theorem, we use smooth initial data in Gσ,1/2, which is defined in the same way as in

(4.24) with the same function Γσ,ν as in (4.29). We denote a ball of radius R in a Banach space Y

by BR(Y ).

Theorem 3 (Exponential averaging of Gevrey regular solutions of nonlinear Schrödinger equations

[MS03]). Consider equation (2.5) with analytic nonlinearities C, g. Assume Ω(u) ≥ c0 > 0 for all

u ∈ X,φ ∈ T 1. Consider initial data in Gσ,1/2. There exists a near-identity transformation I +εW ,

defined on the ball BR(X)×T 1, which eliminates adiabatically the fast phase, up to an exponentially

small non-adiabatic effect and which is analytic on BR(Gσ,1/2) × T 1. In the new variables (v, ψ),

the evolution equation reads

i∂tv = ∆v + C̄(v; ε) + r1(v, ψ; ε),(4.31)

∂tψ =
1
ε
(Ω(v) + Ω̃(v; ε)) + r2(v, ψ; ε).

The transformed nonlinearities r1, r2, C̄ and Ω̃ are bounded on the ball BR(X) and BR(Gσ,1/2)

respectively, uniformly in 0 < ε < ε0.

The non-adiabatic interaction terms r1 and r2 are exponentially small in ε, i.e., there exist constants

c, C > 0 such that

(4.32) |r1(v, ψ; ε)|X + |r2(v, ψ; ε)| < C exp
(
−cε−1/3

)
,

for all v ∈ BR(Gσ,1/2), and all ψ ∈ T 1. The adiabatic corrections C̄ and Ω̃ are small in Gevrey

spaces,

|C̃(v; ε)|Gσ,1/2
≤ Cε1/3, |Ω̃(v; ε)| ≤ Cε,

for v ∈ BR(Gσ,1/2).
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Proof. A detailed proof for general evolution equation or Hamiltonian partial differential equations

can be found in [MS03]. The proof is similar to the proof of theorem 1. The formal transformations

we consider are given in (3.19). Estimates on the remainder term in approximation space can be

derived in the same way as above. For the analysis of the error due to the Galerkin space, we use

that the initial data are in Gσ,1/2 and that (2.5) is well-posed on this space for finite times. Then the

estimates on the non-adiabatic remainder in PNBR and the error of the Galerkin approximation

can be balanced again to obtain the desired exponential estimate. �

A comparable corollary of Gronwall type also holds.

Theorem 4 (Averaging of Gevrey regular solutions of parabolic equations under quasiperiodic

forcing [Mat04]). Consider the reaction-diffusion equation (2.4) with analytic nonlinearities and

Ω(u, φ) = ω with Diophantine conditions (3.20). Then, for any ball of radius R in Gσ,ν there exists

an ε0 > 0, such that for 0 < ε < ε0 there exists a near identity transformation of both Gσ,1/2 and

X to

∂tv = ∆v + f(v) + ḡ(v, ε) + r(v, ψ, ε)(4.33)

∂tψ =
1
ε
ω

with initial conditions v(0) = u0; θ(0) = θ0 and with ḡ and r both bounded on balls in X, furthermore

the remainder term is exponentially small on balls of the Gevrey space.

|ḡ(v, ε)|X ≤ Cε(τ+1)/(τ+3)

|r(v, θ, ε)|X ≤ C(|v|Gσ,ν ) exp(−cε−1/(τ+3)).

Details, variants and extensions are given in [Mat04].

Proof. A major part is already the estimate on the approximation space, see [Sim94]. The remainder

on the approximation space is of order O(exp(−cε(εN(ε))1/(1+τ)
)). The error estimate of the Galerkin

approximation is as above of order O(exp(−cN(ε)1/2), such that the optimal coupling is N(ε) =

ε−2/(3+τ), which yields the exponential estimate. �

Theorem 5 (Homogenisation via spatial dynamics [Mat05]). Consider (2.7) with analytic nonlin-

earity f(., .), which is periodic in the second component. Then there exist ε0 > 0, c, C > 0 and a

t-periodic transformation of (2.8) on a ball BR(X) for 0 < ε < ε0 to

(4.34) Vt = AV + F (V ) + F̄ (V, ε) + r(V, t/ε, ε),

where F̄ , α are differentiable for V ∈ BR(X), nonlinear and nonlocal in the cross-section, but local

in t. When considering bounded solutions V (.) ∈ BC(R, X) of the original equation (2.8) then the

influence of the fast scale on V (.) is exponentially small, uniformly on balls in BC(R, X):

‖r(V (.), ./ε, ε)‖BC(R,X) ≤ C exp(−cε−1/2).
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The correction term can be estimated on BR(X) by

sup
V (.)∈BX(R)

‖F̄ (V (.), ε)‖BC(R,X) ≤ Cε.

Proof. A complete proof of this homogenisation and of variants can be found in [Mat05, MW06].

The estimates on the approximation space are similar to the estimates in theorem 1. Using again

the coupling

N(ε)εα = 1.

Then we use again a regularity result. We let A as in (2.8) and use

Γσ,ν = exp(−σ|A|ν)

in the definition of the Gevrey norm in (4.24). Then we obtain that the globally bounded solutions

are in fact highly regular as functions on the cross-section Ω

V (t) ∈ Gσ∗,1

for some σ∗ > 0 with estimates uniform in t. The set of all such solutions is sometimes called the

attractor of the spatial dynamics equation. Then the overall remainder on bounded sets within the

attractor can be bounded by

|rk(ε)|X + |G(V (t)− PN(ε)V (t))|X

≤ C exp(−cε−1+α) + C0 exp(−σ∗/N(ε))

= C exp(−cε−1+α) + C0 exp(−σ∗ε−α).

