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Abstract 

Numerical solutions of a one dimensional model of screw dislocation walls (twist boundaries) are 

explored. The model is an exact reduction of the 3D system of partial differential equations of 

Field Dislocation Mechanics. It shares features of both Ginzburg-Landau (GL) type gradient flow 

equations as well as hyperbolic conservation laws, but is qualitatively different from both. We 

demonstrate such similarities and differences in an effort to understand the equation through 

simulation. A primary result is the existence of spatially non-periodic, extremely slowly evolving 

(quasi-equilibrium) cell-wall dislocation microstructures practically indistinguishable from 

equilibria, which however cannot be solutions to the equilibrium equations of the model, a feature 

shared with certain types of GL equations. However, we show that the class of quasi-equilibria 

comprising spatially non-periodic microstructure consisting of fronts is larger than that of the GL 

equations associated with the energy of the model. In addition, under applied strain-controlled 

loading, a single dislocation wall is shown to be capable of moving as a localized entity as 

expected in a physical model of dislocation dynamics, in contrast to the associated GL equations. 

The collective evolution of the quasi-equilibrium cell-wall microstructure exhibits a yielding-type 

behavior as bulk plasticity ensues, and the effective stress-strain response under loading is found to 

be rate-dependent. The numerical scheme employed is non-conventional since wave-type behavior 

has to be accounted for, and interesting features of two different schemes are discussed. 

Interestingly, a stable scheme conjectured by us to produce a non-physical result in the present 

context nevertheless suggests a modified continuum model that appears to incorporate apparent 

intermittency. 
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Introduction 

 

This paper studies a simple model of Field Dislocation mechanics to test its 

potential for the study of individual and collective dislocation dynamics in the 

presence of nonconvex crystal elasticity. The simplified mathematical model used 

in our study is formulated in Acharya (2010) using the equations of Field 

Dislocation Mechanics and traveling wave solutions and equilibria of this model 

have been studied analytically in Acharya, Matthies and Zimmer (AMZ) (2010). 

Here we concentrate on general time-dependent approximations of solutions to 

this model not restricted to traveling waves and carry out our investigation 

numerically. A rigorous analysis of global existence and uniqueness of a more 

general class of equations to which the present equation belongs is provided in 

Acharya and Tartar (2011).  

 

Our results include evolutions that illustrate the coexistence of both positive and 

negative dislocations in a quasi-equilibrium state under no load. A variety of 

patterned equilibria are observed. Stick-slip behavior in average stress-strain 

response is observed in the presence of loading. The stress-strain response under 

loading displays strain-rate hardening.  

 

An upwinding and a Friedrichs scheme are used to solve the equation. The 

influence of these numerical schemes on the behavior of equilibrium profiles 

under no load and on the motion of dislocations is also analyzed. 

 

1.   Model 

1.1.   Physical description 

 

Consider an infinite cylinder of rectangular cross-section as shown in Fig. 1. The 

cylinder is subjected to simple shear by applying spatially uniform displacement 

boundary condition on the top surface and by holding the bottom surface fixed. 

Homogeneous loading in the model is prescribed by specifying g  which denotes 

the applied shear strain. u  is the displacement on the top surface of the cylinder in 
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the y  direction. It is assumed that at any time t  all fields vary only along the axis 

of the cylinder. The only non-zero component of stress field is   which represents 

the shear stress in the y  direction on planes with normal in the z  direction. 

Likewise, the only non-zero component of plastic distortion is   which represents 

plastic shearing in the y  direction on planes with normal in the z  direction. The 

spatial gradient of plastic distortion x  represents the only component of the 

dislocation density field representing screw dislocations with line and Burgers 

vector along the y  direction. The temporal gradient of plastic distortion   is 

denoted by t . 

 

In Acharya (2010) a time dependent 3D system of equations governing the rate of 

plastic distortion tensor is formulated. The above assumptions are utilized to 

derive an exact 1D reduction of those equations resulting in the following 

governing equation as described in Acharya (2010), and AMZ (2010):  

 

  x
t xx g

B


          (1) 

 
where B  (dislocation ‘drag’) and   (core energy ‘modulus’) are material 

parameters, discussed further in Sec. 1.4.  

