

UZY SMILANSKY (WEIZMANN INSTITUTE OF SCIENCE)

SYSTEMATICS OF SPECTRAL SHIFTS IN RANDOM MATRIX ENSEMBLES

Consider a reference matrix – an $N \times N$ matrix, randomly picked from one of the random Gaussian matrix ensembles ($\beta = 1, 2, 4$). Perturbing it with a sequence of rank- t matrices, with t taking the values between 1 and N , we study the expected difference between the spectra of the perturbed and the reference matrices as a function of t , as well as its dependence on the random matrix ensemble and the kind of rank- t perturbations. In particular, we consider a “mild” perturbation, which either permutes or randomises t *diagonal* elements. We derive universal expressions in the scaled parameter $\tau = t/N$ for the expectation of the variance of the spectral shift functions and show that it is proportional to $\sqrt{\tau}$ (*i.e.* sub-diffusive) in the limit of large N and t with a fixed ratio τ , as long as $\tau < \tau_{\max}(\beta)$.