Choosing α = 1/2 yields the result for appropriate C and c. The results hold in the same way

for any function V (.), which is smooth enough, e.g. by being a solution of a similar averaged

equation. �

Theorem 6 (Homogenisation of elliptic operators [KMS06]). Suppose A ∈ L∞(T d), f ∈ Gσ,1/2

(as defined above) and
∫
T d f = 0 in equation (2.9). Let uε be the solution. Then there exist ε-

independent constants C > 0, c > 0, κ > 0, such that for any N ∼ κε−1 the approximation (3.22)

has the error bound:

‖uε,N − uε ; H1(T)‖ ≤ C exp(−cε−1).

The proof in [KMS06] is based on a careful analysis of the remainder term uε,k−uε, then the error

can be estimated in an exponential way for k = N ∼ κε−1, where only regularity of f is needed,

but not on the regularity of the matrix A.

5. Effects

In this section we discuss some effects due to the heterogeneous or nonautonomous structure of the

equation.
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5.1. Splitting of homoclinic orbits. An important difference in the dynamics between au-

tonomous and non-autonomous differential equation are the existence of transversal homoclinic

orbits. So consider a parameter dependent version of (2.4) without rapid forcing

(5.35) ∂tu = ∆u+ f(u, λ)

with λ ∈ R. A homoclinic orbit is a solution, which is biasymptotic for t→ ±∞ to some hyperbolic

equilibrium u0, i.e. ∆u0 + f(u0, λ) = 0 and the operator ∆ + Df(u0, λ) has only spectrum away

from the imaginary axis. Under some non-degeneracy conditions, this homoclinic orbit will only

exist for special values λ0. Whereas in the externally forced equation

(5.36) ∂tu = ∆u+ f(u, λ) + g(u, t/ε)

the stable and unstable manifold will intersect transversally, creating rich dynamics nearby. The

main assertion of theorem 1 is, that the nonautonomous dynamics of (5.36) can be described by the

exponentially close autonomous equation as in (4.30). It is possible to show by some further analysis

that the equilibrium persists as a hyperbolic periodic orbit, exponentially close to an equilibrium of

the truncated equation after the transformation of theorem 1. Then also the phase-portraits with

unstable and parts of the stable manifolds will be exponentially close, see [Mat01]. From this, it is

easy to see, that transversality effects can only occur in a small parameter interval (λ−(ε), λ+(ε))

with

|λ+(ε)− λ−(ε)| ≤ C exp(−cε−1/3),

such that these effects were called “invisible chaos” [FS96].

Using functional analytic methods as in [Mat03] one obtains better results for large classes of

parabolic equations, by analysing the problem in complex time. A more detailed analysis is possible

for ordinary differential equations including lower estimates, see e.g. [Gel99, HMS88].

5.2. Pinning. Pinning describes a phenomenon in equations like (2.6), where a travelling wave

does not propagate due to heterogeneous structures in the medium. Thus travelling waves will

be instead standing waves, i.e. they are solutions to (2.7). A pinned wave is then homoclinic or

heteroclinic orbit in the spatial dynamics setting (2.8). Pinning occurs when there a transversal

intersection of stable and unstable manifolds. The general idea is similar to the analysis of the

transversal intersection above. Here it is more convenient to find solutions nearby a pulse U0 as

zeros of

I(V ) = ∂t(U0 + V )−A(U0 + V )− F (U0 + V ) ∈ BC(R, X)

Using Fredholm properties or exponential dichotomies, the problem is reduced to a low-dimensional

problem, where the effects of the heterogeneous terms can be estimated to be of orderO(exp(−cε−1/2)),

see [MW06].
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6. Discussion

In this article we have given an overview on results about averaging and homogenisation for partial

differential equations beyond every order. The first step of this analysis are finite-order averaging

estimates, which were iterated, to obtain exponential estimates on the transformed equation. With

Gronwall-type estimates, we can extend this to estimates about the finite time behaviour. For

particular solutions, equilibria, stable and unstable manifolds and connecting orbits the analysis

can be extended to infinite times too. Due to the general nature of the procedure there remain

several problem, which require a finer analysis.

The construction of the transformation and the remainder terms are iterative so they are not easily

computable, but they coincide to finite order with their finite order counter-parts. Therefore, it is

possible to show by direct calculations, that the transformed nonlinearities are typically not-local

in x, even if the original nonlinearities are local, see [Mat04].

A very subtle point are lower estimates for both averaging procedures and particular effects. For

the general averaging procedure, there is an example in [MS03], showing that the averaging re-

sults cannot be improved by any other “averaging-type” transformation. In particular there is

difference between ordinary differential equations and infinite dimensional systems in what kind of

exponents can be achieved by exponential averaging. In [KMS06], a particular simple choice of the

heterogeneous matrix allows explicit calculations and shows, that the truncation of the asymptotic

expansion is optimal.

For particular effects like the splitting of homoclinic orbits, there are several ways to obtain lower

estimates in the finite dimensional case, see [HMS88, Gel99]. A crucial part is extending the analysis

to complex time and analysing the time-singularities in the complex plane. This idea is also used in

other cases of exponential analysis [BT05, CM05] and references therein. Some ways of introducing

exponential asymptotics into numerical analysis can be found in [MBS00, Mat03]. The relation

of exponential averaging and integrable systems is still open, but see [Bam99, Poe99] for related

results.

The analysis here was restricted to cases to some partial differential equations with periodic bound-

ary conditions, the needed abstract properties, such that the theorems hold for large classes of evo-

lution equations are given e.g. in [MS03, Mat04]. Then these results will hold e.g. for problems on

the domain Rd. The effect of boundary conditions and of boundary layers [Neu00] on exponential

homogenisation still remains to be analysed.
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