Consider a periodic-cubic function ̂  of the following form  
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extended periodically beyond ,
2 2

    
,  0  .  

 

The function   appearing in the PDE  (1) is defined in terms of ̂  as   
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It satisfies  
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    0 0 ; 0 0,       (4) 

 
which implies that the shear stress is zero and shear modulus is positive at zero 
elastic strain. 
 
Fig. 2 (a) and (b) show the ̂  and   function respectively. Fig. 2 (c) is a plot of 
energy corresponding to the stress function ̂ . The wells are at 0x   and x    
where the energy is minimum.    
 

1.2.   Notation 

  

The following notation is used in the numerical scheme described below. 

Consider the discrete field variable  k
hx . The superscript k  indicates the time 

increment. The distance from the origin of the domain is indicated by the symbol 

hx  inside the brackets   , which is the position of the thh  node. Discrete spatial 

and temporal derivatives are denoted by subscripts. The discrete spatial derivative 

of   at time increment k  and location hx  is denoted by  k
x hx . Likewise, the 

discrete temporal derivative of   at time increment k  and location hx  is denoted 

by  k
t hx . The discrete double spatial derivative is denoted by  k

xx hx . The 

notation   k k
hg x   denotes the value of the function   for time increment 

k  at spatial location. 

        

1.3.   Numerical Scheme 

 

We follow Acharya et al. (2004) in formulating the scheme utilized to deal with 

wave like response. The linearized form of (1) is obtained formally by taking the 

first variation of (1):   
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The first term of (5) provides linearized wave-like behavior. A corresponding 

velocity  k
hc x  is obtained as follows  
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To calculate  k
hc x  for a time increment k  at a spatial location hx  the required 

values of  k
x hx  and  k

xx hx  are computed using central finite differences 
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Once  k
hc x  is obtained, depending on the sign of  k

hc x  the discrete value of 

 k
x hx  is updated as follows: 
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where d  is the element size of the domain. The values of   used to compute x  

are picked from the upwind side of wave motion and hence this scheme is known 

as ‘upwind scheme’. 

 

For the time-step determination, each of the three terms on RHS of (5) is 

considered. The minimum of the three time steps corresponding to the three 

mechanisms is used to compute the time step increment kt  as shown below.   

   

 
        

2

min , ,k
k k k k kh

h x h x h h

d d B B
t
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 
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      

 (9) 

                           

  is updated according to the following scheme. 
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 (10) 

 

1.4.   Problem Setup 

 

The total length 1000L b  where 44.05 10b m   is the magnitude of the 

Burgers vector. Other parameters are shear modulus 23 GPa  , 
2

4

b  and 

0.05  . Neumann boundary conditions 0x   are applied at the ends of the 

domain (mostly for simplicity, since most of our conclusions relate to patterns in 

the interior of the body; we note that while a vanishing flux of plastic strain is 

physically natural boundary condition, a vanishing dislocation density is not so). 

Time is expressed in units of 
bB


 and the velocity units are 

B


. 

 

2.   Characterization of Equilibrium Profiles 
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2.1.   Equilibrium profiles connecting wells 

 

A variety of possible equilibrium solutions for the governing equation of plastic 

flow are analyzed in this section. All homogeneous   profiles are equilibria. The 

following non-homogeneous profiles connecting energy wells 0   and     

are equilibria in an infinite domain (Acharya, 2010, section 4.1).  

    

 tanh
2 2 4eq g x
  


 

     
 

 (11) 

 

We utilize this solution to check whether it suffices to generate an approximate 

equilibrium solution on a finite domain. Fig. 3 illustrates the verification of a 

spatially inhomogenous equilibrium profile. The analytical solution (11) profile 

with the center at 500x b  shown below is prescribed as an initial condition. The 

applied strain g  is set to zero to simulate no applied loads. There is no noticeable 

change in the   profile during the simulation. 

 

 Fig. 4 (a) shows the plot of x  for the analytical solution profile. It represents a 

single wall of dislocations. Fig. 4 (b) is a plot of the stress corresponding to the 

dislocation wall. High stresses are observed in the dislocation core. The stress 

decreases rapidly to zero away from the core.  

 

2.2   Equilibrium profiles between wells  

 

The motivation for the questions posed here comes from the analytical results of 

AMZ (2010) in which all possible equilibria of the model are characterized.by a 

phase portrait analysis. The equilibrium profiles discussed in the previous section 

are profiles generated by (11) which connect the energy wells i.e. the transition 

layer goes from one energy minimum at 0   to another energy minimum at 

   . In addition to those profiles, profiles of the type shown in Fig. 5 are 

analyzed. When the lower and upper levels of the transition layer are equidistant 

from the energy wells there is no change in the form of   profile when simulation 
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is performed with g  set to zero. When the lower and upper levels of the transition 

layer are not equidistant from the energy wells then the resulting profile is not 

equilibrium. The sequence of evolution of this profile is shown in Fig. 6. The 

profile moves with time towards the right and eventually exits the domain. We 

note that all of these solutions discussed in this section are continuous in space. 

                                       

2.3.   Multiple transition layers and quasi-equilibria  

 

The figures (7 and 8) show a section of the domain, the same pattern being 

repeated throughout the entire domain and set by the initial conditions.  

Irrespective of whether two dislocations of the same or opposite sign are adjacent 

to each other, the corresponding   profile is a quasi-equilibrium when the ends of 

the profile connect the wells.       

 

In comparison to the above case, a different trend is observed for the case when 

the ends of transition layers are between wells. When a positive and a negative 

dislocation are adjacent to each other and the ends of the transition layer of the   

profile are between wells then the form of the   profile remains unchanged as 

shown in Fig. 9. However, when two dislocations of same sign are adjacent to 

each other and the ends of the transition layer of the   profile are between wells 

then the profile shown in Fig. 10 is found not to be in equilibrium.  

 

As discussed in AMZ (2010) multiple, full Burgers vector walls, i.e. transition 

layers connecting  adjacent wells of the energy, separating dislocation-free cells 

are physically desirable features as idealized representations of observed cell-wall 

microstructures or pile-ups. While in our idealized setting only screw-walls are 

considered, the walls in fatigue cell-wall microstructures consist of edge 

dislocation dipoles e.g. Ahmed, Wilkinson, Roberts (1997), i.e. they consist of 

alternate positive and negative walls. In pile-ups, they all have the same sign. 

Interestingly, as explained in AMZ (2010) multiple transition layers connecting 

wells are not possible as a strict equilibrium in the model. This is due to the 

reason that an equilibrium transition layer connecting two wells is represented by 

a heteroclinic orbit in the phase plane xj  vs. gj -  (Fig. 3, AMZ) joining two 
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equilibria and therefore the connection is possible only in infinite ‘time’ which in 

this context translates to an infinite spatial domain.  However, the results obtained 

using the full dynamic equations (Figs. 7 and 8) show such profiles involving 

multiple transition layers connecting wells that appear to be in equilibrium for all 

practical purposes.  These results represent the remarkable fact that such 

transition layer patterns evolve extremely slowly but cannot be predicted from the 

corresponding equilibrium equations. In this paper, we term such profiles as 

quasi-equilibria. This behavior of our equations is analogous to the rigorously 

analyzed behavior of Ginzburg Landau equations in Carr and Pego (1989). The 

results observed in Figs. 9 and 10 are in full agreement with the analysis in AMZ 

(2010).      

 

           

3.   Dislocation Motion 

 

In the cases studied so far static equilibrium solutions were analyzed with g , the 

applied strain, set to zero. In this section dislocation motion is studied by 

subjecting the profile to constant homogenous load by specifying a non-zero g . 

The importance of the appropriate solution scheme necessary to model dislocation 

motion is emphasized and the trend of the resulting dislocation velocity profiles is 

discussed.  

 

The profile corresponding to (11) with g  set to zero is prescribed as an initial 

condition. Dislocation motion for this simulation is shown in Fig. 11 (a). The 

profile (dislocation) moves towards the left or right depending upon the sign of g . 

The profile does not exhibit traveling wave characteristics since its form is 

distorted during motion.     

It is important to note that the upwind scheme explained in (8) is essential for 

predicting dislocation motion. Without the upwind criteria, the profile remains 

stationary even under non-zero loads.   
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Fig. 11 (b) is a plot of average dislocation velocity *v  versus applied strain. The 

profile corresponding to (11) with g  set to zero is prescribed as an initial 

condition. For each constant positive g , a simulation is performed for a total time 

of 10 units. This time is chosen to ensure the transition layer profile does not exit 

the domain before the completion of the simulation. The average velocity is 

calculated for each g  by measuring the total distance traversed by the transition 

layer profile and dividing it by the total time. The average velocity versus applied 

strain curve starts with what appears to be a zero slope for small strains and then 

varies approximately as square of the applied strain at larger strains.              

 

 

4.   Multiple Dislocation Walls  

 

In order to study the behavior of multiple dislocation walls, the initial condition 

imposed is as shown in Fig. 12. A repeated sequence of a collection of sine waves 

separated by a wide spacing in between is specified over the entire domain. Each 

collection consists of three sine waves, each having a wavelength of 25b . The 

spacing between each collection of sine wave is equal to 75b . A simulation is 

performed for the no loading case with applied strain, g , set to zero. The 

amplitude of the sine waves is equal to   . 

 

Fig. 12 shows the initial condition specified at 0t   along with the variation in 

the   profile with time. The initial sine wave pattern transforms into the pattern 

shown in Fig. 12. This pattern remains stationary, as determined from numerical 

simulation, and does not change its form as time evolves. Fig. 13 shows the t  

evolution for this simulation. The zero values of t  along the domain are 

consistent with stationary   profile. 

 

Fig. 14 shows the plot of x  for the simulation representing dislocation 

microstructure. The x  initially in the form of a cosine pattern evolves into the 
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pattern shown in the figure. The pattern has both positive and negative 

dislocations co-existing in a quasi-equilibrium state under no load. Fig. 15 shows 

the stress profile of the dislocation microstructure. High stresses are observed in 

the dislocation core; however, these are short-ranged and decrease rapidly away 

from the core. Due to the short-range nature of these stresses there is no 

interaction between the adjacent dislocation walls at zero loads unless they are 

very close and hence the positive and negative dislocation walls do not attract and 

coalesce. Likewise, the two positive dislocation walls do not repel each other and 

hence the shown micro-structure is retained in a quasi-equilibrium state. This 

behavior is different from that observed in Sec. 2.3 where the profiles 

corresponding to two dislocation walls of the same sign adjacent to each other 

were not equilibria. When loads are applied, the dislocation walls move under the 

influence of loads leading to interaction between adjacent neighbors and leading 

to eventual annihilation of the entire microstructure. This phenomenon is 

discussed in Section (4.2). 

 

4.1.   Multiple dislocation walls subjected to loading 

 

To observe the response under time varying loads, the initial condition in the form 

of sine waves described before is imposed on  . The sample is then loaded by 

uniformly increasing the applied strain, g , from 0 to 0.01.  

 

A plot of the spatial average of   over the entire domain vs. g , which can be 

interpreted as a stress-strain curve is shown in Fig. 16. A section from the sample 

is observed which is shown in Fig. 16 (a). As the applied strain starts to increase 

the sine waves evolve into a step-like pattern shown in Fig. 16 (b). These steps 

remain stationary or move with very slow velocity until the applied strain 

increases to a particular value. This phase in the stress strain curve can be 

interpreted as an initial elastic phase. When applied strain becomes more than 

0.0005 as in Fig. 16 (c) steps having positive magnitude start to move with higher 

velocities and coalesce with adjacent steps. At 0.0015g   all the positive 

magnitude steps coalesce to form the pattern shown in Fig. 16 (d).  
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This phase, from 0.0005g   to 0.0015g  , can be interpreted as a plastic phase 

since the stress remains constant or decreases slightly with increasing strain.  As 

applied strain increases from 0.0015 to 0.003, another elastic phase is observed in 

which the steps in Fig. 16 (d) remain stationary or move very slowly. This is 

followed by a plastic phase from 0.003g   to 0.004g   during which the steps 

indicated in Fig. 16 (d) coalesce and result in the pattern shown in Fig. 16 (e). 

After this there is no elastic phase, the remaining steps continue to move and the 

velocity increases to larger values as g  increases. This results in a drop in the 

stress strain curve until the point where all steps eventually collapse producing a 

homogenous equilibrium condition shown in Fig. 16 (f). A further increase in g  

produces a response similar to the elastic curve. 

4.2.   Rate dependent behavior 

 

The response to different rates of loading is shown in Fig. 17. The multiple sine 

wave initial condition explained earlier is imposed on   and the applied strain, g

, is increased from 0 to 0.01 at different rates. The stress strain response for these 

simulations exhibits rate-dependent behavior. For the case in which the applied 

strain rate is higher, the elastic and plastic phases are comparatively longer as 

compared to the case in which the applied strain rate is lower. For the case with 

higher applied strain rate, the positive and the negative dislocations coalesced at 

values of load higher than in the case with lower applied strain rate. 

 

4.3.   Stick-slip behavior in the average stress-strain response 

 

Fig. 18 illustrates the stick slip behavior observed when multiple dislocation walls 

are subjected to loading. Multiple sine waves described above are prescribed as an 

initial condition for  . The sample is loaded quasi-statically by imposing a 

constant load for 20 time units. For each constant load, the average of   over the 

entire domain is computed at the end of the loading sequence as follows: 
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 (12) 

 

where N is the total number of nodes and hx  is the position  of  the thh  node. The 

absolute value of average   is normalized by the constant   to compute * . 

 

 * avg



  (13) 

 

*  is plotted versus the constant load as shown in Fig. 18. The average of   can 

be interpreted as average plastic strain. For small loads, the average plastic strain 

is close to zero. After a threshold value of load there is a sudden increase in the 

average plastic strain.    

5.   Idealized Fatigue Microstructure 

 

The motivation for the simulations discussed in this section comes from the 

persistent slip band phenomenon observed in fatigue experiments in Ahmed 

Wilkinson and Roberts (1997) and Mughrabi (1979) as shown in Fig. 19, which is 

a hand-sketch of the original picture.  To emulate the persistent slip band structure 

the following initial condition for   is prescribed. A repeated sequence of sets, 

with each set consisting of three steps is specified. All steps have the same width 

and spacing, and magnitude equal to  . Each set of steps is separated by a wide 

gap in between. The evolution of   under no load is analyzed. Fig. 20 shows the 

idealized fatigue microstructure obtained from the simulation. The sharp corners 

of the steps become smooth instantaneously. The steps do not evolve appreciably 

(noticeably) with time after they attain the smooth profile. Fig. 21 is the plot of x  

for a section of the sample and can be interpreted as microstructures with the 

peaks representing dislocation walls. Under no load, dislocation cell-wall 

microstructures exist in a quasi-equilibrium state. Fig. 22 represents the stresses in 

these dislocation walls. High stresses are observed in the dislocation cores. These 

stresses decrease rapidly away from the cores.   
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6.   Significance of transport represented by leading 

x  term in (1) 

 

The significance of the leading x  term in the governing equation (1) is 

discussed in this section. A comparison of the results of the tests performed with 

zero loads illustrates that the results of the computation are same irrespective of 

whether the leading term in the governing equation is x  or 1. One might then 

question the need to have the leading x  term in the governing equation. 

Certainly, the absence of the leading x  term would simplify the physical and 

numerical understanding of the governing equation as well as ease the complexity 

of the solution procedure. However, important differences are observed, both 

when loads are applied and they are absent. Consider the case shown in Fig. 23 (a) 

where a tanh  profile with the center at 500x b  is prescribed as an initial 

condition on  . The value of g  is increased linearly from 0 to 0.01 to model a 

linear ramp strain loading. The corresponding x  plot is shown in Fig. 23 (b). For 

the xF   case, the   profile moves towards the right with increase in loads as 

discussed earlier in section 3.1. However, for the 1F   case (the Ginzburg 

Landau approximation for the given energy), there is no lateral movement in the 

  profile and the dislocation does not move under the application of loads. The   

profile simply shifts upwards by the value of the applied load g . After each 

increment of load the profile jumps from the existing equilibrium configuration to 

the corresponding equilibrium configuration of the higher load. Numerically, the 

lack of dislocation motion can be explained by the calculation that the velocity c  

(section 1.3) is zero when the leading x  term is absent. Thus, at least in this 

restricted setting, the GL equations (for the assumed energy) cannot model 

dislocation motion under applied load, while our model does. Of course, 

representing dislocation motion under applied load has to be an essential 

ingredient of any model of dislocation dynamics and plasticity.  

 

Differences are also observed between the results of the simulations when the 

specified initial condition (IC) has transition layers between wells as shown in 
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Fig. 24 (a). A comparison is made between the simulations performed with the 

GL equations associated with the FDM model. This GL equations is obtained by 

replacing the leading x  
term in the governing equation (1) to 1. The simulations 

are performed with g  set to zero. For the GL simulation, the initial   profile is 

not a (quasi)equilibrium. The profile shifts to a form where the transition layers 

connect the wells. After this form is attained, the   profile remains stationary. 

Since the overall profile is not periodic in space, we conclude that the final ‘state’ 

is a quasi-equilibrium.  

 

In the case of FDM, there is a minor adjustment from the initial condition and 

then the   profile remains practically unchanged in time Fig. 24 (a). A section of 

the   profile showing only a single transition layer is shown in Fig. 24 (b). The 

section of the xx  profile is shown in Fig. 24 (c). The results in AMZ (2010) 

indicate that in FDM it is possible to have spatially non-periodic equilibria, where 

fronts connect levels between energy wells. Thus an interesting question arises as 

to whether the observed profiles as in Fig. 24(a,b) are strict equilibria of FDM, or 

that the class of quasi-equilibria of FDM is larger than that admitted in the 

corresponding GL equations. To test this hypothesis, we utilize a result of AMZ 

(2010) that suggests that strict equilibrium transition layers in FDM connecting 

levels in between energy wells necessarily have discontinuities in their xx profile. 

Figs. 24(c) indicates no such discontinuity. This suggests that the FDM   profile 

of Fig. 24 (a) is in a quasi-equilibrium state. This is further verified by exploring 

the xx  profile for a definite quasi-equlibrium in FDM, as shown in Fig. 25(a,b,c). 

Here, the levels of the transition layers are very close to the energy wells. At the 

end of the simulation there is negligible change in the initial   profile. A section 

of   and xx  profiles is shown in Fig. 25 (b) and (c), respectively. The levels of 

the transition layers remain stationary even when they are very close to the energy 

wells. The xx  profile is also continuous and qualitatively similar to that of Fig. 

24(c). 
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7.   Numerics 

 

7.1.   Significance of the diffusion term 

 

The significance of the diffusion term xx , arising from the modeling of core 

energy, is discussed in this section. The xx  plot corresponding to the initial 

condition on a small section of the sample is shown in Fig. 26 (a). A simulation is 

performed with   set to zero so that there is no contribution from the diffusion 

term. In the absence of the diffusion term, kinks develops in the xx  values as 

shown in Fig. 26 (b) which become sharper with time as shown in Fig. 26 (c) and 

(d). A slightly larger section is shown in Fig. 27 to observe the effect of   set to 

zero. The smooth transition layers in   shown in Fig. 27 (a) are transformed in to 

a step-like form shown in Fig. 27 (b). In the presence of the diffusion term, kinks 

do not develop in the xx  values and the smooth transition layers in   are 

maintained. 

                       

7.2. Spikes in t  profile 

 

The influence of a modified numerical scheme on the results obtained from the 

simulation of the governing equation is discussed in this section. The update of   

given by (10) is modified as follows to incorporate the Friedrichs scheme. 
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The simulation discussed in section 4 is performed with the above modified 

numerical scheme. Figs. 28 and 29 are the   and t  profile, respectively, for the 

simulation performed with Friedrichs scheme. They can be compared with Figs. 

12 and 13 which are the corresponding plots obtained from the simulation 

performed without the Friedrichs scheme. There is no noticeable difference in the 

trend of   evolution between Figs. 12 and 28. However, from the comparison of 

the t  evolution plots between Figs. 13 and 29, spikes are observed in the case 

with the Friedrichs scheme.  

 

The occurrence of spikes in the t  plot shown in Fig. 29 is further discussed in 

this section. The spikes occur in the region where the   values coincide with the 

points in the energy curve where equilibrium is unstable. A small section of the 

domain is analyzed in Fig. 30 that illustrates the sequence of occurrence of a 

single spike. Fig. 30 (a) shows the xx  values in the section of the sample at the 

instant of time just before the occurrence of the spike. As time progresses, kinks 

develop in the xx  values as shown in Fig. 30 (b). Since there is no change in 

value of   as the value of g  is constant and the change in the value of   is 

negligible, a kink in xx  values results in an increase in the value of t  which 

corresponds to a spike in the t  plot. These kinks then smooth out with time as 

shown in Fig. 30 (c) and (d) resulting in the original smooth xx . This 

phenomenon keeps on continuing at the same point in space but at random 

instants of time resulting in more spikes. The height of the spikes varies in space 

as well as time. It is important to note that without the incorporation of Friedrichs 

scheme in numerical calculation discussed in (14) there is no kink in xx  values 

and the spikes are absent. Thus, the intermittency appears to be a result of using 

the Friedrichs scheme and whether this is consistent with the PDE needs to be 

determined. 

 

8.   Convergence 
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The effect of mesh refinement on the results obtained by the model is discussed in 

this section. For the sake of convenience, a convergence study is shown for only 

one of the setups. The setup described in section 4 to study the behavior of 

multiple dislocation walls under no load is used for the study. Simulations are 

performed with three meshes of 2000, 4000 and 8000 elements. Fig. 31 shows the 

effect of refinement on the   and x  profiles. A good convergence in both   as 

well as x  profile is observed as there is negligible difference between the profiles 

obtained with different meshes. To quantify the differences in the results for 

different meshes the following error norms are computed.  
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 (15) 

   

where 2000 , 4000  and 8000  denote the   values obtained using a mesh of 2000, 

4000 and 8000 elements, respectively.  4000 2000  
 denotes the error norm for 

comparison between   values for meshes of 4000 and 2000 elements. Likewise,  

 8000 4000  
 is the error norm for comparison between   values for meshes of 

8000 and 4000 elements. The corresponding error norms for x  values are 

obtained from 
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where 2000
x , 4000

x  and 8000
x  denote the x  values obtained using a mesh of 2000, 

4000 and 8000 elements, respectively. The variation of error norms with time is 

shown in Fig. 32. The magnitude of error norms does not change appreciably with 

time. The magnitude of  8000 4000  
 is less than that of  4000 2000  

. The 

magnitude of  8000 4000

x  
 is also less than that of  4000 2000

x  
. This suggests 

that the results obtained from the simulations are converging with mesh 

refinement. 

 

 

Conclusions 

 

We have been able to demonstrate the following phenomena. 

 

 Our primary result is the demonstration of spatially non-periodic patterned 
microstructure, indistinguishable from being stationary in time for all 
practical purposes, but non-predictable from the equilibrium equations of 
the model. We term such states quasi-equilibria. 

 
 The model is capable of predicting motion of dislocation walls as localized 

entities (walls being the only possibility in 1-d). The average velocity 
curve of such a localized profile resembling a dislocation wall starts with a 
zero slope for small strains and then varies approximately as square root of 
the applied strain at larger strains. 
 

 Patterned plastic deformation fields are shown to be in quasi-static 
equilibrium under no loads. 

 

 Dislocation cell wall microstructures with features common to the 
persistent slip band phenomenon of fatigue experiments are shown to be 
quasi-equilibrium microstructure of the model. 

 

 Elasto-plastic behavior is observed when simulations are performed with 
non-zero loads. The stress strain response is elastic at small loads and 
transforms to plastic after a load threshold is exceeded, characterizing the 
phenomenon of yielding. The stress strain curve exhibits rate-dependent 
behavior.  

 

 Stick-slip behavior in average equivalent plastic strain is also predicted.          
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An interesting case of intermittency, possibly a numerical artifact, is observed 

when the Friedrichs scheme is incorporated. The use of Friedrichs scheme may be 

debated as a similar plastic deformation field is observed without the intermittent 

behavior when Friedrichs scheme is omitted. However, given the current interest 

in models predicting intermittency, it seems that the Friedrichs scheme can be a 

useful recipe that can be translated into a nonlocal physical model. 
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                      Fig. 1 Infinite rectangular cylinder subjected to simple shear 
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                                  Fig. 2 (a) Plot of function ̂  

 

 

 

 

 

                Fig. 2 (b) Plot of function   
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                        Fig. 2 (c) Plot of energy corresponding to the stress function ̂  
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                                                    Fig. 3 tanh equilibrium profile   
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                                    Fig. 4 (a) Screw dislocation wall              

                               

 

 

 

   

 

                                         Fig. 4 (b) Stress in a dislocation wall     
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                              Fig. 5 Transition layer equidistant from energy wells 
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                 Fig. 6 Non-equilibrium transition layer non-equidistant from energy wells  

 

 

 

 

 

 

 

 

a 

b

a b

  t = 5

t = 0 



29 

 

 

 

  

 

                   

 

 

                    

 

 

 Fig. 7 Dipolar Structure: Quasi-equilibrium transition layers 

connecting wells corresponding to positive and negative dislocations 
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Fig. 8 Pile-up: Quasi-equilibrium transition layers 

connecting wells corresponding to only positive dislocations 
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Fig. 9 Transition layers between wells corresponding to positive and negative dislocation 
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Fig. 10 Non-equilibrium transition layers between 

wells corresponding to only positive dislocations 
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                                             Fig.11 (a) Dislocation motion                     
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                                         Fig. 11 (b) Dislocation velocity vs. strain     
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                    Fig. 12 Plot of variation of   for multiple sine wave initial condition  

 

 

 

 

 

  

                         

                                Fig. 13 t  plot for multiple sine wave initial condition 
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                    Fig. 14 Quasi-Equilibrium dislocation microstructure               

 

 

 

 

 

     

 

                                         Fig. 15 Dislocation stress profile 
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                                                   Fig. 16 Multiple dislocation walls subjected to loading  
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                    Fig. 17 Multiple dislocation walls subjected to different rates of loading 
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              Fig. 18 Stick-slip behavior 

  

 

 

 

 

 

 

 

 

 

 

 



40 

 

 

 

 

 

    

 

   

        Fig. 20 Idealized fatigue cell wall microstructure obtained from simulation   
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   Fig. 19 Hand-sketch of Fatigue Microstructure picture 

originally shown in Ahmed Wilkinson and Roberts (1997) 

PSB
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             Fig. 21 Dislocation cell-wall microstructure 

 

 

 

 

 

 

 

                                     Fig. 22 Dislocation stress profile 
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                         (a)   plot 

 

 

 

  

 

                                                                   (b) x  plot 

 

                       Fig. 23 Influence of leading x  term in the governing equation 

                                          (single transition layer connecting wells) 
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                       Fig. 24 (a) Influence of leading x  term in the governing equation 

                                            (multiple transition layers between wells) 
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Fig. 24 (b) A section of the   profile obtained from the 

FDM model showing a single transition layer 

 

 

 

 

 

 

                                  Fig. 24 (c) xx  profile across a transition layer 
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Fig. 25 (a) Multiple transition layers with levels of transition 

layers close to the energy wells  0   and 0.05   
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                  Fig. 25 (b) A section of the   profile showing a single transition layer 

 

 

 

 

 

 

 

                               Fig. 25 (c) xx  profile across a transition layer 
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                      Fig. 26 (a)                                                                                Fig. 26 (b) 

 

 

 

 

 

 

                       

                                      

                                   Fig. 26 (c)                                                                          Fig. 26 (d) 

 

 

Fig. 26 Evolution of xx  in the absence of diffusion term in 

the governing equation (small section of the domain) 
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                                                         Fig. 27 (a)      

 

 

   

                                     

                                                             Fig. 27 (b)      

 

 

Fig. 27 Transformation of the   profile in the absence of diffusion 

term in the governing equation (large section of the domain) 
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                       Fig. 28 Evolution of   for multiple sine waves case with Friedrichs 

 

 

 

 

 

 

   

                        Fig. 29 Evolution of t  for multiple sine waves case with Friedrichs 
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                              Fig. 30 (a)                                                                    Fig. 30 (b)  

 

 

 

 

        

                             

                               Fig. 30 (c)                                                                Fig. 30 (d) 

 

       Fig. 30 Evolution of xx  with Friedrichs scheme (small section of the domain) 
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                                                                   (a) plot of   

 

 

 

 

                                                                     (b) plot of x  

 

                                                Fig. 31 Effect of mesh refinement 
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                                           Fig. 32 Plot of variation of error norms with time 

 


